Pendekatan Hidrogeomorfologi Dan Pendugaan Geolistrik Untuk Identifikasi Potensi Airtanah Di Jedong Malang

Ferryati Masitoh, Alfi Nur Rusydi, Ilham Diki Pratama

Abstract


This study aims to identify the potential groundwater in Jedong, Malang, East Java. The hydrogeomorphological approach is a suitable approach to describe the relationship between hydrological and geomorphological processes on and below the earth's surface. The survey of geoelectricity complements the hydrogeomorphological approach. It will give a better description of the groundwater conditions below the earth's surface. Based on the research, there are 2 hydrogeomorphological units in the study area, which are: Volcanic Foot Valley Unit and Volcanic Foot Ridge Unit. The best groundwater potential is in Volcanic Foot Valley Hydrogeomorphological unit, namely Awar-awar Valley and Cokro Valley. The valleys are dominated by gully erosion and landslides. They have surface deposits up to a depth of 7 meters, and lots of outcrops of breccia, pumice, and andesite boulders. The valley’s springs discharge between 56 - 198 m3/day. The average infiltration rate in the valley is 1776 mm / hour, with sandy soil material. The best aquifer consisting of sandy material is more than 10 meters in depth, based on the geoelectrical survey. Water in the aquiclude layer, cannot be exploited because it is breccia and tuff material. The Sawah valley cannot be exploited further because the groundwater potential is very low. This can be identified by the thick water outflow seepage. In the Volcanic Foot Ridge Hydrogeomorphological unit, the groundwater potential is also very small. Hydrogeomorphically, water will flow down the slope to the valley. It will reduce the infiltration rate. In general, the ridge area is only used for settlement, while the slopes are used for dryland agriculture. The geoelectric analysis results show that the groundwater potential is at a depth of more than 45 meters. This research’s results show that the combination of the hydrogeomorphological approach and the geoelectric use will provide a better description of the potential groundwater. 


Keywords


Geoelectricity; Groundwater; Hydrogeomorphology; Volcano

Full Text:

PDF

References


Agniy, R. F., Haryono, E., & Cahyadi, A. (2016). Karakteristik dan Pemanfaatan Mataair di Daerah Tangkapan Sistem Goa Pindul, Karangmojo, Gunungkidul. In S. Suprayogi, S. Purnama, A. Cahyadi, & H. Fatcurohman (Eds.), Hidrologi dan Pariwisata (Issue December 2018). Badan PEnerbit Fakultas Geografi Universitas Gadjah MAda Yogyakarta. https://doi.org/10.31227/osf.io/zxwg4

Briški, M., Stroj, A., Kosović, I., & Borović, S. (2020). Characterization of aquifers in metamorphic rocks by combined use of electrical resistivity tomography and monitoring of spring hydrodynamics. Geosciences (Switzerland), 10(4). https://doi.org/10.3390/geosciences10040137

Casanova, J., Devau, N., & Pettenati, M. (2016). Managed aquifer recharge: An overview of issues and options. In Integrated Groundwater Management: Concepts, Approaches and Challenges. https://doi.org/10.1007/978-3-319-23576-9_16

Dai, X., Xie, Y., Simmons, C. T., Berg, S., Dong, Y., Yang, J., Love, A. J., Wang, C., & Wu, J. (2021). Understanding topography-driven groundwater flow using fully-coupled surface-water and groundwater modeling. Journal of Hydrology, 594(September 2020), 125950. https://doi.org/10.1016/j.jhydrol.2020.125950

Gomi, T., Sidle, R. C., & Richardson, J. S. (2002). Understanding processes and downstream linkages of headwater systems. BioScience, 52(10), 905–916. https://doi.org/10.1641/0006-3568(2002)052[0905:UPADLO]2.0.CO;2

Hwang, J. Y., Park, S., Kim, H.-K., Kim, M.-S., Jo, H.-J., Kim, J.-I., Lee, G.-M., Shin, I.-K., & Kim, T.-S. (2017). Hydrochemistry for the Assessment of Groundwater Quality in Korea. Journal of Agricultural Chemistry and Environment, 06(01), 1–29. https://doi.org/10.4236/jacen.2017.61001

Lentswe, G. B., & Molwalefhe, L. (2020). Delineation of potential groundwater recharge zones using analytic hierarchy process-guided GIS in the semi-arid Motloutse watershed, eastern Botswana. Journal of Hydrology: Regional Studies, 28(February), 100674. https://doi.org/10.1016/j.ejrh.2020.100674

Liu, H., Tang, J., Zhang, X., Wang, R., Zhu, B., & Li, N. (2020). Seasonal variations of groundwater recharge in a small subtropical agroforestry watershed with horizontal sedimentary bedrock. Journal of Hydrology, September, 125703. https://doi.org/10.1016/j.jhydrol.2020.125703

Lukman, A., Aryanto, M. D., Pramudito, A., Andhika, A., & Irawan, D. E. (2017). Understanding Kendal aquifer system: A baseline analysis for sustainable water management proposal. Journal of Physics: Conference Series, 877(1). https://doi.org/10.1088/1742-6596/877/1/012053

Maemuna, S., Darsono, D., & Legowo, B. (2017). Identifikasi Akuifer di Sekitar Kawasan Karst Gombong Selatan Kecamatan Buayan Kabupaten Kebumen dengan Metode Geolistrik Konfigurasi Schlumberger. Jurnal Fisika Dan Aplikasinya, 13(2), 44. https://doi.org/10.12962/j24604682.v13i2.2156

Masitoh, F., Rusydi, A. N., & Diki Pratama, I. (2019). Kajian hidrogeomorfologi pada DAS orde 0 (nol) di Dusun Brau Batu. Jurnal Pendidikan Geografi, 24(2), 73–84. https://doi.org/DOI: http://dx.doi.org/10/1797/um017v24i22019p0073

Morbidelli, R., Saltalippi, C., Flammini, A., & Govindaraju, R. S. (2018). Role of slope on infiltration: A review. Journal of Hydrology, 557, 878–886. https://doi.org/10.1016/j.jhydrol.2018.01.019

Munawaroh, N., Puspitasari, N. N. A., Hadi, M. P., & Suarma, U. (2020). Geosonar for impermeable layer mapping in urbanized Upper Belik catchment, Yogyakarta. IOP Conference Series: Earth and Environmental Science, 451(1). https://doi.org/10.1088/1755-1315/451/1/012027

Naryanto, H. S. R. I., Khaerani, P., Trisnafiah, S., Shomim, A. F., & Tejakusuma, I. G. (2020). Identifikasi Potensi Airtanah untuk Kebutuhan Penyediaan Air Bersih dengan Metode Geolistrik : Studi Kasus di Kawasan Geostech , Puspiptek Serpong Groundwater Identification for Clean Water Needs Using Geoelectrical Method in Geostech Building Area , Pusp. Jurnal Teknologi Lingkungan, 21(2), 204–212.

Olakunle, J. (2012). Geostatistical Analysis of the Geoelectrical Parameters of Oke- Badan Estate , Akobo , South Western , Nigeria. 3(June), 27–33.

Poespowardoyo, S. (1984). Hydrogeological Map of Indonesia, Scale 1:250.000, Sheet X Kediri.

Pourghasemi, H. R., Sadhasivam, N., Yousefi, S., Tavangar, S., Ghaffari Nazarlou, H., & Santosh, M. (2020). Using machine learning algorithms to map the groundwater recharge potential zones. Journal of Environmental Management, 265(March), 110525. https://doi.org/10.1016/j.jenvman.2020.110525

Rahardjo, N. (2018). Pemetaan Potensi Mataair Di Pulau Bali. Jurnal Rekayasa Lingkungan, 4(2), 71–79. https://doi.org/10.29122/jrl.v4i2.1853

Rathi, V. K., Ram, S., Kumar, R., Agarwal, A., & Nema, R. K. (2020). Hydrological classification and performance of Himalayan springs in climate change scenario - a case study. Water Science and Technology: Water Supply, 20(2), 594–608. https://doi.org/10.2166/ws.2019.191

Ratih, S., Awanda, H. N., Saputra, A. C., & Ashari, A. (2019). Volcanic Springs, An Alternative Emergency Water Resource to Support Sustainable Disaster Management in Southern Flank of Merapi Volcano. IOP Conference Series: Earth and Environmental Science, 271(1). https://doi.org/10.1088/1755-1315/271/1/012012

Rohadi, R., & Yulianti, I. (2015). Unnes Physics Journal. Unnes Physics Journal, 6(1), 50–53.

Rolia, E., & Sutjiningsih, D. (2018). Application of geoelectric method for groundwater exploration from surface (A literature study). AIP Conference Proceedings, 1977(June). https://doi.org/10.1063/1.5042874

Santoso, S., & Suwarti, T. (1992). Systematic Geological Map of Indonesia, Quadrangle Malang 1608-1.

Sidle, R. C., Gomi, T., Loaiza Usuga, J. C., & Jarihani, B. (2017). Hydrogeomorphic processes and scaling issues in the continuum from soil pedons to catchments. Earth-Science Reviews, 175(August), 75–96. https://doi.org/10.1016/j.earscirev.2017.10.010

Sidle, R. C., & Onda, Y. (2004). Hydrogeomorphology: Overview of an emerging science. Hydrological Processes, 18(4), 597–602. https://doi.org/10.1002/hyp.1360

Singh, A., Kala, S., Dubey, S., Rao, B., Gaur, M., Mohapatra, K., & Prasad, B. (2014). Evaluation of bamboo based conservation measures for rehabilitation of degraded Yamuna ravines. Indian Journal of Soil Conservation, 42(1), 80–84.

Singh, S. K., Zeddies, M., Shankar, U., & Griffiths, G. A. (2019). Potential groundwater recharge zones within New Zealand. Geoscience Frontiers, 10(3), 1065–1072. https://doi.org/10.1016/j.gsf.2018.05.018

Teixeira, J., Chaminé, H. I., Carvalho, J. M., Pérez-Alberti, A., & Rocha, F. (2013). Hydrogeomorphological mapping as a tool in groundwater exploration. Journal of Maps, 9(2), 263–273. https://doi.org/10.1080/17445647.2013.776506

Wei, Z. lei, Lü, Q., Sun, H. yue, & Shang, Y. quan. (2019). Estimating the rainfall threshold of a deep-seated landslide by integrating models for predicting the groundwater level and stability analysis of the slope. Engineering Geology, 253(October 2018), 14–26. https://doi.org/10.1016/j.enggeo.2019.02.026

Wijaya, A. S. (2015). Aplikasi Metode Geolistrik Resistivitas Konfigurasi Wenner Untuk Menentukan Struktur Tanah di Halaman Belakang SCC ITS Surabaya. Jurnal Fisika Indonesia No:, XIX(55), 321.




DOI: https://doi.org/10.34312/jgeosrev.v3i2.10252



Copyright (c) 2021 Author

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.