Efek Diskritisasi pada Modifikasi Hypocycloid Menjadi CSCPP (Curve Stitching Connected Pseudo Polygon)

Hanna Arini Parhusip

Abstract


Tulisan ini membahas tentang pembuatan Curve Stitching berdasarkan efek diskritisasi kurva Hypocycloid yang dimodifikasi. Kurva yang dihasilkan dinamakan Connected Pseudo Polygon (CPP) karena berupa segibanyak yang berbentuk berdasarkan urutan cara menggambar serta diskritisasi titik yang digunakan. Yang dimaksud Curve Stitching disini adalah pembuatan ornamen dengan papan dan benang. Desain ini digunakan sebagai media bermain dalam kegiatan pelajaran atau kuliah matematika. Selain dengan benang, CPP juga dibentuk dengan kawat dan sedotan agar Desain yang sama dapat dibentuk dengan beberapa material yang cocok untuk penyusunan CPP. CPP ini digunakan sebagai media untuk mengilustrasikan inovasi matematika atau ornamen matematika.

Keywords


Hypocycloid ; Segibanyak; Curve Stitching

Full Text:

PDF

References


G. Taubin, “Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 13, no. 11, pp. 1115–1138, 1991.

A. Iglesias et al., “Cuckoo Search Algorithm with Lévy Flights for Global-Support Parametric Surface Approximation in Reverse Engineering,” Symmetry (Basel)., vol. 10, no. 3, p. 58, Mar. 2018.

G. Irving and H. Segerman, “Developing fractal curves,” J. Math. Arts, vol. 7, no. 3–4, pp. 103–121, Dec. 2013.

J. D. Boissonnat and M. Teillaud, Effective Computational Geometry for Curves and Surfaces. Springer Berlin Heidelberg, 2006..

A. Biran, “Parametric Curves,” in Geometry for Naval Architects, Technion: Elsevier, 2019, pp. 197–222.

C. von Renesse and V. Ecke, “Discovering The Art of Mathematics: Using String Art to Investigate Calculus,” PRIMUS, vol. 26, no. 4, pp. 283–296, Apr. 2016.

M. Henle and B. Hopkins, Eds., Martin Gardner in the Twenty-First Century. Washington: The Mathematical Association of America, 2012.

D. M. Freeman, “Epicycloid curves and continued fractions,” J. Math. Arts, vol. 11, no. 2, pp. 100–113, Apr. 2017.

O. Aichholzer, F. Aurenhammer, C. Huemer, and H. Krasser, “Transforming spanning trees and pseudo-triangulations,” Inf. Process. Lett., vol. 97, no. 1, pp. 19–22, Jan. 2006.

H. A. Parhusip, “Arts revealed in calculus and its extension,” Int. J. Stat. Math., vol. 1, no. 3, pp. 016–023, 2014.

C. Li and G. P. Peterson, “Parametric Study of Pool Boiling on Horizontal Highly Conductive Microporous Coated Surfaces,” J. Heat Transfer, vol. 129, no. 11, pp. 1465–1475, Nov. 2007.

H. M. Osinga and B. Krauskopf, “Visualizing curvature on the Lorenz manifold,” J. Math. Arts, vol. 1, no. 2, pp. 113–123, Jun. 2007.

J. Nicol, On the Curve The Life and Art of Sybil Andrews Janet Nicol. Canada: Caitlin Press Inc., 2019.

S. Wang, J. Zhu, X. Wang, Q. Li, and H. Zhu, “Kinematics Modeling and Simulation of a Bionic Fish Tail System Based on Linear Hypocycloid,” Appl. Bionics Biomech., vol. 2015, pp. 1–8, 2015.

M. Florez, V. Carbonell, and E. Martinez, “Design of Cycloids, Hypocycloids and Epicycloids Curves with Dynamic Geometry Software,” in Engineering applications, Edulearn11 Proceedings, 2011, pp. 1011–1016.




DOI: https://doi.org/10.34312/jjom.v2i2.4385



Copyright (c) 2020 Jambura Journal of Mathematics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



                         EDITORIAL OFFICE OF JAMBURA JOURNAL OF MATHEMATICS

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Jenderal Sudirman No.6, Kota Gorontalo, Provinsi Gorontalo 96128, Indonesia
 Email: info.jjom@ung.ac.id
 +62-852-55230451 (Call/SMS/WA)
 Jambura Journal of Mathematics (p-ISSN: 2654-5616 | e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.