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Shear Wave Travel Time Prediction using Well Log Filtering and
Machine Learning

Indra Rivaldi Siregar1,∗, Adhiyatma Nugraha1, Anwar Fitrianto1, Erfiani1, and L.M.
Risman Dwi Jumansyah1

1Study Program of Statistics and Data Science, IPB University, Bogor Indonesia

ABSTRACT. Shear wave travel time (also known as Delta-T Shear and commonly abbreviated as DTS) is an important
parameter in petroleum for exploration, production, and characterization of borehole stability. Direct measurement of
DTS is often limited by high costs and a constraint of geography, making machine learning (ML) predictive approaches
necessary. This study aims to explore the effectiveness of ML models in predicting DTS, emphasizing the importance
of data preprocessing techniques to improve prediction accuracy. Preprocessing techniques include Yeo-Johnson trans-
formation to handle non-normality, outlier elimination using z-score, and data smoothing using the Savitzky-Golay
filter and median filter. Incorporating smoothing techniques can fill important gaps in some existing studies and
may improve the performance of machine learning models in predicting DTS, particularly in situations with limited
or noisy data. Four ML models were tested in this study, namely Linear Regression (LR), K-Nearest Neighbors (KNN),
Extreme Gradient Boosting (XGBoost), and Random Forest (RF), with performance evaluation based on metrics RMSE
(Root Mean Squared Error), MAE (Mean Absolute Error), and R2 (coefficient of determination). The results showed
that the RF model produced the best performance with RMSE of 9.41, MAE of 6.35, and R2 of 0.90 in scenarios with
Yeo-Johnson transformation, outlier elimination, and smoothing techniques using a median filter with a window size
of 5.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of EULER: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction

The shear wave travel time (called Delta-T Shear and typi-
cally denoted by DTS) data from sedimentary rock layers is nec-
essary to apply most mathematical models in petroleum engi-
neering geomechanics [1–3]. Geomechanical models are essen-
tial for understanding rock properties, predicting reservoir be-
havior, and optimizing hydrocarbon extraction. The DTS in ge-
omechanical models is directly linked to the mechanical proper-
ties of rocks, such as hardness and strength. DTS significantly
improves the capacity to assess these properties, facilitating in-
formed decisions in drilling, injection, and extraction. Addition-
ally, DTS plays a pivotal role in fracture analysis and diagnos-
tics, providing crucial insights for understanding fracture behav-
ior, optimizing operations, and managing reservoirs effectively.
The data required (including DTS) for geomechanical modeling
is obtained from wellbore core samples. However, due to the
high cost and time, most wells lack DTS data acquisition using
advanced dipole sonic logs [1, 4]. As a result, the availability of
DTS data for geomechanical modeling is limited, leading to the
development of many estimation and extrapolation techniques
to address this data gap. Therefore, reliable methods for esti-
mating DTS are imperative, considering their critical impacts on
decisions during drilling and production processes [5].

Mathematically, DTS data is directly transformed into shear

∗Corresponding Author.

Check for updatesResearch Article

Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi, Volume 12, Issue 2, Pages 206–212, Dec 2024 https://doi.org/10.37905/euler.v12i2.29021

ARTICLE HISTORY
Received 29 September 2024
Revised 9 December 2024

Accepted 17 December 2024
Published 19 December 2024

KEYWORDS
K-nearest neighbors
Machine learning
Random forest

Shear wave travel time
Smoothing
XGBoost

wave velocity (Vs) through an inverse calculation. Conventional
methods in predicting shear wave velocities (Vs), such as those
proposed by Pickett [6], Castagna et al. [7], and Brocher [8], offer
a fast and convenient way to estimate it. However, their applica-
bility and accuracy are often limited due to variations in subsur-
face rock types and geographical differences, resulting in poor
generalization [3]. These methods are empirical correlations for
predicting Vs that rely on compressional velocity (Vp) and have
accuracy limitations, mainly due to their dependence on lithol-
ogy type and their field- or basin-specific nature. Their lack of
generalizability and poor fit with real data limit their application
across different fields.

Machine learning (ML) approaches can model such data
without mathematical models like conventional methods. ML of-
fers a promising alternative to traditional empirical methods in
predicting shear wave velocity [9, 10]. As shown by the results of
[1], the performance of deep and hybrid machine learning algo-
rithms (R2 between 0.97 and 0.98, and RMSE between 0.05 and
0.06) is superior to conventional methods such as Pickett, Carroll,
Castagna, Eskandari, and Brocher (R2 between 0.85 and 0.87, and
RMSE between 0.13 and 0.21). By utilizing available well log data,
such as density, porosity, and resistivity, ML techniques can make
predictions in scenarios where direct measurements are impracti-
cal or too costly [5]. These methods excel at identifying patterns
and complex relationships in the data, leading to more accurate
and reliable predictions.
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However, the high performance of ML models depends sig-
nificantly on proper data preprocessing before modeling [11,
12].This is particularly relevant given that well log data often con-
tains signal noise or distortions [13–15]. We observe potential
in handling data preprocessing techniques, such as smoothing,
which could improve ML model performance in addition to out-
lier removal techniques.

Previous studies [1, 9, 16] focused on developing more ad-
vanced methods by combining multiple algorithms in machine
learning or deep learning. Another approach [4] took a different
path through feature engineering, utilizing nearby data points in
depth as eigenvalues for machine learning to improve the accu-
racy of single-well predictions. Thus, we seek to enhance the
performance of DTS predictions using an alternative approach
involving smoothing techniques. Integrating smoothing tech-
niques potentially enhance the performance of ML models in pre-
dicting shear wave travel time, especially in cases with limited or
noisy data.

The smoothing techniques explored in this study include
well-known methods such as the Savitzky–Golay filter [17, 18]
and median filter [19]. Meanwhile, the ML methods we will apply
include K-nearest neighbors (KNN), Extreme Gradient Boosting
(XGBoost), and Random Forest (RF). We selected these algorithms
because previous works have demonstrated their strong predic-
tive capabilities across various cases and datasets [20–22]. In this
work, we also implement Linear Regression (LR) as a baseline
model to determine whether the ML methods offer significant
improvements. We expect these smoothing techniques will re-
duce distortions in well log data, thereby improving the model’s
performance in predicting DTS.

2. Methods

The data used in this study is sourced from Equinor [23],
specifically from the Volve Field located in the Norwegian North
Sea, approximately 200 kilometers west of Norway. We use well
log data from four wells, where F-1 B, F-11 A, and F-11 T2 are used
for model training, while Well 15_9-F-1 A serves as the blind well
(testing data). The blind well is randomly chosen from the avail-
able wells. Each well dataset consists of six log types: gamma ray
(GR), bulk density (RHOB), neutron porosity (NPHI), true forma-
tion resistivity (RT), compressional sonic (DTC), and shear sonic
(DTS). To predict shear wave travel times (represented by DTS), all
well log (except DTS) and depth are input features in this study.
The steps of this study are illustrated in Figure 1.

We combine data from threewells (F-1B, F-11A, and F-11T2)
into a single dataset to develop machine learning models for four
algorithms. Before modeling, we explore the data, focusing on
distribution analysis, outlier detection, and examining correla-
tions between predictors and the target DTS. Based on the ex-
ploration results, we carry out five scenarios, each incorporating
different data pre-processing procedures. Scenarios 3 - 5 include
smoothing techniques for well log data. The details of these sce-
narios are displayed in Table 1.
• Handling Outlier: An outlier refers to data points that de-
viate significantly from the general pattern of the dataset.
Their presence can sometimes disrupt the performance of
machine learning models, necessitating actions such as out-
lier removal. Thoughtful outlier removal can enhance model

Figure 1. Flowchart

Table 1. Pre-processing scenarios

Scenario
Pre-processing data

Feature
transfor-
mation
(Yeo-
Johnson)

Handling
outlier
(z-score)

smoothing normalization

1 - - - ✓
2 ✓ ✓ - ✓
3 ✓ ✓ Savitzky–

Golay filter
✓

4 ✓ ✓ median fil-
ter w=3

✓

5 ✓ ✓ median fil-
ter w=5

✓

accuracy, reduce noise, and improve data quality and inter-
pretability [24]. In this study, we remove the data points in-
dicated as outliers using the z-score method [25, 26]. Tech-
nically, we calculate the z-score for all data points in each
feature, and then any data points with an absolute z-score
> 3 are removed.

• Yeo-Johnson transformation: Careless removal of outliers can
lead to the loss of natural data patterns or the discarding of a
substantial portion of data due to overly simplistic detection
methods. Therefore, we first conduct a Yeo-Johnson trans-
formation to avoid eliminating a significant portion of the
data because of outlier detection. This transformation aims
to reduce skewness and make data more Gaussian-like, sup-
porting both positive and negative data [27], so fewer out-
liers need to be removed compared to a non-transformed
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dataset.
• Smoothing: Well log data, the raw signals collected by in-
struments, typically includes noise and distortions. There-
fore, smoothing techniques are applied to address these is-
sues and assist machine learning in capturing the general
patterns of the data while avoiding overfitting. Two popu-
lar smoothing methods, the Savitzky–Golay Filter and the
Median Filter, are used in this study. Savitzky–Golay filter
works by fitting successive polynomials to sliding windows
of the data, preserving prominent features like peaks and
reducing noise without significantly distorting the original
signal [17, 18]. Meanwhile, the median filter works with a
schema that replaces each data point with the median value
within a sliding window [19].

• Normalization: The goal of min-max normalization is to ad-
just the data to a range of [0, 1], ensuring that all features
have an equal influence on the model and enhancing its per-
formance [28].
In machine learning regression, RMSE (Root Mean Squared

Error), MAE (Mean Absolute Error), and R² (R-squared) are com-
monly used evaluation metrics to assess model performance [29].
RMSE measures the average squared differences between pre-
dicted and actual values, giving more weight to larger errors, and
is sensitive to outliers. MAE, on the other hand, calculates the
average of absolute differences, treating all errors equally, being
less affected by outliers, and is easy to interpret. R² indicates
how well the model explains the variance in the target variable,
with a higher value signifying better model fit. So, using all these
metrics can evaluate the models comprehensively.

In this study, we utilize k-fold cross-validation for hyperpa-
rameter tuning to ensure a more robust evaluation of the model
[30]. By using this technique, we can mitigate the risk of over-
fitting and ensure that our hyperparameter tuning is based on
how well the model generalizes to unseen data, rather than how
it performs on a single training/validation split. In this study, we
set k to 5, balancing computational efficiency with the need for
accurate performance estimates.

3. Results and Discussion
3.1. Data Exploration

Shear wave travel time (DTS) represents the time required
for a shear wave to travel a specific distance through a rock for-
mation, commonly expressed in microseconds per foot (us/ft).
DTS is measured using advanced dipole sonic logs (such as dipole
sonic and multipole sonic), a well-logging technique employed to
analyze the mechanical properties of subsurface rocks [31].

Figure 2 shows well log data from the three wells used to
build the model. First, we drop the data for the depth that does
not contain DTS. And then, we combine the data from these wells
into a single dataset, resulting in 32,587 data points. Combining
data from multiple wells is essential to capture a broader and
more representative subsurface variation, such as lithology and
mechanical properties. Relying on data from a single well may
introduce bias and limit model accuracy. By merging data from
three wells, we create a larger dataset, improving the model’s
ability to generalize and make more accurate predictions.

In the initial stage of data exploration, we utilize Pearson’s
correlation, presented in Figure 3, to assess the linear relation-

Figure 2. Well log data: Well F-1 B (top), Well F-11 A (middle),
Well F-11 T2 (bottom)

Figure 3. Pearson’s correlation heatmap of all features (Com-
bined wells F-1 B, F-11 A, and F-11 T2)

ship between predictors and the target variable. The DT, NPHI,
and RHOB logs exhibit an absolute Pearson’s correlation ≥ 0.65
with DTS. This observation is further supported by the pair plot in
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Figure 4. Pairplot of all features (Combined wells F-1 B, F-11
A, and F-11 T2)

Figure 4, which reveals strong linear correlations between these
predictors and the DTS response, highlighting their potential to
enhance model performance. These three predictors are particu-
larly beneficial for improving model accuracy, especially in linear
regression, which assumes a linear relationship between predic-
tors and the target variable. Meanwhile, depth and GR exhibit
relatively weak linear correlations with DTS. The RT log shows
no linear correlation, with a value of 0. However, previous stud-
ies consistently include RT when predicting DTS [32–35], so we
will retain it in our model. This case will still be accommodated,
as all machine learning models used in this study, such as KNN,
XGBoost, and RF, do not assume a linear relationship between
features and the target. Therefore, these three models are likely
to remain effective in modeling features and targets that may
have a non-linear relationship. However, linear regression mod-
els might struggle to capture the non-linear relationship between
the predictors and the target, and then will be represented by the
weak predictive performance.

Figure 5. Violin plot of all features (Combined wells F-1 B,
F-11 A, and F-11 T2)

From the violin plot in Figure 5, it is evident that all fea-

tures (except depth) are relatively right skewed and tend to con-
tain outliers. We first applied the Yeo-Johnson transformation to
reduce skewness, making their distributions approximately nor-
mal. For RT and GR log data, which have many values close to or
equal to 0, this transformation is more suitable than a standard
logarithmic transformation. We prioritize applying the transfor-
mation before removing detected outliers to minimize data loss
and preserve the natural information of the dataset. This strat-
egy preserves the dataset’s comprehensiveness and upholds its
original integrity. We apply this transformation to scenarios 2
through 5.

Subsequently, we apply outlier removal for all features de-
tected using the z-score method in scenarios 2 through 5. Failure
to handle these outliers may lead to suboptimal model perfor-
mance, particularly for LR and KNN models, which are sensitive
to outliers [36, 37]. After outlier removal, the dataset contains
31,164 data points, a reduction of 4.37%. If we compare it with
an approach that directly removes outliers without transforma-
tion, the reduction is 5.15%.

3.2. Modeling
We have experimented with four models: LR, KNN, XG-

Boost, and RF. No hyperparameter tuning is necessary for LR as
it is a parametric method with a direct analytical solution. How-
ever, hyperparameter tuning is crucial in optimizing model per-
formance for machine learning models (e.g., KNN, XGBoost, and
RF) [38]. Hyperparameter tuning involves selecting the optimal
set of hyperparameters that govern the algorithm’s learning pro-
cess. We have explored many combinations of hyperparameters
for each model using grid search to significantly influence the
accuracy, generalization, and efficiency [30], as shown in Table 2.

Table 2. Hyperparameter combinations

Algorithm Hyperparameters

KNN
k: [1, 2, 3, …, 30]
p: [Manhattan, Euclidean]

XGBoost

min_child_weight: [1, 3, 5, 7, 15, 30]
max_depth: [3, 5, 7, 12, 15, 30]
gamma: [0, 0.1, 0.2, …, 1]
n_estimators: [10, 100, 200, 300, 500]
learning_rate: [0.01, 0.05, 0.1, 0.3, 0.5, 0.9]

RF

n_estimators: [100, 200, …, 2000]
max_depth: [10, 20, 30, …, 110]
min_samples_split: [2, 4, 6, 8, 10]
min_samples_leaf: [1, 3, 5, 7, 10]
max_features: [auto, sqrt, log2]

For the KNN model, we adjust two main hyperparameters:
the number of neighbors (k) and the distance metric (p). Choos-
ing the appropriate distance metric depends on the dataset,
and previous studies show that the right combination of k and
distance metric can greatly improve the performance of KNN
[20]. Key hyperparameters in XGBoost require careful adjust-
ment to ensure optimal model performance, such as gamma,
min_child_weight, max_depth, n_estimators, and learning_rate
[39]. In the RF model, we tune the n_estimators, max_depth,
min_samples_split, min_samples_leaf, and max_features [21].

Table 3 summarizes themodel evaluation results across five
different preprocessing scenarios for four models: LR, KNN, XG-
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Table 3. Model evaluation (blind well 15_9-F-1 A)

Scenario
LR KNN XGBoost RF

RMSE MAE R² RMSE MAE R² RMSE MAE R² RMSE MAE R²
1 13.13 9.10 0.83 17.853 9.26 0.74 18.38 9.44 0.73 14.93 8.19 0.81
2 10.94 8.81 0.81 15.60 10.13 0.77 11.98 8.03 0.85 9.76 6.61 0.89
3 10.94 8.81 0.81 17.93 12.85 0.72 12.52 8.04 0.83 9.75 6.62 0.89
4 10.90 8.80 0.81 15.80 11.49 0.74 12.47 8.36 0.84 9.59 6.44 0.89
5 10.80 8.67 0.81 12.11 7.94 0.85 12.18 8.52 0.85 9.41 6.35 0.90

**Note:The values in bold represent the optimal RMSE, MAE, and R² for a given model in each scenario

Boost, and RF. The evaluation metrics used include RMSE (Root
Mean Squared Error), MAE (Mean Absolute Error), and R² (coeffi-
cient of determination), with the optimal values for each scenario
highlighted in bold.
1. Scenario 1: We only apply a normalization for this initial sce-
nario. Surprisingly, we observe the best performance of the
LR model, with an RMSE of 13.13 and R² of 0.83, indicating
that this model gets the best benefits by only normalization
preprocessing. RF also performs well in terms of MAE, with
8.19, but it has a much higher RMSE.

2. Scenario 2: In this scenario, we add the Yeo-Johnson transfor-
mation to handle non-normality and apply z-score to remove
outliers while retaining normalization. RF outperforms the
other models, with an RMSE of 9.76, MAE of 6.61, and R² of
0.89, showing improved model performance after handling
outliers. XGBoost also benefits significantly, with RMSE re-
ducing to 11.98, MAE of 8.03, and R² increasing to 0.85.
Overall, for all models, we see that the error rate in this
scenario decreases and R² increases compared to scenario
1. Therefore, the handling outlier step mathematically im-
proves our models in this case.

3. Scenario 3: This scenario mostly has the same steps as sce-
nario 2, but we also add the Savitzky-Golay filter in the pre-
processing step before modeling. As shown in the table,
applying this filter to the RF model slightly improves its per-
formance (RMSE 9.75, R² 0.89), while other models, such as
XGBoost, also benefit from this additional step. However,
KNN still struggles with high RMSE and MAE, showing that
it may be more noise-sensitive than RF or XGBoost models.
Meanwhile, there are no improvements for LR compared to
scenario 2.

4. Scenario 4: As in scenario 3, we also conduct a smoothing
technique for the well log data using a median filter with a
window size of 3 for this scenario. Compared to scenarios 2
and 3, the median filter yields similar improvements for RF,
with an RMSE of 9.59 andMAE of 6.44, but fewer benefits for
XGBoost (the MAE and R2 are better in scenario 2). The per-
formance of the KNN model remains relatively unchanged,
indicating that smoothingmay not have been enough for the
model to generalize well. Based on RMSE, LR outperforms
XGBoost, even though this scenario does not affect the LR
model compared to scenarios 2 and 3.

5. Scenario 5: In the final scenario, we also implement the me-
dian filter with a window size 5. As a result, the RF model
achieves its best performance in this scenario, with an RMSE
of 9.41, MAE of 6.35, and R² of 0.90, the highest of all sce-
narios. The performance of XGBoost also improves (RMSE
12.18, R² 0.85), although it does not surpass RF.

Figure 6. Cross plot between DTS prediction and DTS actual
in blind well using scenario 5 (left to right: LR,
KNN, XGBoost, RF)

The cross plots between predicted and actual DTS pro-
vided clear visual insights into model performance (Figure 6).
The closer the points were to the 1:1 line, the more accurate
the predictions. The RF model (far right) demonstrates the best
alignment with the 1:1 line, particularly in scenario 5, which em-
ploys median filter (w=5). It is also supported by the model per-
formance metrics from the table, where RF achieves the lowest
RMSE and MAE, along with the highest R². The high R² indicates
that the model captures most of the variability in the DTS values
reflected in the cross plot by a tighter cluster of points around
the diagonal. For other models, the deviation from the 1:1 line
is more noticeable. Although LR has a relatively high R² (0.81
in scenario 5), its predictions are less accurate due to a notice-
able spread of points, especially at higher DTS values. KNN’s
cross plot reveals significant dispersion, reflecting its poor per-
formance metrics (RMSE of 12.11 and MAE of 7.94 in Scenario
5). XGBoost performs better than KNN but still exhibits scatter,
particularly in the mid-range of DTS values.

Figure 7. DTS prediction in blind well using scenario 5 (left
to right: LR, KNN, XGBoost, RF)

A similar trend is also observed in the predicted DTS well
log plots (Figure 7). RF consistently tracks the original DTS values
closely, especially in the depth ranges where other models begin
to deviate. It is particularly evident around the 2600 - 2800 m
depth, where LR and KNN exhibit noticeable divergence from the
actual DTS values, leading to larger prediction errors. LR success-
fully captures the general trend of the DTS log but has difficulty
with more detailed variations, especially at greater depths (e.g.,
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below 3200 m), where predicting DTS values becomes more chal-
lenging. In contrast, KNN generates much noisier predictions,
with significant deviations from the actual DTS values through-
out all depth intervals, leading to its overall weaker performance
(RMSE of 12.11 in scenario 5). XGBoost delivers smoother pre-
dictions than KNN, though it still falls short of RF, particularly in
areas with rapid DTS variations. Its RMSE of 12.18 in scenario
5 highlights these minor inconsistencies. In general, the visual
agreement in the well log predictions confirms the quantitative
findings from the performance table, with RF standing out as the
top-performing model across the various preprocessing scenar-
ios. It shows the effectiveness of more advanced preprocessing,
such as feature transformation, outlier handling, and smoothing,
particularly for the RF model. We also conclude the best smooth-
ing technique in this case is a median filter with a window size
of 5.

4. Conclusion

Based on the results above, we conclude that the Ran-
dom Forest (RF) model demonstrates the best performance in
almost all scenarios, except for scenario 1. Scenario 5, which in-
cluded Yeo-Johnson transformation, outlier removal, smoothing
withmedian filter (w=5), and normalization, emerged as the best
scenario with the lowest RMSE and MAE values of 9.41 and 6.35,
respectively, as well as the highest R² of 0.90. We observed that
outlier removal and smoothing had a significant impact on the
overall model performance. The KNN model exhibited greater
sensitivity to noise, resulting in higher RMSE and MAE values
compared to the other models across all scenarios. These find-
ings highlight the importance of data preprocessing, especially
the smoothing technique, in improving model performance, par-
ticularly for machine learning models like Random Forest. The
success of Scenario 5 reinforces the idea that careful smoothing
and transformation can significantly enhance predictive accuracy,
which is crucial for real-world applications where noise and out-
liers are common.
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