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Meir Keeler’s Fixed-Point Theorem in Complex-Valued Modular
Metric Space

Mariatul Kiftiah1,∗ and Yudhi1

1Department of Mathematics, Universitas Tanjungpura, Indonesia

ABSTRACT. In this paper, we introduce the notion of Meir-Keeler contraction mapping, which is defined in complex-
valued modular metric space. Some properties of sequences in this space, which are convergence, Cauchyness and
completeness, are used to prove the fixed-point theorem under this mapping. Additionally, the ∆2-type condition is
also defined as the sufficient condition in order to have a unique fixed-point.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of EULER: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction

A fixed-point is defined as a point within the domain of a
function that is equal to the value of the function at that point.
Stefan Banach introduced the concept of fixed-points and sub-
sequently established a theorem concerning the existence and
uniqueness of such fixed-points within certain metric spaces.
Since then, this theory has evolved by defining new types of con-
tractions through the generalization of the mapping itself [1–7],
as well as the generalization of the space in which this mapping
is defined [8–12].

One of the most interesting generalizations of contrac-
tions is Meir Keeler contraction in a complete metric space [13].
In 2013, Kiftiah [14] proposed the concept of fixed-points from
several contraction mappings developed from metric spaces to
modular spaces. One of these mappings is the Meir Keeler ρ-
contraction. Then, the existence and uniqueness of fixed-points
under this mapping were proved. Following that, in 2018, Aksoya
[15] additionally defined Meir Keeler type contraction mappings
on modular metric space and succesfully established its fixed-
points theorem.

The notion of complex valued modular metric spaces,
which is more general than well-known modular metric spaces,
was first introduced by Ozkan [16] in 2021. In addition, they
showed the generalization of the Banach Fixed-Point Theorem,
one of the most important and simple tools for the existence and
uniqueness of solutions for problems arising for complex-valued
modular metric spaces in the fields of engineering and mathe-
matics.

The idea of the existence and uniqueness of fixed-points
has always been an interesting topic to explore. However, no
work has generalized the fixed-point problem through the Meir
Keeler contraction in metric space to complex-valued modular
metric space. Inspired by the work of Ozkan in [16], we first in-
troduce a Meir Keeler contraction defined in a complex-valued
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modular metric space. Our main goal is to investigate the exis-
tence and uniqueness of fixed-point of Meir Keeler type mapping
in the context of complex-valued modular metric spaces.

2. Methods

The first step involves studying the concept of complex-
valuedmodularmetric spaces, as defined byOzkan in [16], includ-
ing the definitions, topology, convergent sequences, and fixed-
points. Based on these concepts, the notion of Meir-Keeler ω-
contraction mappings is constructed in complex-valued modular
metric spaces as previously defined in metric spaces [13], mod-
ular spaces [14], and modular metric spaces [15]. Subsequently,
the sufficient conditions that the Meir-Keeler ω-contraction map-
pings must satisfy to ensure the existence and uniqueness of
their fixed-points are investigated. A fixed-point theorem is for-
mulated from sufficient conditions for Meir-Keeler ω-contraction
mappings in complex-valued modular metric spaces. Addition-
ally, the proof of this theorem is presented.

3. Results and Discussion

Before investigating the main topic, let us first review some
notations and definitions introduced by Azam [11], who studied
the concepts of complex-valued metric spaces. These will serve
as the foundation for our later discussion.

Definition 1. [11] Let C be the set of complex numbers and
z1, z2 ∈ C. Define a partial order ≾ on C, satisfies: z1 ≾ z2 if
and only if Re (z1) ≤ Re(z2) and Im (z1) ≤ Im (z2) .

It implies that if z1 ≾ z2 then one of the following condi-
tions is satisfied:
(i) Re (z1) = Re(z2) and Im (z1) < Im (z2) ,
(ii) Re (z1) < Re(z2) and Im (z1) = Im (z2) ,
(iii) Re (z1) < Re(z2) and Im (z1) < Im (z2) ,
(iv) Re (z1) = Re(z2) and Im (z1) = Im (z2) .
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If z1 ̸= z2 and one of (i), (ii), or (iii) is satisfied, then we can
write z1 ⋨ z2. Particularly, if only (iii) is satisfied, then we can
write z1 ≺ z2.

For every z1, z2 ∈ C, the partial order on C has the follow-
ing properties:
(i) 0 ≾ z1 ≺ z2 ⇔ |z1| < |z2|,
(ii) z2 ≾ z2 and z2 ≺ z3 ⇒ z1 ≺ z3,
(iii) z ∈ C,a, b ∈ R,a ≤ b ⇒ az ≾ bz

Next, we recall some basic definitions and fundamental re-
sults on complex-valued modular metric space, which was pro-
posed by Ozkan [16].

LetX ̸= ∅, λ > 0 and a function ω : (0,∞)×X×X → C.
In this article, for every λ > 0 and x, y ∈ X, then the function
ω (λ, x, y) is denoted with ωλ (x, y).

Definition 2. [16] Let X ̸= ∅. A function ω : (0,∞) × X ×
X → C is said to be complex valued modular metric space onX ,
if it satisfies:
(M1) ωλ (z1, z2) ≽ 0 and ωλ (z1, z2) = 0 ⇔ z1 = z2.
(M2) ωλ (z1, z2) = ωλ (z2, z1).
(M3) ωλ+µ (z1, z2) ≼ ωλ (z1, z3) + ωµ (z3, z2),
for all λ, µ > 0 and z1, z2, z3 ∈ X.

Definition 3. [16] Let X ̸= ∅ and ω : (0,∞) ×X ×X → C
be a complex modular metric on X . For all x0 ∈ X , the set

Xω =

{
x ∈ X

∣∣∣∣ lim
λ→∞

ωλ (x, x0) = 0

}
is said to be modular metric space (around x0).

Definition 4. Let Xω be a complex valued modular metric space
and a sequence xn in Xω .
(i) A sequence xn ⊆ Xω is said to be ω-complex convergent to

x ∈ Xω if for every ε ∈ C with ε ≻ 0 there exists n0 ∈ N
such that for every n ≥ n0 and some λ > 0, we have
ωλ (xn, x) ≺ ε. Further, x is called a ω- limit of xn , and
we write limn→∞ ωλ (xn, x) = 0.

(ii) A sequence xn ⊆ Xω is said to be ω-complex Cauchy
sequence, if for every ε ∈ C with ε ≻ 0 there exists
n0 ∈ N such that for every m,n ≥ n0 and some λ >
0, we have ωλ (xn, xm) ≺ ε. This is denoted with
limm,n→∞ ωλ (xn, xm) = 0.

(iii) Complex modular metric space Xω is said to be ω-complex
complete if every ω-complex Cauchy sequence in Xω is ω-
complex convergent.

Furthermore, we give some basic properties of ω-complex
convergent.

Lemma 1. [17] LetXω be a complex valued modular metric space
and a sequence xn in Xω . A sequence xn ⊆ Xω is ω-complex
convergent to x ∈ Xω if and only if limn→∞ |ωλ (xn, x)| = 0.

Lemma 2. [17] Let Xω be a complex valued modular met-
ric space and a sequence xn in Xω . A sequence xn ⊆
Xω is ω-complex Cauchy sequence in Xω if and only if
limm,n→∞ |ωλ (xn, xm)| = 0.

Lemma 3. [16] Let ω, z ∈ C . If ω ≽ 0, |z| < 1 and ω ≼ zω
then ω = 0 ∈ C.

The following is the definition of ∆2-type condition in a
complex-valued modular metric space by adopting the descrip-
tion of the ∆2-type condition in modular metric space case in
Abdou [18].

Definition 5. Let Xω be a complex valued modular metric space
and a sequence xn in Xω .
(i) A function ω satisfies ∆2-condition if

limn→∞ ωλ (xn, x) = 0, for some λ > 0 implies
limn→∞ ωλ(xn, x) = 0, for all λ > 0.

(ii) A function ω satisfies ∆2-type condition if for any α > 0
there exist C > 0 such that

ω λ
α
(z1, z2) ≼ C · ωλ (z1, z2)

for all λ > 0, z1, z2 ∈ Xω , and z1 ̸= z2.

It is clear that if ω satisfies the ∆2-type condition then ω
satisfies the ∆2-condition.

Inspired from the defnitions of Meir-Keeler contractions in
modular metric space, we define the following complex-valued
modular space versions of such type of mapping.

Definition 6. LetXω be a complete complex valued modular met-
ric space and T : Xω → Xω is a mapping. A mapping T is said
Meir Keeler ω-complex contraction if and only if for every ε ∈ C
with ε ≻ 0, there exists δ ∈ C with δ ≻ 0, such that for any

x, y ∈ Xω and λ > 0 with ε ≼ ωλ (x, y) ≺ ε+ δ,

we have ωλ (Tx, Ty) ≺ ε.

Since T is a Meir Keeler ω-complex contraction mapping,
we can derive the following equivalence based on Definition
6.

Definition 7. LetXω be a complete complex valued modular met-
ric space and T : Xω → Xω is a mapping. A mapping T is said
Meir Keeler ω-complex contraction if and only if For every ε ∈ C
with ε ≻ 0 there exists δ ∈ C with δ ≻ 0 such that

ωλ (Tx, Ty) ≺ ωλ (x, y) ,

for any x, y ∈ Xω and λ > 0 with ε ≼ ωλ (x, y) ≺ ε+ δ.

Before stating and proving our fixed-point result for the
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contraction defined above, we first prove some auxiliary results
to be used in our further discussion on complex-valued modular
metric spaces.

Lemma 4. LetXω be a complete complex valued modular metric
space and T : Xω → Xω is ω-complex contraction mapping. A
mapping T is a Meir Keeler ω-complex contraction if and only if
for every εR > 0 there exists δR > 0 such that for any x, y ∈
Xω and λ > 0 with εR ≤ |ωλ (x, y)| < εR + δR , we have
|ωλ (Tx, Ty)| < εR.

Proof. • (⇒) Let εR ∈ R with εR > 0 be arbitrary. We choose

ε =
εR√
2
+ i

εR√
2

Then ε ∈ C and ε ≻ 0. Since T is a Meir Keeler ω-complex
contraction mapping, by Definition 6, we have
for every ε ≻ 0 there exists δ ∈ C with δ = δR√

2
+ i δR√

2
≻ 0 such

that for any x, y ∈ Xω and λ > 0 with ε ≼ ωλ (x, y) ≺ ε+ δ,
we have ωλ (Tx, Ty) ≺ ε.
Furthermore, using the property of a partial order, we obtain
for every εR = |ε| > 0 there exists δR = | δ| > 0 such that for
any x, y ∈ Xω and λ > 0 with εR ≤ |ωλ (x, y)| < εR + δR,
we have |ωλ (Tx, Ty)| < εR.

• (⇐) Let ε ∈ C with ε ≻ 0 be arbitrary. Since
for every εR = |ε| > 0 there exists δR = | δ| > 0 such that for
any x, y ∈ Xω and λ > 0 with εR ≤ |ωλ (x, y)| < εR + δR,
we have |ωλ (Tx, Ty)| < εR
then, using the property of a partial order, we have for every
ε ∈ C with ε ≻ 0 there exists δ ∈ C with δ ≻ 0 such that for
any x, y ∈ Xω and λ > 0 with ε ≼ ωλ (x, y) ≺ ε + δ, we
have ωλ (Tx, Ty) ≺ ε.
Hence, T is a Meir Keeler ω-complex contraction mapping.

Lemma 5. LetXω be a complete complex valued modular metric
space and T : Xω → Xω is a Meir Keeler ω-complex contraction
mapping. Define

T 0x0 = x0;

Tn+1x0 = T (Tnx0) ,

for x0 ∈ Xω and n ∈ {0, 1, 2, · · · }, then

limn→∞
∣∣ωλ

(
Tnx0, T

n+1x0

)∣∣ = 0.

Proof. Let n ∈ {0, 1, 2, · · · } and x0 ∈ Xω be arbitrary. As T is
a Meir Keeler ω-complex contraction mapping, using Definition
7, we have

ωλ

(
Tnx0, T

n+1x0

)
≺ ωλ

(
Tn−1x0, T

nx0

)
, for all λ > 0.

Taking modulus on both sides, we obtain

0 <
∣∣ωλ

(
Tnx0, T

n+1x0

)∣∣ < ∣∣ωλ

(
Tn−1x0, T

nx0

)∣∣ .
Hence, sequence {

∣∣ωλ

(
Tnx0, T

n+1x0

)∣∣} is a decreasing se-
quence on R and bounded by 0. This will imply this sequence

converges to its infimum, that is, there exists εR ≥ 0 with
εR = inf

{∣∣ωλ

(
Tnx0, T

n+1x0

)∣∣ : n ∈ {0, 1, 2, · · · }
}

such
that limn→∞

∣∣ωλ

(
Tnx0, T

n+1x0

)∣∣ = εR.
We will prove εR = 0.

If εR > 0. Since T is a Meir Keeler ω-complex contraction map-
ping, using Lemma 4, we obtain that there exists δR > 0 such
that εR ≤

∣∣ωλ

(
Tnx0, T

n+1x0

)∣∣ < εR + δR. Furthermore, since
limn→∞

∣∣ωλ

(
Tnx0, T

n+1x0

)∣∣ = εR , then there exists N ∈ N
such that εR ≤

∣∣ωλ

(
TNx0, T

N+1x0

)∣∣ < εR + δR. This implies∣∣ωλ

(
TN+1x0, T

N+2x0

)∣∣ < εR, which contradicts with εR =

inf
{∣∣ωλ

(
Tnx0, T

n+1x0

)∣∣ : n ∈ {0, 1, 2, · · · }
}
. Then, εR =

0. So, we conclude that limn→∞
∣∣ωλ

(
Tnx0, T

n+1x0

)∣∣ = 0.

In the following, we present the Meir Keeler’s fixed-point
theorem based on the mapping given in Definition 6.

Theorem 1. LetXω be a complete complex-valued modular met-
ric space. Assume ω satisfies the∆2-type condition. If T : Xω →
Xω is a Meir Keeler ω-complex contraction mapping, then T has
a unique fixed-point on Xω .

Proof. Let x0 ∈ Xω be arbitrary. For any n ∈ {0, 1, 2, · · · } , we
define

T 0x0 = x0; T
n+1x0 = T (Tnx0) , and xn = Tnx0.

If ωλ (xn, xn+1) = ωλ (xn, Txn) = 0, for every λ > 0 and
some n ∈ {0, 1, 2, · · · } then T has a unique fixed-point, that
is xn ∈ Xω. If ωλ (xn, xn+1) ≻ 0, we will prove that T
has a unique fixed-point for any n ∈ {0, 1, 2, · · · } . Let n ∈
{0, 1, 2, · · · } be arbitrary. Using Definition 7, we have

ωλ (xn, xn+1) = ωλ

(
Tnx0, T

n+1x0

)
≺ ωλ

(
Tn−1x0, T

nx0

)
= ωλ (xn−1, xn) .

Taking modulus on both sides, we obtain

0 < |ωλ (xn, xn+1)| < |ωλ (xn−1, xn)| .

Thus, the sequence {|ωλ (xn, xn+1)|} is decreasing
on R and bounded by 0. From Lemma 5, we derive
limn→∞ |ωλ (xn, xn+1)| = 0. Using the property of a par-
tial order, we obtain

limn→∞ωλ (xn, xn+1) = 0.

Further, we will prove that xn is ω-complex Cauchy se-
quence. Let ε ∈ C(ε ≻ 0), then there is δ ∈ C (δ ≻ 0) such
that for x, y ∈ Xω with ε ≼ ωλ (x, y) ≺ ε + δ implies
ωλ (Tx, Ty) ≺ ε.

Since ωλ (Tx, Ty) ≺ ωλ (x, y), for any ε ∈ C with ε ≻ 0
implies the above Definition 6 is still satisfied if we choose δ ≼ ε
such that when ωλ (x, y) ≺ δ implies ωλ (Tx, Ty) ≺ ε. Since
limn→∞ ωλ (xn, xn+1) = 0 , then there exists K ∈ N such that
ωλ (xn−1, xn) ≺ δ for any n > K .

Letm,n ∈ N such that m,n > K. Without loss of general-
ity, we assumem > n, thenm = n+ p, for some p ∈ N. In what
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follows, we prove that {xn} is ω-complex Cauchy sequence. That
is,

ωλ (xn, xm) = ωλ (xn, xn+p) ≺ ε.

We will use mathematical induction. For p = 1. By Defini-
tion 7, we have

ωλ (xn, xn+1) ≺ ωλ (xn−1, xn) ≺ δ ≼ ε.

We assume that the statement holds for some fixed p ∈ N,

ωλ (xn, xn+p) ≺ ε.

Now, we show that the statement also holds for p+1. Since
ω satisfies the ∆2-type condition, there exist C = 1 such that
1. ωλ

2
(xn−1, xn) ≺ ωλ (xn−1, xn), which implies

ωλ
2
(xn−1, xn) ≺ δ.

2. ωλ
2
(xn, xn+p) ≺ ωλ (xn, xn+p) , which implies

ωλ
2
(xn, xn+p) ≺ ε.

Furthermore, we have

ωλ (xn−1, xn+p) ≼ ωλ
2
(xn−1, xn) + ωλ

2
(xn, xn+p) ≺ δ + ε.

Now, we consider two cases.
1. If ωλ (xn−1, xn+p) ≽ ε, then using Definition 6 we get

ωλ (xn, xn+p+1) ≺ ε.

2. If ωλ (xn−1, xn+p) ≺ ε, then using Definition 7 we get

ωλ (xn, xn+p+1) ≺ ωλ (xn−1, xn+p) ≺ ε.

Hence, we conclude that ωλ (xn, xn+p+1) ≺ ε. So, xn is ω-
complex Cauchy sequence onXω. By completeness ofXω, there
exist u ∈ Xω such that sequence xn converges to u. Hence,
limn→∞ ωλ ( xn, u) = 0.

Next, we show that u is a fixed-point of T . Since T is a Meir
Keeler ω-complex contraction mapping, we obtain

ωλ (u, Tu) ≾ ωλ/2

(
u, Tn+1u

)
+ ωλ/2(T

n+1u, Tu)

≺ ωλ/2

(
u, Tn+1u

)
+ ωλ/2 ( T

nu, u) .

Taking modulus on both sides, we get

|ωλ (u, Tu)| ≤
∣∣ωλ/2

(
u, Tn+1u

)∣∣+ ∣∣ωλ/2 ( T
nu, u)

∣∣ .
Since limn→∞ ωλ (xn, u) = 0, Lemma 1 implies
limn→∞ |ωλ (xn, u)| = 0. Since ω satisfies the ∆2- condi-
tion, we have

0 ≤ lim
n→∞

|ωλ (u, Tu)|

≤ lim
n→∞

∣∣ωλ/2

(
u, Tn+1u

)∣∣+ lim
n→∞

∣∣ωλ/2 (T
nu, u)

∣∣ .
Hence, limn→∞ |ωλ (u, Tu)| = 0, which implies
limn→∞ ωλ (u, Tu) = 0. Therefore, Tu = u. So, u is a
fixed-point of T .

Finally, we show the uniqueness of the fixed-point u of the
mapping T . We assume there exists u, v ∈ Xω such that Tu = u
and Tv = v. We deduce

ωλ (u, v) = ωλ (Tu, Tv) ≺ ωλ (u, v) ,

asωλ (u, v) ∈ C, this leads to a contradiction. Then, u is a unique
fixed-point of T . This completes the proof.

4. Conclusion
Based on the discussion, we conclude that the fixed-point

theorem for Meir-Keeler contractionmapping can be extended to
complex-valued modular metric spaces by adding sufficient con-
ditions for such a contraction mapping to have a unique fixed-
point. To ensure the existence of a fixed-point for a Meir-Keeler
contraction mapping in this space, then ω must satisfy the ∆2-
type condition.
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