Pemodelan Regresi Nonparametrik dengan Estimator Spline Truncated vs Deret Fourier

Andrea Tri Rian Dani, Narita Yuri Adrianingsih

Abstract


ABSTRAK

Pendekatan regresi nonparametrik digunakan apabila hubungan antara variabel prediktor dan variabel respon tidak diketahui polanya. Spline truncated dan deret Fourier merupakan estimator dalam pendekatan nonparametrik yang terkenal, karena memiliki fleksibilitas yang tinggi dan mampu menyesuaikan terhadap sifat lokal data secara efektif. Penelitian ini bertujuan untuk mendapatkan estimator model regresi nonparametrik terbaik menggunakan spline truncated dan deret Fourier. Metode estimasi kurva regresi nonparametrik dilakukan dengan menyelesaikan optimasi Ordinary Least Squares (OLS). Kriteria kebaikan model menggunakan GCV, R2 dan MSE. Pemodelan regresi nonparametrik diterapkan pada data Case Fatality Rate (CFR) akibat Demam Berdarah Dengue (DBD) di Indonesia.  Berdasarkan hasil analisis, hasil estimasi dari pemodelan regresi nonparametrik menunjukkan bahwa estimator spline truncated memberikan performa yang lebih baik dibandingkan estimator deret Fourier. Hal ini ditunjukkan dengan nilai R2 dari estimator spline truncated yaitu sebesar 91,80% dan MSE sebesar 0,04, sedangkan dengan estimator deret Fourier diperoleh nilai R2 sebesar 65,44% dan MSE sebesar 0,19.

ABSTRACT

The nonparametric regression approach is used when the relationship between the predictor variable and the response variable is unknown. Spline truncated and Fourier series are well-known estimators in the nonparametric approach because they have high flexibility and are able to adjust to the local properties of the data effectively. This study aims to obtain the best nonparametric regression model estimator using the truncated spline and the Fourier series. The nonparametric regression curve estimation method is done by completing the Ordinary Least Squares (OLS) optimization. The criteria for the goodness of the model use GCV, R2, and MSE. Nonparametric regression modeling is applied to Case Fatality Rate (CFR) modeling due to Dengue Hemorrhagic Fever (DBD) in Indonesia. Based on the analysis, the estimation results from the nonparametric regression modeling show that the truncated spline estimator provides better performance than the Fourier series estimator. This is shown by the R2 value of the truncated spline estimator which is 91.80% and the MSE is 0.04, while the Fourier series estimator obtained an R2 value of 65.44% and MSE of 0.19.


Keywords


Regresi Nonparametrik; Spline Truncated; Deret Fourier

Full Text:

PDF [Indonesia]

References


Kemenkes RI, “Buletin Demam Berdarah,” 2014. [Online]. Available: https://www.kemkes.go.id/folder/view/01/structure-publikasi-pusdatin buletin.html. [Accessed: 12-09-2020].

Kemenkes RI, Profil Kesehatan Indonesia 2015, Jakarta: Kementerian Kesehatan RI, 2016.

Kemenkes RI, Profil Kesehatan Indonesia 2017, Jakarta: Kementerian Kesehatan RI, 2018.

S. Sifriyani, “Simultaneous Hypothesis Testing of Multivariable Nonparametric Spline Regression in the GWR Model,” International Journal of Statistics and Probability., vol. 8, no. 4, pp. 32-46, 2019.

A. Fitriani, I. G. A. M. Srinadi, and M. Susilawati, “Estimasi Model Regresi Semiparametrik Menggunakan Estimator Kernel Uniform (Studi Kasus: Pasien DBD di RS Puri Raharja),” E-Jurnal Matematika, vol. 4, no. 04, pp. 176-180, 2015.

E. Yunita, K. Kuzairi, and R. Mubarak, “Model Proyeksi Kematian Penderita Demam Berdarah Dengue (DBD) Berdasarkan Estimator Spline,” Prosiding National Conference on Mathematics, Science, and Education (NACOSME), pp. 195-204, 2018.

N. W. Yani, I. G. A. M. Srinadi, and I. W. Sumarjaya, “Aplikasi Model Regresi Semiparametrik Spline Truncated (Studi Kasus: Pasien Demam Berdarah Dengue (DBD) di Rumah Sakit Puri Raharja,” E-Jurnal Matematika, vol. 6, pp. 65-73, 2017.

I. N. Budiantara, “Spline Dalam Regresi Nonparametrik Dan Semiparametrik: Sebuah Pemodelan Statistika Masa Kini dan Masa Mendatang,” Pidato Pengukuhan Untuk Jabatan Guru Besar Dalam Bidang Ilmu: Matematika Statistika dan Probabilitas, Pada Jurusan Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Insititut Teknologi Sepuluh November, Surabaya, 2009.

N. A. K. Rifai, “Pendekatan Regresi Nonparametrik dengan Fungsi Kernel untuk Indeks Harga Saham Gabungan,” E-Jurnal Statistika, vol. 19, no. 01, pp. 53-61, 2019.

R. L. Eubank, Spline Smoothing and Nonparametric Regression, New York: Marcel Dekker, 1988.

W. Hardle, “Applied Nonparametric Regression,” New York: Cambrige University Press, 1990.

A. P. Putri, R. Santoso, and Sugito, “Analisis Regresi Nonparametrik Kernel Menggunakan Metode Jacknife Sampel Terhapus-1 dan Sample Terhapus-2 (Studi Kasus Pemodelan Tingkat Inflasi Terhadap Nilai Tukar Rupiah di Indonesia Periode 2004-2016,” Jurnal Gaussian, vol. 6, no. 1, pp. 01-10, 2017.

V. Ratnasari, I. N. Budiantara, M. Ratna, and I. Zain, “Estimation of Nonparametric Regression Curve using Mixed Estimator of Multivariable Truncated Spline and Multivariable Kernel,” Global Journal of Pure and Applied Mathematics. vol. 10, pp. 5047-5057, 2016.

G. Wahba, Spline Models for Observational Data, Pennsylvania: SIAM, 1990.

R. L. Eubank, Nonparametric Regression and Spline Smoothing, 2 Edition. New York: Marcel Dekker, 1999.

D. R. S. Saputro, A. Sukmayanti, and P. Widyaningsih, “The Nonparametric Regression Model Using Fourier Series Approximation and Penalized Least Squares (Case on Data Proverty in East Java),” in The Sixth Seminar Nasional Pendidikan Matematika Universitas Ahmad Dahlan, IOP Conference Series: Journal Physics 1188, 2019.

A. Prahutama, S. Suparti, and T. W. Utami, “Modelling Fourier Regression for Time Series Data-a Case Study: Modelling Inflation in Foods Sector in Indonesia,” in International Conference on Mathematics: Pure, Applied and Computation, IOP Conference Series: Journal Physics 974, 2018.

M. Bilodeau, “Fourier Smoother and Additive Models”, The Canadian Journal of Statistics, vol. 03, pp. 257-269, 1992.

L. J. Asrini and I. N. Budiantara, “Fourier Series Semiparametric Regression Models (Case Study: The Production of Law Land Rice Irrigation in Central Java),” ARPN Journal of Engineering and Applied Sciences, vol. 09, pp. 1501-1506, 2014.

R. Pane, I. N. Budiantara, I. Zain, and B. W. Otok, “Parametric and Nonparametric Estimators in Fourier Series Semiparametric Regression and Their Characteristics,” Applied Mathematical Sciences, vol. 102, no. 08, pp. 5053-5064, 2012.

L. J. Asrini “Regresi Semiparametrik Deret Fourier”, in Prosiding Seminar Nasional FMIPA Universitas Negeri Surabaya, pp. 77-80, 2012.

BPS, Statistik Lingkungan Hidup, Jakarta: Badan Pusat Statistik, 2016.




DOI: https://doi.org/10.34312/jjom.v3i1.7713



Copyright (c) 2021 A.T.R. Dani; N.Adrianingsih

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



                         EDITORIAL OFFICE OF JAMBURA JOURNAL OF MATHEMATICS

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96119, Gorontalo, Indonesia
 Email: info.jjom@ung.ac.id
 +62-852-55230451 (Call/SMS/WA)
 Jambura Journal of Mathematics (p-ISSN: 2654-5616 | e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.