Potensi Mikrocrystallincellulose Terimobilisasi Nanopartikel Cupri Oxide/Periodat (MCC/CuO-NP/KIO4) sebagai Adsorben Metilen Blue

Sri Rahayu Latif, Wiwin R Kunusa

Abstract


Penelitian ini bertujuan untuk mengadsorpsi zat pewarna sintetis metilen blue menggunakan Mikrocrystallincellulose (MCC) Tterimobilisasi nanopartikel cupri oxide/periodat (MCC/CuO-NP/KIO4) berbasis tongkol jagung dengan aktivasi NaOH 14%. Hasil karakterisasi MCC: Viscositas 86 cp, Selulosa 88.4%, Alfa-selulosa 45.2%. Adsorben (MCC/CuO-NP/KIO4) yang dihasilkan dikarakterisasi menggunakan FT-IR, SEM, XRD. Karakteristik spektra FT-IR (MCC/CuO-NP/KIO4) menunjukkan adanya puncak C=O yang sangat tajam pada 1055.70 cm-1dan 1028.37 cm-1 berasal dari getaran C-O-C. Indikasi adanya puncak partikel CuO pada bilangan gelombang 894.62 cm-1 , 1158.19 cm-1 , 1314.17 cm-1 . Difraktometer sinar-X (XRD) menunjukkan terjadinya penurunan kristalinitas serat sebagai hasil dari oksidasi. Permukaan morfologis selama oksidasi diamati menggunakan SEM. Pengukuran kapasitas adsorpsi metilen blue menggunakan Spektrofotometer UV-VIS. Pembuatan kurva standar dengan konsentrasi larutan standar (1 ppm, 5 ppm, 10 ppm, 15 ppm, 20 ppm) menghasilkan nilai r = 0.9888. Kapasitas adsorpsi yang dihasilkan dengan variasi konsentrasi larutan metilen blue 1ppm, 3 ppm, 7 ppm, 9 ppm adalah 70% - 80%.

Keywords


Mikrocrystallincellulose; Nanopartikel; Cupri Oxide/Periodat (MCC/CuONP/KIO4).

Full Text:

PDF

References


Calvini, P., & Gorassini, A. (2012). Surface and bulk reactions of cellulose oxidation by periodate. A simple kinetic model. Cellulose, 19(4), 1107–1114.

Höglund, E. (2015). Production of dialdehyde cellulose and periodate regeneration: Towards feasible oxidation processes.

Leguy, J., Diallo, A., Putaux, J.-L., Nishiyama, Y., Heux, L., & Jean, B. (2018). Periodate oxidation followed by NaBH4 reduction converts microfibrillated cellulose into sterically stabilized neutral cellulose nanocrystal suspensions. Langmuir, 34(37), 11066–11075.

Lindh, J., Ruan, C., Strømme, M., & Mihranyan, A. (2016). Preparation of porous cellulose beads via introduction of diamine spacers. Langmuir, 32(22), 5600–5607.

Plappert, S. F., Quraishi, S., Pircher, N., Mikkonen, K. S., Veigel, S., Klinger, K. M., Potthast, A., Rosenau, T., & Liebner, F. W. (2018). Transparent, flexible, and strong 2, 3-dialdehyde cellulose films with high oxygen barrier properties. Biomacromolecules, 19(7), 2969–2978.

Ruan, C.-Q., Strømme, M., & Lindh, J. (2018). Preparation of porous 2, 3-dialdehyde cellulose beads crosslinked with chitosan and their application in adsorption of Congo red dye. Carbohydrate Polymers, 181, 200–207.

Terinte, N., Ibbett, R., & Schuster, K. C. (2011). Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): Comparison between measurement techniques. Lenzinger Berichte, 89(1), 118–131.

Thiangtham, S., Runt, J., & Manuspiya, H. (2019). Sulfonation of dialdehyde cellulose extracted from sugarcane bagasse for synergistically enhanced water solubility. Carbohydrate Polymers, 208, 314–322.

Zhang, H., Liu, P., Peng, X., Chen, S., & Zhang, K. (2019). Interfacial Synthesis of Cellulose-Derived Solvent-Responsive Nanoparticles via Schiff Base Reaction. ACS Sustainable Chemistry & Engineering, 7(19), 16595–16603.




DOI: https://doi.org/10.34312/jambchem.v2i2.7065

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Jambura Journal of Chemistry



EDITORIAL OFFICE

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.