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ABSTRACT. In this paper, Fractional Differential Equations (FDE) is solved numerically using Least Squares Method
(LSM). The Shifted Chebychev polynomials is used as the basis functions and the results is compared with the exact
solutions. Some numerical examples are presented to illustrate the theoretical results and compared with the results
obtained by other numerical methods. It was found that the results of the proposed approximate method converged
rapidly to the exact solutions.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of EULER: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction
Most scientific and engineering problems are modeled and

solved in differential or integro-differential equation forms for
better and easy results. The literature on the applications and so-
lution of differential and integro differential equations abounds
and are still increasing by the day due to their importance in hu-
man life. Ahmed and Elzaki [1] said that ever since introduction
of the concept of differential and or integro differential equa-
tions, they have played very important role in all facets of human
life. The paper enumerated some areas of human life where these
type of equations are applicable to include ice-shaping operation,
heat transfer, neutron diffusion etc.

It is agreed among numerical analysts that fractional cal-
culus is an extension of ordinary calculus with more than 300
years of history. Since then, lots of researchers have deployed
different methods to solve fractional differential equations. Re-
cently, Dabwan and Hasan [2] solved fractional order differen-
tial equations using modified Adomian decomposition method.
The authors applied the method to singular and non-singular
fractional order differential equations. In the opinion of the au-
thors also, Adomian Decomposition Method is one of the most
frequently used method for solving linear and non-linear ordi-
nary, partial, fractional differential equations and also described
the method as a powerful tool for the solution of fractional or-
der differential equations linear and non-linear alike. Using a
new method to solve fractional differential equations, Khalouta
and Kadem [3] introduced Inverse Fractional Shehu Transform
Method. The relatively new method was used to solve homoge-
neous and non-homogenous linear fractional differential equa-
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tions with the derivatives described in Caputo and Riemann-
Liouville sense. In the end, the author concluded that themethod
was a powerful and efficient technique for finding the exact so-
lution of linear fractional differential equations. In the same
vain, Bulut et al. [4] used another new form of transform called
Sumudu TransformMethod (STM) to solve fractional ordinary dif-
ferential equations. The author noted that the method while
compared to other methods turned out to be pragmatic in get-
ting analytical solution of ordinary fractional differential equa-
tions fast adding that it can also be applied to initial-value and
boundary-value problems.

Application of a semi-analytical numerical technique, Frac-
tional Differential Transform Method (FDTM) was implemented
by Ibis et al. [5] to find solution of fractional-algebric equa-
tions. The authors compared the results with Homotopy Analy-
sis Method and the exact solutions and found that the proposed
method is very effective and simple and that their results highly
agreed. The authors added that the method is computational
reliable, straightforward and accurate. Kehaili et al. [6] and Mo-
hammed et al. [7] used Homotopy perturbation method to solve
fractional differential equations. While Kehaili et al. [6] applied
Homotopy Perturbation Transformmethod for solving partial and
time-fractional differential equations with variable coefficients,
Mohammed et al. [7] however used Homotopy Analysis Trans-
form method to solve fractional integro-differential equations.
The results obtained using the method converges to the exact so-
lution rapidly and the algorithmwas found to be suitable and very
user friendly. A Least Squares Differential Quadrature Method
for a class of nonlinear partial differential equations of fractional
order was implemented by Bota et al. [8]. The method was ap-
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plied to nonlinear partial differential equations with fractional
time derivatives and the result converged rapidly to the exact so-
lution.

The introduction of Bernstein Least-Squares Technique
(BLST) via Bernstein polynomials as basis functions was done by
Oyedepo et al. [9]. The method was used to solved fractional
Integro-Differential Equations (FIDEs) and the results show that
the method is easy to implement and accurate when applied to
FIDEs as it reduces the type of problem to the solution of a system
of linear algebraic equations and then solved using MAPLE 18.
The authors concluded that the calculations showed that (BLST)
is a powerful and efficient technique in finding a very good solu-
tion for this type of equation. In order to further improve on the
result of solutions of fractional differential and integro differen-
tial equations, Taiwo and Fesojaye [10] and Uwaheren et al. [11]
introduced Perturbation. Perturbation method, which adds some
terms to the method under consideration, produces a more accu-
rate approximate solution. Other researchers that have applied
Least squares method successfully includes [12, 13].

Work on the solution of linear and nonlinear multi-term
fractional differential equations (MFDEs) was carried out by Uwa-
heren and Taiowo [14] using Chebyshev polynomial based on op-
erational matrix method for initial and boundary value problems.
Their works were described in Caputo sense which allows ini-
tial and boundary conditions to be included in the formulation
of the problem. The research articles [15–20] investigate sev-
eral numerical approaches to solving Lane-Emden type equations
and fractional order differential equations, including neural net-
works, efficient algorithms, and decomposition methods. Other
approaches can be found in [21–26]. The aim of this work is to de-
velop and demonstrate a numerical method for solving Fractional
Differential Equations (FDEs) using the Least Squares Method
(LSM) with Shifted Chebyshev polynomials as basis functions, and
to evaluate the accuracy and convergence of the method by com-
paring it with exact solutions and other numerical methods.

The rest of the paper is structured as follows: Section 2,
deals with preliminaries, i.e. definition of terms, the results and
discussion, consisting of the approximation model used and sev-
eral examples, presented in Section 3, and conclusion of the
study are presented in Section 4.

2. Preliminaries
2.1. Fractional Differential Equation

A differential equation is known as a fractional differential
equation if it contains at least one fractional order derivatives,
Dα of the unknown function y(x). The general form of a frac-
tional differential equation is given as

Dαy(x) = f(x, y(x)), (1)

subject to the conditions:

Dαy(0) = ωk, k = 0, 1, ..., n,

where Dα is the fractional order derivative in the Caputo sense
and α is a non-integer value, n = ⌈α⌉, is called the ceiling α,
α > 0, the highest order of the equation.

So, a fractional differential equation is one whose order of
derivative is a non-integer and the order is commonly denoted,

α, where α is between any two integers. There are two major
fractional operators; the Caputo’s fractional differential operator
and the Riemann-Liouville’s fractional differential operator.

2.1.1. Caputo’s Fractional Differential Operator
The Caputo’s fractional derivative of order α > 0 is written

as:

Dα
∗ f(x) =


1

Γ(n− α)

∫ t

0

(x− t)n−α−1 dn

dtn
f(t)dt ;n− 1 < α < n,

dn

dtn
f(t) ;α = n.

(2)

2.1.2. Riemann-Liouville’s fractional differential operator
The Caputo’s fractional derivative of order α > 0 is written

as:

Dαf(x) =


1

Γ(n− α)

dn

dtn

∫ t

0

(x− t)n−α−1f(t)dt ;n− 1 < α < n,

dn

dtn
f(t) ;α = n.

(3)
The generalized factorial form (property) of non-integer or-

der derivatives in Euler’s Gamma function f(x) = xm is given as

Dαxm =
dα

dxα
xm =

Γ(m+ 1)

Γ(m− n+ 1)
xn−m. (4)

Some other basic properties of fractional derivatives and inte-
grals are:

1. Dα(k) = 0, k is a constant,

2. Dαxn = Γ(n+1)
Γ(n−α+1)x

n−α x > 0, α > 0,

3. Dαf(xn) = 0, if n ∈ N0 : n < ⌈α⌉ ,

4. Dα(k1f(t)) + Dα(k2f(t)) = k1D
αf(t) + k2D

αf(t) =
(K1 +K2)D

αf(t), for k1, k2 are constants,

5. Jαxβ = Γ(β+1)
Γ(β+α+1)x

β+α x > 0, β > −1, α > 0, where
⌈α⌉ denoted the smallest integer greater than α and N0 =
(0, 1, 2 . . . ).

6. JαDαf(x) = f(x).

2.2. Fractional Integro-differential Equations
A differential equation is called a fractional integro -

differential equation when the unknown function y(x) appears
under the integral sign and the equation also contains a fractional
derivativeDα. The general form of fractional integro-differential
equation is:

Dαy(x) = f(t) + λ

∫ p(x)

l(x)

K(x, t)y(t)dt, (5)

subject to the conditions:

Dαyk(0) = ϕk,

where k(x, t) and y(t) are given smooth functions. Eq. (6) is
called Volterra fractional integro-differential equation but it be-
comes Fredholm fractional integro-differential equation if the up-
per integral limit is an integer.
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2.3. Chebyshev Polynomial
The Chebyshev polynomials of degree n defined on the in-

terval [-1,1] is;

Tn(x) = cos−1(ncos(x)) − 1 ≤ 0 ≤ 1, (6)

with a recurrence relation:

Tn+1(x) = 2xTn(x)− Tn+1(x), n = 2, 3 . . . , (7)

and it is said to be shifted Chebyshev polynomials of degree k on
the closed interval [0,1] defined as:

Tk(x) = cos[kcos−1(2x− 1)], k ≥ 0, (8)

with a the recurrence relation is given by:

Tk+1(x) = 2(2x− 1)Tk(x)− Tk−1(x), k ≥ 1,

and few terms of the polynomial are:

T ∗
0 (x) = 1

T ∗
1 (x) = 2x− 1

T ∗
2 (x) = 8x2 − 8x+ 1

T ∗
3 (x) = 32x3 − 48x2 + 18x− 1

T ∗
4 (x) = 128x4 − 256x3 + 160x2 − 32x+ 1

...

(9)

The orthogonality condition of Chebyshev polynomials is given
by

∫ 1

−1

(
Ti(x)Tj(x)

w(x)

)
dx =

 0 for i ̸= j,
π
2 for i = j ̸= 0,
π for i = j = 0,

(10)

where w(x) is known as the weight function,is given as w(t) =√
1− x2. Generally, the Chebyshev polynomial valid in the inter-

val [a, b] in defined as

Tn(x) = cos

{
ncos−1

(
2x− a− b

b− a

)}
, (11)

and the recurrence relation is

Tn+1(x) =
2x− a− b

b− a
Tn(x)− Tn−1(x). (12)

3. Results and Discussion
3.1. Approximation Method

In this session, the step by step procedure of the applica-
tion of the proposed method is presented. Consider the general
class of fractional order differential equation

Dα (y(t)) +

n∑
i=0

ciy
(i)(t) = f(t), (13)

subject to conditions:

yk(0) = ϕk; k = 1, 2...n. (14)

To solve Eq. (13) and Eq. (14), we assume an approximate solution

yN (t) =

N∑
j=0

cjyj(t)

= a0 + a1(2x− 1) + a2(8x
2 − 8x+ 1)

+ a3(32x
3 − 48x2 + 18x− 1)

+ a4(128x
4 − 256x3 + 160x2 − 32x+ 1).

(15)

Substituting Eq. (15) into Eq. (13), gives:

Dα
N∑
j=0

cjyj(t) +

N∑
j=0

cjyj(t)

n∑
i=0

ciy
(i)(t) = f(t), (16)

or

Dα
N∑
j=0

cjyj(t) +

N∑
j=0

n∑
i=0

ai,jyj(t)ciy
(i)(t) = f(t). (17)

Thus, Eq. (17) is rewritten as:

R(c0, c1, c2, ...cN ) = Dα
N∑
j=0

cjyj(t)+

N∑
j=0

n∑
i=0

ai,jyj(t)ciy
(i)(t)−f(t)

(18)
where, R(c0, c1, c2, ...cN ) is the residual. We minimize Eq. (18)
by writing

S(c0, c1, c2, ...cN ) =∫ 1

0

Dα
N∑
j=0

cjyj(t) +

N∑
j=0

n∑
i=0

ai,jyj(t)ciy
(i)(t)− f(t)

2

dt

(19)

Applying the Dα to Eq. (19), we have

S(c0, c1, c2, ...cN ) =

∫ 1

0

 N∑
j=0

cj
Γ(j + 1)

Γ(j − α+ 1)
tj−α

+

N∑
j=0

n∑
i=0

ai,jyj(t)ciy
(i)(t)− f(t)

2

dt.

(20)

Eq. (20) is minimized by differentiating it partially with re-
spect to c0, c1, c2....cN and equating to zero to give the (n+ 1)
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Table 1. Error of results for Example 1

x Exact α = 0.25 Error α = 0.5 Error α = 0.75 Error
0.0 0.00000000 -0.005634 5.6343e-03 0.000003 3.0646e-06 0.000934 9.3374e-04
0.1 0.01000000 0.030690 2.0690e-02 0.009975 2.4674e-05 0.009164 8.3575e-04
0.2 0.04000000 0.087390 4.7390e-02 0.039907 9.3224e-05 0.035096 4.9042e-03
0.3 0.09000000 0.162886 7.2886e-02 0.089800 1.9969e-04 0.078910 1.1090e-02
0.4 0.16000000 0.255849 9.5849e-02 0.159658 3.4151e-04 0.140776 1.9224e-02
0.5 0.25000000 0.365206 1.1521e-01 0.249484 5.1640e-04 0.220844 2.9156e-02
0.6 0.36000000 0.490137 1.3014e-01 0.359278 7.2243e-04 0.319253 4.0747e-02
0.7 0.49000000 0.630079 1.4008e-01 0.489042 9.5796e-04 0.436126 5.3874e-02
0.8 0.64000000 0.784721 1.4472e-01 0.638778 1.2217e-03 0.571572 6.8428e-02
0.9 0.81000000 0.954007 1.4401e-01 0.808487 1.5126e-03 0.725684 8.4316e-02
1.0 1.00000000 1.138136 1.3814e-01 0.998170 1.8300e-03 0.898541 1.0146e-01

system of equations:

∂S

∂c0
= −2

∫ 1

0

[
c0

Γ(j + 1)

Γ(j − α+ 1)
tj−α + · · ·+ cN

Γ(j + 1)

Γ(j − α+ 1)
tj−α

+

N∑
j=0

n∑
i=0

ai,jy
(i)
j (t)ci − f(t)

 dt = 0,

∂S

∂c1
= −2

∫ 1

0

[
c0

Γ(j + 1)

Γ(j − α+ 1)
tj−α + · · ·+ cN

Γ(j + 1)

Γ(j − α+ 1)
tj−α

+

N∑
j=0

n∑
i=0

ai,jy
(i)
j (t)ci − f(t)

 t dt = 0,

∂S

∂c2
= −2

∫ 1

0

[
c0

Γ(j + 1)

Γ(j − α+ 1)
tj−α + · · ·+ cN

Γ(j + 1)

Γ(j − α+ 1)
tj−α

+

N∑
j=0

n∑
i=0

ai,jy
(i)
j (t)ci − f(t)

 t2 dt = 0,

...

∂S

∂cN
= −2

∫ 1

0

[
c0

Γ(j + 1)

Γ(j − α+ 1)
tj−α + · · ·+ cN

Γ(j + 1)

Γ(j − α+ 1)
tj−α

+

N∑
j=0

n∑
i=0

ai,jy
(i)
j (t)ci − f(t)

 tn dt = 0.

(21)

The (n+1) system of linear equations obtained are solved using
a computer softwares, maple 18 to obtain the constant coeffi-
cients. The values of the constants are substituted into Eq. (15)
to obtain the required approximate solution.

3.2. Numerical Examples
In this section, the demonstration of the methodology is

presented with illustrations on some examples.

Example 1. Consider the fractional differential equation

Dαy(x) + y(x) = x2 +
2

Γ(2.5)
x2−α.

Subject to the conditions y(0) = 0, 0 ≤ x ≤ 1.

The exact solution is y(x) = x2. The example is solved
forα = 0.25,Dα forα = 0.5 andDα forα = 0.75 following
the algorithm above. Solving the problem at α = 0.25, we
have an approximate solution

y4(x) = − 0.1314722268e−3x4 + 0.5608850767e−3x3

+ 0.9978003823x2 − 0.629045e−4x+ 0.30646e−5.

For α = 0.5, we obtained an approximate solution

y4(x) = − 0.19143918e−5x4 + 0.45562443e−5x3

+ 1.0000223x2 + 0.1177e−5x− 1.30410−7.

For α = 0.75, we obtained an approximate solution and

y4(x) = − 0.6135873344e−2x4 + 0.3402463791e−1x3

+ 0.8752745178x2 − 0.55563752e−2x+ 0.9337354e−3.

The results of these are shown in Table 1 and Figure 1.

Figure 1. Graphical representation of Example 1
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Table 2. Error of results for Example 2

x Exact α = 0.25 Error α = 0.5 Error α = 0.75 Error
0.0 0.0000000 -0.00400510 4.0051e-03 -0.0000001 1.3040e-07 0.0000014 1.4479e-06
0.1 0.0100000 0.02207872 1.2079e-02 0.010000215 2.1499e-07 0.00468972 5.3103e-03
0.2 0.0400000 0.07447037 3.4470e-02 0.04000102 1.0317e-06 0.02123989 1.8760e-02
0.3 0.0900000 0.15103577 6.1036e-02 0.09000234 2.3402e-06 0.05262424 3.7376e-02
0.4 0.1600000 0.24992183 8.9922e-02 0.16000415 4.1563e-06 0.10022031 5.9780e-02
0.5 0.2500000 0.36955644 1.1956e-01 0.25000641 6.4912e-06 0.16525823 8.4742e-02
0.6 0.3600000 0.50864851 1.4865e-01 0.3600093 9.3517e-06 0.24882021 1.1118e-01
0.7 0.4900000 0.66618789 1.7619e-01 0.49001273 1.2740e-05 0.35184083 1.3816e-01
0.8 0.6400000 0.84144546 2.0145e-01 0.64001663 1.6653e-05 0.47510675 1.6489e-01
0.9 0.8100000 1.03397306 2.2397e-01 0.81002104 2.1084e-05 0.61925700 1.9074e-01
1.0 1.0000000 1.24360352 2.4360e-01 1.00002602 2.6021e-05 0.78478307 2.1522e-01

Example 2. Consider the fractional differential equation

Dαy(x) =
2

Γ(2.5)
x1.5 0 ≤ α ≤ 1.

Subject to the conditions y(0) = 0.
The exact solution is y(x) = x2. The example is solved

for α = 0.25, Dα, α = 0.5 and α = 0.75 following the
algorithm above. Solving the problem at Dα for α = 0.25,
we have an approximate solution

y4(x) = 0.1170779082x4 − 0.4259256655x3 + 1.434973200x2

+ 0.121483195x− 0.40051098e−2.

For α = 0.5, we obtained an approximate solution

y4(x) = − 0.1914391829e−5x4 + 0.4556244360e−5x3

+ 1.000022333x2 + 0.1177e−5x− 1.30410−7.

For α = 0.5, we obtained an approximate solution and

y4(x) = 0.1350122115e−5x4 − 0.3227413005x3

+ 0.5030498858x2 − 1.288082683x− 1.246810−5.

The results are shown in Table 2 and Figure 2.

Example 3. Consider the fractional differential equation

y′′(x) +D
3
2 y(x) + y(x) = x+ 1.

Subject to the conditions y(0) = 0, 0 ≤ x ≤ 1.
The exact solution is y(x) = x + 1. The example is

solved for α = 0.25,Dα, α = 0.5 and α = 1.5 following the
algorithm above. Solving the problem at Dα for α = 0.25,
we have an approximate solution

y4(x) = 0.80e−9x4 − 0.489e−7x3 + 1.02138019x2

+ 1.059609365x+ 0.899e−6.

Figure 2. Graphical representation of Example 2

For α = 0.5, we obtained an approximate solution

y4(x) = − 0.1914391829e−5x4 + 0.4556244360e−5x3

+ 1.000022333x2 + 0.1177e−5x− 1.30410−7.

For α = 1.5, we obtained an approximate solution and

y4(x) = − 0.6135873344e−2x4 + 0.3402463791e−1x3

+ 0.8752745178x2 − 0.55563752e−2x+ 0.9337354e−3.

The results are shown in Table 3 and Figure 3.

3.3. Discussion of Results

Three problems were solved in this seminar using the pro-
posed methods; Least Squares Method with the shifted Cheby-
chev polynomials as basis functions. It was observed generally
that, using the approximate solutions, the results were closed to
the exact solutions at α = 0.5 for problems 1 and 2 which is the
mid point of the interval of consideration of the problems. It is
observed also that asα is taken closer to the lower or upper limits
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Table 3. Error of results for Example 3

x Exact α = 0.25 Error α = 0.5 Error α = 1.5 Error
0.0 0.0000000 0.000000142 1.4210e-07 0.00000008 8.0000e-09 0.00000089 8.9900e-07
0.1 0.1100000 0.120038724 1.0039e-02 0.11296763 2.9676e-03 0.10998977 1.0222e-05
0.2 0.2400000 0.252438085 1.2438e-02 0.28007738 4.0077e-02 0.23997869 2.1334e-05
0.3 0.3900000 0.419282585 2.9283e-02 0.48011612 9.0116e-02 0.38996753 3.2467e-05
0.4 0.5600000 0.720155044 1.6016e-01 0.61435307 5.4353e-02 0.55995635 4.3650e-05
0.5 0.7500000 0.838482284 8.8482e-02 1.00019419 2.5019e-01 0.74994508 5.4912e-05
0.6 0.9600000 1.092483720 1.3248e-01 1.32023350 3.6023e-01 0.95993369 6.6283e-05
0.7 1.1900000 1.377151690 1.8715e-01 1.68027340 4.9027e-01 1.18992220 7.7792e-05
0.8 1.4400000 1.693261268 2.5326e-01 2.08031358 6.4031e-01 1.43991053 8.9468e-05
0.9 1.710000 2.041568298 3.3157e-01 2.52035420 8.1035e-01 1.70989865 1.0134e-04
1.0 2.0000000 2.422809420 4.2281e-01 3.00039530 1.0004e+00 1.99988650 1.1344e-04

Figure 3. Graphical representation of Example 3

of the interval, the result refuse to converge rapidly to the exact
solution. This shows that the actual value α used at the original
point of modeling of the problem may be α = 0.5. However, for
problem 3, that α = 1.5 the obtained approximate solutions is
better than other α values confirming our earlier comment since
the α value of the problem was clearly stated as α = 1.5. In all,
it is easy to say that the proposed method is suitable solving the
fractional differential equations for which they were applied. The
fact that Chebyshev polynomials were used as basis polynomial
shows that the method is compatible with the Chebyshev poly-
nomials or vice versa. The advantage of these method is the fact
that it is capable of giving accurate approximate results compa-
rable to the exact solution at appropriate α value.

4. Conclusion

In this study, three problems were solved using the sug-
gested Least Squares Method (LSM) using shifted Chebyshev
polynomials as basis functions. The results showed that approxi-
mation answers were generally near to exact solutions for situa-
tions in the middle of the studied interval. However, when α ap-
proached the interval’s boundaries, the convergence of approxi-

mate solutions to the precise solution increased slower. Optimiz-
ing α is crucial for proper problem modeling. In a situation with
clearly specified α, the resulting approximate solutions outper-
formed alternative values, demonstrating the method’s robust-
ness in such cases. In conclusion, the proposed method is effec-
tive for solving fractional differential equations. Using Chebyshev
polynomials improves the method’s compatibility and efficiency.
Overall, it provides a dependable method for generating precise
approximate solutions, making it an appropriate instrument for
solving fractional differential equations.
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