Meir Keeler's Fixed-Point Theorem in Complex-Valued Modular Metric Space

Mariatul Kiftiah and Yudhi

Volume 12, Issue 1, Pages 32–36, June 2024

Received 5 April 2024, Revised 24 May 2024, Accepted 26 May 2024, Published 1 June 2024 **To Cite this Article :** M. Kiftiah and Y. Yudhi,"Meir Keeler's Fixed-Point Theorem in Complex-Valued Modular Metric Space", *Euler J. Ilm. Mat. Sains dan Teknol.*, vol. 12, no. 1, pp. 32–36, 2024, *https://doi.org/10.37905/euler.v12i1.25126*

© 2024 by author(s)

JOURNAL INFO • **EULER : JURNAL ILMIAH MATEMATIKA, SAINS DAN TEKNOLOGI**

-
-
-
-
-
-
-
- **H** Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Country : Indonesia
	- -
	-
	- euler@ung.ac.id

JAMBURA JOURNAL • **FIND OUR OTHER JOURNALS**

[Jambura Journal of](http://ejurnal.ung.ac.id/index.php/jjbm/index) Biomathematics

[Jambura Journal of](http://ejurnal.ung.ac.id/index.php/jjom/index) Mathematics

Jambura Journal of [Mathematics Education](http://ejurnal.ung.ac.id/index.php/jmathedu/index)

Jambura Journal of [Probability and Statistics](http://ejurnal.ung.ac.id/index.php/jps/index)

Meir Keeler's Fixed-Point Theorem in Complex-Valued Modula[r](https://doi.org/10.37905/euler.v12i1.25126) Metric Space

Mariatul Kiftiah¹*,[∗]* **and Yudhi**¹

¹*Department of Mathematics, Universitas Tanjungpura, Indonesia*

ARTICLE HISTORY

Received 5 April 2024 Revised 24 May 2024 Accepted 26 May 2024 Published 1 June 2024

KEYWORDS

Meir-Keeler Complex Modular Metric **ABSTRACT.** *In this paper, we introduce the notion of Meir-Keeler contraction mapping, which is defined in complexvalued modular metric space. Some properties of sequences in this space, which are convergence, Cauchyness and completeness, are used to prove the fixed-point theorem under this mapping. Additionally, the* ∆₂-type condition is *also defined as the sufficient condition in order to have a unique fixed-point.*

 $\left(\mathbf{\hat{r}}\right)\left(\mathbf{\hat{s}}\right)$

BY NC

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonComercial 4.0 International License. Editorial of EULER: Department of Mathematics, Universitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction

A fixed-point is defined as a point within the domain of a function that is equal to the value of the function at that point. Stefan Banach introduced the concept of fixed-points and subsequently established a theorem concerning the existence and uniqueness of such fixed-points within certain metric spaces. Since then, this theory has evolved by defining new types of contractions through the generalization of the mapping itself [1–7], as well as the generalization of the space in which this mapping is defined $[8-12]$.

One of the most interesting generalizations of contractions is Meir Keeler contraction in a complete metric space [\[13](#page-4-0)]. In 2013, Kiftiah [14] proposed the concept of fixed-points from several co[ntracti](#page-4-0)on mappings developed from metric spaces to modular spaces. One of these mappings is the Meir Keeler *ρ*contraction. Then, the existence and uniqueness of fixed-p[oint](#page-4-0)s under this mappi[ng w](#page-4-0)ere proved. Following that, in 2018, Aksoya [15] additionally defined Meir Keeler type contraction mappings on modular metric space and succesfully established its fixedpoints theorem.

The notion of complex valued modular metric spaces, [whi](#page-5-0)ch is more general than well-known modular metric spaces, was first introduced by Ozkan [16] in 2021. In addition, they showed the generalization of the Banach Fixed-Point Theorem, one of the most important and simple tools for the existence and uniqueness of solutions for problems arising for complex-valued modular metric spaces in the fi[eld](#page-5-0)s of engineering and mathematics.

The idea of the existence and uniqueness of fixed-points has always been an interesting topic to explore. However, no work has generalized the fixed-point problem through the Meir Keeler contraction in metric space to complex-valued modular metric space. Inspired by the work of Ozkan in [16], we first introduce a Meir Keeler contraction defined in a complex-valued

Email : *kiftiahmariatul@math.untan.ac.id* (M. Kiftiah)

modular metric space. Our main goal is to investigate the existence and uniqueness of fixed-point of Meir Keeler type mapping in the context of complex-valued modular metric spaces.

2. Methods

The first step involves studying the concept of complexvalued modular metric spaces, as defined by Ozkan in [16], including the definitions, topology, convergent sequences, and fixedpoints. Based on these concepts, the notion of Meir-Keeler *ω*contraction mappings is constructed in complex-valued modular metric spaces as previously defined in metric spaces [\[1](#page-5-0)3], modular spaces [14], and modular metric spaces [15]. Subsequently, the sufficient conditions that the Meir-Keeler *ω*-contraction mappings must satisfy to ensure the existence and uniqueness of their fixed-points are investigated. A fixed-point theo[rem](#page-4-0) is formulated fro[m su](#page-4-0)fficient conditions for Meir-K[eele](#page-5-0)r *ω*-contraction mappings in complex-valued modular metric spaces. Additionally, the proof of this theorem is presented.

3. Results and Discussion

Before investigating the main topic, let us first review some notations and definitions introduced by Azam [11], who studied the concepts of complex-valued metric spaces. These will serve as the foundation for our later discussion.

Definition 1. [11] *Let* C *be the set of compl[ex](#page-4-0) numbers and z*₁, *z*₂ ∈ ℂ*C.* Define a partial order \preceq *on* ℂ*c*, satisfies: *z*₁ \preceq *z*₂ *if and only if* $Re(z_1) \leq Re(z_2)$ *and* $Im(z_1) \leq Im(z_2)$.

Itimplies t[hat](#page-4-0) if $z_1 \precsim z_2$ then one of the following conditions is satisfied:

(i) $Re(z_1) = Re(z_2)$ and $Im(z_1) < Im(z_2)$, (ii) $Re(z_1) < Re(z_2)$ and $Im(z_1) = Im(z_2)$, (iii) $Re(z_1) < Re(z_2)$ and $Im(z_1) < Im(z_2)$, (iv) $Re(z_1) = Re(z_2)$ and $Im(z_1) = Im(z_2)$.

*[∗]*Corresponding Author.

Homepage : http://ejurnal.ung.ac.id/index.php/euler/index / E-ISSN : 2776-3706 © 2024 by the Author(s).

If $z_1 \neq z_2$ and one of (i), (ii), or (iii) is satisfied, then we can write $z_1 \precsim z_2$. Particularly, if only (iii) is satisfied, then we can write $z_1 \prec z_2$.

For every $z_1, z_2 \in \mathbb{C}$, the partial order on $\mathbb C$ has the following properties:

(i) $0 \precsim z_1 \prec z_2 \Leftrightarrow |z_1| < |z_2|$,

(ii) $z_2 \precsim z_2$ and $z_2 \prec z_3 \Rightarrow z_1 \prec z_3$, (iii) $z \in \mathbb{C}, a, b \in \mathbb{R}, a \leq b \Rightarrow az \precsim bz$

Next, we recall some basic definitions and fundamental results on complex-valued modular metric space, which was proposed by Ozkan [16].

Let $X \neq \emptyset$, $\lambda > 0$ and a function $\omega : (0, \infty) \times X \times X \to \mathbb{C}$. In this article, for every $\lambda > 0$ and $x, y \in X$, then the function $ω(λ, x, y)$ is denoted with $ω_λ(x, y)$.

Definition 2. [16] *Let* $X \neq \emptyset$ *.* A function $\omega : (0, \infty) \times X \times Y$ $X \to \mathbb{C}$ *is said to be complex valued modular metric space on* X, *if it satisfies:* $(M1) \omega_{\lambda} (z_1, z_2) \succcurlyeq 0$ *and* $\omega_{\lambda} (z_1, z_2) = 0 \Leftrightarrow z_1 = z_2$. $(M2) \omega_{\lambda} (z_1, z_2) = \omega_{\lambda} (z_2, z_1)$ $(M2) \omega_{\lambda} (z_1, z_2) = \omega_{\lambda} (z_2, z_1)$ $(M2) \omega_{\lambda} (z_1, z_2) = \omega_{\lambda} (z_2, z_1)$. $(M3) \omega_{\lambda+\mu}(z_1, z_2) \preccurlyeq \omega_{\lambda}(z_1, z_3) + \omega_{\mu}(z_3, z_2)$ *for all* $\lambda, \mu > 0$ *and* $z_1, z_2, z_3 \in X$.

Definition 3. [16] *Let* $X \neq \emptyset$ *and* $\omega : (0, \infty) \times X \times X \rightarrow \mathbb{C}$ *be a complex modular metric on X. For all* $x_0 \in X$ *, the set*

$$
X_{\omega} = \left\{ x \in X \mid \lim_{\lambda \to \infty} \omega_{\lambda} (x, x_0) = 0 \right\}
$$

is said to be modular metric space (around x_0).

Definition 4. *Let X^ω be a complex valued modular metric space and a sequence* x_n *in* X_ω *.*

- (i) *A* sequence $x_n \subseteq X_\omega$ is said to be ω -complex convergent to $x \in X_\omega$ *if for every* $\varepsilon \in \mathbb{C}$ *with* $\varepsilon \succ 0$ *there exists* $n_0 \in \mathbb{N}$ *such that for every* $n \geq n_0$ *and some* $\lambda > 0$ *, we have* $ω_λ$ (*x_n*, *x*) \prec *ε.* Further, *x* is called a *ω*- limit of *x_n*, and *we write* $\lim_{n\to\infty} \omega_{\lambda}(x_n, x) = 0$.
- (ii) *A* sequence $x_n \subseteq X_\omega$ is said to be ω -complex Cauchy *sequence, if for every ε ∈* C *with ε ≻* 0 *there exists* $n_0 \in \mathbb{N}$ *such that for every* $m, n \geq n_0$ *and some* $\lambda >$ 0*, we have ω^λ* (*xn, xm*) *≺ ε. This is denoted with* $\lim_{m,n\to\infty} \omega_{\lambda}(x_n,x_m) = 0.$
- (iii) *Complex modular metric space* X_ω *is said to be* ω *-complex complete if every ω-complex Cauchy sequence in X^ω is ωcomplex convergent.*

Furthermore, we give some basic properties of *ω-*complex convergent.

Lemma 1. *[17] Let X^ω be a complex valued modular metric space and a sequence* x_n *in* X_ω *. A sequence* $x_n \subseteq X_\omega$ *is* ω *-complex convergent to* $x \in X_\omega$ *if and only if* $\lim_{n \to \infty} |\omega_\lambda(x_n, x)| = 0$. **Lemma 2.** *[17] Let X^ω be a complex valued modular metric space and a sequence* x_n *in* X_ω *. A sequence* $x_n \subseteq$ *X^ω is ω-complex Cauchy sequence in X^ω if and only if* $\lim_{m,n\to\infty} |\omega_{\lambda}(x_n,x_m)|=0.$

Lemma 3. *[16] Let* $\omega, z \in \mathbb{C}$ *. If* $\omega \ge 0$, $|z| < 1$ *and* $\omega \le z\omega$ *then* $\omega = 0 \in \mathbb{C}$ *.*

The following is the definition of Δ_2 -type condition in a complex-valu[ed m](#page-5-0)odular metric space by adopting the description of the Δ_2 -type condition in modular metric space case in Abdou [18].

Definition 5. *Let X^ω be a complex valued modular metric space and a sequence* x_n *in* X_ω *.*

- (i) *[A](#page-5-0)* function ω satisfies Δ_2 -condition if $\lim_{n\to\infty} \omega_\lambda(x_n, x) = 0$, for some $\lambda > 0$ implies $\lim_{n\to\infty} \omega_{\lambda}(x_n, x) = 0$, for all $\lambda > 0$.
- (ii) *A* function ω satisfies Δ_2 -type condition if for any $\alpha > 0$ *there exist* $C > 0$ *such that*

$$
\omega_{\frac{\lambda}{\alpha}}(z_1, z_2) \preccurlyeq C \cdot \omega_{\lambda}(z_1, z_2)
$$

for all
$$
\lambda > 0
$$
, $z_1, z_2 \in X_\omega$, and $z_1 \neq z_2$.

It is clear that if ω satisfies the Δ_2 -type condition then ω satisfies the Δ_2 -condition.

Inspired from the defnitions of Meir-Keeler contractions in modular metric space, we define the following complex-valued modular space versions of such type of mapping.

Definition 6. *Let X^ω be a complete complex valued modular metric space and* $T: X_\omega \to X_\omega$ *is a mapping. A mapping* T *is said Meir Keeler ω-complex contraction if and only if for every ε ∈* C *with* ε $>$ 0, there exists $\delta \in \mathbb{C}$ *with* δ $>$ 0, *such that for any*

 $x, y \in X_\omega$ *and* $\lambda > 0$ *with* $\varepsilon \preccurlyeq \omega_\lambda(x, y) \prec \varepsilon + \delta$,

we have ω_{λ} $(Tx, Ty) \prec \varepsilon$.

Since *T* is a Meir Keeler *ω*-complex contraction mapping, we can derive the following equivalence based on Definition 6.

Definition 7. Let X_ω be a complete complex valued modular met*ric space and* $T: X_\omega \to X_\omega$ *is a mapping. A mapping* T *is said Meir Keeler ω-complex contraction if and only if For every ε ∈* C *with* $\varepsilon > 0$ *there exists* $\delta \in \mathbb{C}$ *with* $\delta > 0$ *such that*

$$
\omega_{\lambda}(Tx,Ty)\prec\omega_{\lambda}(x,y),
$$

for any $x, y \in X_\omega$ *and* $\lambda > 0$ *with* $\varepsilon \leq \omega_\lambda(x, y) \leq \varepsilon + \delta$ *.*

Before stating and proving our fixed-point result for the

contraction defined above, we first prove some auxiliary results to be used in our further discussion on complex-valued modular metric spaces.

Lemma 4. *Let X^ω be a complete complex valued modular metric space and* $T: X_\omega \to X_\omega$ *is* ω -complex contraction mapping. A *mapping T is a Meir Keeler ω-complex contraction if and only if for every* $\varepsilon_{\mathbb{R}} > 0$ *there exists* $\delta_{\mathbb{R}} > 0$ *such that for any* $x, y \in$ X_ω *and* $\lambda > 0$ *with* $\varepsilon_{\mathbb{R}} \leq |\omega_\lambda(x, y)| < \varepsilon_{\mathbb{R}} + \delta_{\mathbb{R}}$, we have $|\omega_{\lambda}(Tx, Ty)| < \varepsilon_{\mathbb{R}}$.

Proof. •
$$
(\Rightarrow)
$$
 Let $\varepsilon_{\mathbb{R}} \in \mathbb{R}$ with $\varepsilon_{\mathbb{R}} > 0$ be arbitrary. We choose

$$
\varepsilon = \frac{\varepsilon_{\mathbb{R}}}{\sqrt{2}} + i \frac{\varepsilon_{\mathbb{R}}}{\sqrt{2}}
$$

Then $\varepsilon \in \mathbb{C}$ and $\varepsilon \succ 0$. Since *T* is a Meir Keeler *ω*-complex contraction mapping, by Definition 6, we have

 f *for every* $\varepsilon > 0$ *there exists* $\delta \in \mathbb{C}$ *with* $\delta = \frac{\delta_{\mathbb{R}}}{\sqrt{2}} + i \frac{\delta_{\mathbb{R}}}{\sqrt{2}} \succ 0$ *such that for any* $x, y \in X_\omega$ *and* $\lambda > 0$ *with* $\varepsilon \preccurlyeq \omega_\lambda(x, y) \prec \varepsilon + \delta$, *we have* ω_{λ} $(Tx, Ty) \prec \varepsilon$.

Furthermore, using the property of [a p](#page-2-0)artial order, we obtain *for every* $\varepsilon_{\mathbb{R}} = |\varepsilon| > 0$ *there exists* $\delta_{\mathbb{R}} = |\delta| > 0$ *such that for any* $x, y \in X_\omega$ *and* $\lambda > 0$ *with* $\varepsilon_{\mathbb{R}} \leq |\omega_\lambda(x, y)| < \varepsilon_{\mathbb{R}} + \delta_{\mathbb{R}}$ *, we have* $|\omega_{\lambda}(Tx, Ty)| < \varepsilon_{\mathbb{R}}$.

 (\Leftarrow) Let $\varepsilon \in \mathbb{C}$ with $\varepsilon \succ 0$ be arbitrary. Since

for every $\varepsilon_{\mathbb{R}} = |\varepsilon| > 0$ *there exists* $\delta_{\mathbb{R}} = |\delta| > 0$ *such that for* $\langle \text{any } x, y \in X_\omega \text{ and } \lambda > 0 \text{ with } \varepsilon_{\mathbb{R}} \leq |\omega_\lambda(x, y)| < \varepsilon_{\mathbb{R}} + \delta_{\mathbb{R}}$ *we have* $|\omega_{\lambda}(Tx, Ty)| < \varepsilon_{\mathbb{R}}$

then, using the property of a partial order, we have *for every ε* $\in \mathbb{C}$ *with* $\varepsilon \succ 0$ *there exists* $\delta \in \mathbb{C}$ *with* $\delta \succ 0$ *such that for any* $x, y \in X_\omega$ *and* $\lambda > 0$ *with* $\varepsilon \leq \omega_\lambda(x, y) \leq \varepsilon + \delta$, we *have* ω_{λ} $(Tx, Ty) \prec \varepsilon$.

Hence, *T* is a Meir Keeler *ω-*complex contraction mapping. \Box

Lemma 5. *Let X^ω be a complete complex valued modular metric space and* $T: X_\omega \to X_\omega$ *is a Meir Keeler* ω -complex contraction *mapping. Define*

$$
T^{0}x_{0} = x_{0};
$$

\n
$$
T^{n+1}x_{0} = T(T^{n}x_{0}),
$$

for $x_0 \in X_\omega$ *and* $n \in \{0, 1, 2, \dots\}$ *, then*

$$
\lim_{n\to\infty} |\omega_{\lambda}(T^n x_0, T^{n+1} x_0)| = 0.
$$

Proof. Let $n \in \{0, 1, 2, \dots\}$ and $x_0 \in X_\omega$ be arbitrary. As *T* is a Meir Keeler *ω-*complex contraction mapping, using Definition 7, we have

 ω_{λ} $(T^{n}x_{0}, T^{n+1}x_{0}) \prec \omega_{\lambda}$ $(T^{n-1}x_{0}, T^{n}x_{0}),$ for all $\lambda > 0$. Taking modulus on both sides, we obtain

$$
0<\left|\omega_{\lambda}\left(T^{n}x_{0}, T^{n+1}x_{0}\right)\right|<\left|\omega_{\lambda}\left(T^{n-1}x_{0}, T^{n}x_{0}\right)\right|.
$$

Hence, sequence $\{ | \omega_{\lambda}\left(T^{n}x_{0},\, T^{n+1}x_{0}\right) |\}$ is a decreasing sequence on $\mathbb R$ and bounded by 0. This will imply this sequence converges to its infimum, that is, there exists $\varepsilon_{\mathbb{R}} \geq 0$ with $\mathcal{E}_{\mathbb{R}} = \inf \{ |\omega_{\lambda} (T^n x_0, T^{n+1} x_0)| : n \in \{0, 1, 2, \cdots \} \}$ such $\left| \lim_{n \to \infty} \left| \omega_{\lambda} \left(T^n x_0, T^{n+1} x_0 \right) \right| = \varepsilon_{\mathbb{R}}.$ We will prove $\varepsilon_{\mathbb{R}} = 0$.

If $\varepsilon_{\mathbb{R}} > 0$. Since *T* is a Meir Keeler *ω*-complex contraction mapping, using Lemma 4, we obtain that there exists $\delta_{\mathbb{R}} > 0$ such that $\varepsilon_{\mathbb{R}} \leq |\omega_{\lambda}| (T^n x_0, T^{n+1} x_0)| < \varepsilon_{\mathbb{R}} + \delta_{\mathbb{R}}$. Furthermore, since $\lim_{n\to\infty}|\omega_\lambda\left(T^nx_0,T^{n+1}x_0\right)|=\varepsilon_\mathbb{R}$, then there exists $N\in\mathbb{N}$ $|\text{such that } \varepsilon_{\mathbb{R}} \leq |\omega_{\lambda}| (T^N x_0, T^{N+1} x_0)| < \varepsilon_{\mathbb{R}} + \delta_{\mathbb{R}}$. This implies $\left|\omega_{\lambda}\left(T^{N+1}x_0, T^{N+2}x_0\right)\right|$ < $\varepsilon_{\mathbb{R}}$, which contradicts with $\varepsilon_{\mathbb{R}}$ = $\inf \{ \big| \omega_{\lambda} (T^n x_0, T^{n+1} x_0) \big| : n \in \{0, 1, 2, \cdots\} \}$. Then, $\varepsilon_{\mathbb{R}} =$ 0. So, we conclude that $\lim_{n\to\infty} |\omega_\lambda (T^n x_0, T^{n+1} x_0)| = 0$.

In the following, we present the Meir Keeler's fixed-point theorem based on the mapping given in Definition 6.

Theorem 1. Let X_ω be a complete complex-valued modular met*ric space. Assume* ω *satisfies the* Δ_2 -type condition. If $T: X_{\omega} \rightarrow$ *X^ω is a Meir Keeler ω-complex contraction mapping[, t](#page-2-0)hen T has a unique fixed-point on Xω.*

Proof. Let $x_0 \in X_\omega$ be arbitrary. For any $n \in \{0, 1, 2, \dots\}$, we define

$$
T^{0}x_{0}=x_{0}; T^{n+1}x_{0}=T(T^{n}x_{0}), \text{ and } x_{n}=T^{n}x_{0}.
$$

If $\omega_{\lambda}(x_n, x_{n+1}) = \omega_{\lambda}(x_n, Tx_n) = 0$, for every $\lambda > 0$ and some $n \in \{0, 1, 2, \cdots\}$ then *T* has a unique fixed-point, that is $x_n \in X_\omega$. If $\omega_\lambda(x_n, x_{n+1}) > 0$, we will prove that *T* has a unique fixed-point for any $n \in \{0, 1, 2, \dots\}$. Let $n \in$ $\{0, 1, 2, \cdots\}$ be arbitrary. Using Definition 7, we have

$$
\omega_{\lambda}(x_n, x_{n+1}) = \omega_{\lambda}(T^n x_0, T^{n+1} x_0)
$$

$$
\prec \omega_{\lambda}(T^{n-1} x_0, T^n x_0)
$$

$$
= \omega_{\lambda}(x_{n-1}, x_n).
$$

Taking modulus on both sides, we obtain

$$
0<\left|\omega_{\lambda}\left(x_{n}, x_{n+1}\right)\right|<\left|\omega_{\lambda}\left(x_{n-1}, x_{n}\right)\right|.
$$

Thus, the sequence $\{|\omega_{\lambda}(x_n, x_{n+1})|\}$ is decreasing on $\mathbb R$ and bounded by 0. From Lemma 5, we derive $\lim_{n\to\infty} |\omega_{\lambda}(x_n, x_{n+1})| = 0$. Using the property of a partial order, we obtain

$$
\lim_{n\to\infty}\omega_{\lambda}\left(x_n,\ x_{n+1}\right)=0.
$$

Further, we will prove that *xⁿ* is *ω-*complex Cauchy sequence. Let $\varepsilon \in \mathbb{C}(\varepsilon \succ 0)$, then there is $\delta \in \mathbb{C}(\delta \succ 0)$ such that for $x, y \in X_\omega$ with $\varepsilon \preccurlyeq \omega_\lambda(x, y) \preccurlyeq \varepsilon + \delta$ implies ω_{λ} (*Tx, Ty*) $\prec \varepsilon$.

Since ω_{λ} $(Tx, Ty) \prec \omega_{\lambda}$ (x, y) , for any $\varepsilon \in \mathbb{C}$ with $\varepsilon \succ 0$ implies the above Definition 6 is still satisfied if we choose *δ* ≼ *ε* such that when $\omega_{\lambda}(x, y) \prec \delta$ implies $\omega_{\lambda}(Tx, Ty) \prec \varepsilon$. Since $\lim_{n\to\infty}\omega_\lambda(x_n, x_{n+1})=0$, then there exists $K\in\mathbb{N}$ such that ω ^{*λ*} (*x*_{*n*−1}*, x_n*) *≺ δ* for any *n* > K.

Let $m, n \in \mathbb{N}$ $m, n \in \mathbb{N}$ such that $m, n > K$. Without loss of generality, we assume $m > n$, then $m = n + p$, for some $p \in \mathbb{N}$. In what

follows, we prove that $\{x_n\}$ is ω -complex Cauchy sequence. That is,

$$
\omega_{\lambda}(x_n, x_m) = \omega_{\lambda}(x_n, x_{n+p}) \prec \varepsilon.
$$

We will use mathematical induction. For $p = 1$. By Definition 7, we have

$$
\omega_{\lambda}(x_n, x_{n+1}) \prec \omega_{\lambda}(x_{n-1}, x_n) \prec \delta \preccurlyeq \varepsilon.
$$

We [as](#page-2-0)sume that the statement holds for some fixed $p \in \mathbb{N}$,

$$
\omega_{\lambda}(x_n, x_{n+p}) \prec \varepsilon.
$$

Now, we show that the statement also holds for $p+1$. Since $ω$ satisfies the $Δ_2$ -type condition, there exist $C = 1$ such that

1.
$$
\omega_{\frac{\lambda}{2}}(x_{n-1}, x_n) \prec \omega_{\lambda}(x_{n-1}, x_n)
$$
, which implies
\n $\omega_{\frac{\lambda}{2}}(x_{n-1}, x_n) \prec \delta$.
\n2. $\omega_{\frac{\lambda}{2}}(x_n, x_{n+p}) \prec \omega_{\lambda}(x_n, x_{n+p})$, which implies
\n $\omega_{\frac{\lambda}{2}}(x_n, x_{n+p}) \prec \varepsilon$.

Furthermore, we have

$$
\omega_{\lambda}\left(x_{n-1},\ x_{n+p}\right)\preccurlyeq\omega_{\frac{\lambda}{2}}\left(x_{n-1},\ x_{n}\right)+\omega_{\frac{\lambda}{2}}\left(x_{n},x_{n+p}\right)\prec\delta+\varepsilon.
$$

Now, we consider two cases.

1. If ω_{λ} (x_{n-1}, x_{n+p}) $\succeq \varepsilon$, then using Definition 6 we get

$$
\omega_{\lambda}(x_n, x_{n+p+1}) \prec \varepsilon.
$$

2. If $\omega_{\lambda}(x_{n-1}, x_{n+p}) \prec \varepsilon$, then using Definition 7 we get

$$
\omega_{\lambda}(x_n, x_{n+p+1}) \prec \omega_{\lambda}(x_{n-1}, x_{n+p}) \prec \varepsilon.
$$

Hence, we conclude that $\omega_{\lambda}(x_n, x_{n+p+1}) \prec \varepsilon$. So, x_n is ω complex Cauchy sequence on *Xω*. By completeness [o](#page-2-0)f *Xω*, there exist $u \in X_\omega$ such that sequence x_n converges to u . Hence, $\lim_{n\to\infty}\omega_\lambda(x_n, u)=0.$

Next, we show that *u* is a fixed-point of *T*. Since *T* is a Meir Keeler *ω-*complex contraction mapping, we obtain

$$
\omega_{\lambda}(u,Tu) \precsim \omega_{\lambda/2}(u,T^{n+1}u) + \omega_{\lambda/2}(T^{n+1}u,Tu)
$$

$$
\prec \omega_{\lambda/2}(u,T^{n+1}u) + \omega_{\lambda/2}(T^n u,u).
$$

Taking modulus on both sides, we get

$$
\left|\omega_{\lambda}\left(u,Tu\right)\right| \leq \left|\omega_{\lambda/2}\left(u,T^{n+1}u\right)\right|+\left|\omega_{\lambda/2}\left(\right.T^{n}u,u\right)\right|.
$$

Since $\lim_{n\to\infty} \omega_\lambda(x_n, u)$ = 0, Lemma 1 implies $\lim_{n\to\infty} |\omega_{\lambda}(x_n, u)| = 0$. Since ω satisfies the Δ_2 - condition, we have

$$
0 \leq \lim_{n \to \infty} |\omega_{\lambda}(u, Tu)|
$$

$$
\leq \lim_{n \to \infty} |\omega_{\lambda/2}(u, T^{n+1}u)| + \lim_{n \to \infty} |\omega_{\lambda/2}(T^n u, u)|.
$$

Hence, $\lim_{n\to\infty} |\omega_{\lambda}(u,Tu)|$ = 0, which implies $\lim_{n\to\infty} \omega_\lambda(u, Tu) = 0$. Therefore, $Tu = u$. So, *u* is a fixed-point of *T*.

Finally, we show the uniqueness of the fixed-point *u* of the mapping *T*. We assume there exists $u, v \in X_\omega$ such that $Tu = u$ and $Tv = v$. We deduce

$$
\omega_{\lambda}(u,v) = \omega_{\lambda}(Tu,Tv) \prec \omega_{\lambda}(u,v),
$$

as ω_{λ} $(u, v) \in \mathbb{C}$, this leads to a contradiction. Then, u is a unique fixed-point of *T*. This completes the proof. \Box

4. Conclusion

Based on the discussion, we conclude that the fixed-point theorem for Meir-Keeler contraction mapping can be extended to complex-valued modular metric spaces by adding sufficient conditions for such a contraction mapping to have a unique fixedpoint. To ensure the existence of a fixed-point for a Meir-Keeler contraction mapping in this space, then ω must satisfy the Δ_2 type condition.

Author Contributions. Mariatul Kiftiah: conceptualization, investigation, methodology, and writing - original draft. **Yudhi:** investigation and validation. All authors discussed the results and contributed to the final manuscript.

Acknowledgement. The authors express their gratitude to the editor and reviewers for their meticulous reading, insightful critiques, and practical recommendations, all of which have greatly enhanced the quality of this work.

Funding. This research received no external funding.

Conflict of interest. The authors declare that there are no conflicts of interest related to this article.

References

- [1] T. Suzuki, "A generalized Banach contraction principle that characterizes metric completeness" *Proceedings of the American Mathematical Society*, vol. 136, no. 5, pp. 1861-1869, 2007. doi: https://doi.org/10.1090/S0002-9939- 07-09055-7.
- [2] Y. U. Gaba, C. A. Agyingi, B. S. Choudhury dan P. Maity, "Generalized Banach contraction mapping principle in generalized metric spaces with a ternary relation," *Surveys in Mathematics and its Applications*, vol. 14, pp. 159-171, 2019.
- [3] [J. Merryfiel](https://doi.org/10.1090/S0002-9939-07-09055-7)d dan J. D. Stein, "A gener[alization of the Banach Contraction](https://doi.org/10.1090/S0002-9939-07-09055-7) Principle," *Journal of Mathematical Analysis and Applications*, vol. 273, pp. 112- 120, 2002. doi: https://doi.org/10.1016/S0022-247X(02)00215-9.
- [4] V. V. Nalawade dan U. Dolhare, "Generalization of Banach Contraction Mapping Principle and Fixed-Point Theorem by Altering Distances between the Points," *International Journal of Research and Analytical Reviews*, vol. 4, no. 3, pp. 19-26, 2017. doi: https://doi.org/10.1155/2008/406368.
- [5] M. Abtahi, "Su[zuki-type fixed point theorems for generalized](https://doi.org/10.1016/S0022-247X(02)00215-9) contractive mappings that characterize metric completeness," *Bulletin of the Iranian Mathematical Society*, vol. 41, no. 4, pp. 931-943, 2015.
- [6] R. George dan M. Khan, "On Presic Type Extension of Banach Contraction Principle," *Internation[al Journal of Mathematical Analysis](https://doi.org/10.1155/2008/406368)*, vol. 5, no. 21, pp. 1019-1024, 2011.
- [7] L. B. Ciric dan S. B. Presic, "On Presic type generalisation of Banach Contraction mapping Principle," *Acta Mathematica Universitatis Comenianae*, vol. LXXVI, no. 2, pp. 143-147, 2007.
- [8] S. Sedghi, N. Sobhe dan A. Aliouche, "A generalization of fixed point theorems in S-metric spaces," *Matematički Vesnik*, vol. 64, no. 3, pp. 258-266, 2012.
- [9] N. Kir dan H. Kiziltun, "On Some well known fixed point theorems in b-Metric spaces," *Turkish Journal of Analysis and Number Theory*, vol. 1, pp. 13-16, 2013. doi: https://doi.org/10.12691/tjant-1-1-4.
- [10] Z. Mustafa, M. Khandagjy dan W. Shatanawi, "Fixed point results on complete G-metric spaces," *Studia Scientiarum Mathematicarum Hungarica*, vol. 48, no. 3, pp. 304-319, 2011. doi: https://doi.org/10.1155/2009/283028.
- [11] A. Azam, B. Fisher dan M. Khan, "Common fixed point theorems in complex valu[ed metric spaces,"](https://doi.org/10.12691/tjant-1-1-4) *Numerical Functional Analysis and Optimization*, vol. 32, no. 3, pp. 243-253, 2011.
- [12] K. Wongkum, P. Chaipunya dan P. Kumam, "Some Analogies of the Banach Contraction Principle in Fuzzy Modular Spaces," *[The Scientific World Jour](https://doi.org/10.1155/2009/283028)nal*, pp. 1-4, 2013. doi: https://doi.org/10.1155/2013/205275.
- [13] A. Meir dan J. Keeler, "A theorem on contraction mappings.," *Journal of Mathematical Analysis and Applications* , vol. 28, pp. 326-329, 1969. doi: https://doi.org/10.1016/0022-247X(69)90031-6.
- [14] M. Kiftiah dan Supama, "Fixed point theorems for modular con-

traction mappings on modulared spaces," *International Journal of Mathematical Analysis*, vol. 7, no. 20, pp. 965-972, 2013. doi: https://doi.org/10.12988/ijma.2013.13094.

- [15] U. Aksoya, E. Karap*ı*nara, I. M. Erhana dan V. Rakocevic, "Meir-Keeler Type Contractions on Modular Metric Spaces," *Filomat*, vol. 32, no. 10, p. 3697– 3707, 2018. doi: https://doi.org/10.2298/FIL1810697A.
- [16] K. Ozkan, U. Gurdal dan A. Mutlu, "Some Fixed Point Theorems on Complex [Valued Modular Metric Spaces with an Ap](https://doi.org/10.12988/ijma.2013.13094)plication," *Communications Faculty Of Science University of Ankara Series A1 Mathematics and Statistics*, vol. 70, no.

2, pp. 690-701, 2021. doi: https://doi.org/10.31801/cfsuasmas.727771.

- [17] M. Kiftiah dan Yudhi, "Teorema Titik Tetap untuk Pemetaan Kannan dan Chatterjea pada Ruang Metrik Modular Bernilai Kompleks," *EduMatSains Jurnal Pendidikan Matematika dan Sains*, vol. 7, no. 2, pp. 363-373, 2023. doi: https://doi.org/10.33541/edumatsains.v7i2.4219.
- [18] A. A. Abdou dan M. A. Kha[msi, "Fixed points of multivalued contraction](https://doi.org/10.31801/cfsuasmas.727771) mappings in modular metric spaces," *Fixed Point Theory and Applications*, vol. 249, 2014. doi: https://doi.org/10.1186/1687-1812-2014-249.