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Optimal Control for a COVID-19 and Tuberculosis Co-Infection Model with
Asymptomatic COVID-19 Carriers

Sailah Ar Rizka1,∗, Regina Wahyudyah Sonata Ayu2, Dewi Ika Ainurrofiqoh1, Merysa Puspita
Sari1, Nadia Kholifia1

1Department of Mathematics, Universitas Jember, Jember, Indonesia
2Department of Mathematics, Universitas Palangka Raya, Palangka Raya, Indonesia

ABSTRACT. This study applies optimal control theory to a deterministic co-infection model of COVID-19 and tu-
berculosis (TB) with asymptomatic COVID-19 carriers, who are assumed to be less infectious. The optimal control
strategy aims to minimize intervention costs and reduce infections by implementing five control measures, including
prevention and vaccination of COVID-19, treatment of both symptomatic and asymptomatic COVID-19-infected indi-
viduals, treatment of COVID-19 and active TB co-infected individuals, and prevention of treatment failure in active TB
cases. Pontryagin’s minimum principle is used to characterize the necessary conditions for optimal control in reducing
infections. Numerical results demonstrate the effectiveness of the optimal control strategy in suppressing diseases.
The incremental cost-effectiveness ratio (ICER) for different combinations of control measures is evaluated, showing
that the intervention strategy performs best when all control measures are used.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of EULER: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction
COVID-19 and Tuberculosis (TB) are two leading infectious

killers in the world requiring serious and urgent mitigation in-
tervention. According to [1], there is an increase in TB cases in
2021 following COVID-19 pandemic, with an estimated 10.6 mil-
lion new cases of TB and an estimated 1.6 million deaths from TB.
There were approximately 771 million confirmed cases of COVID-
19 worldwide by 12 October 2023, contributing to 6.9 million
deaths [2]. Both COVID-19 and TB primarily affect the lungs and
have similar symptoms, such as cough, fever, and difficulty in
breathing. In addition, both diseases are spread through respi-
ratory droplets, although TB exhibits a prolonged incubation pe-
riod and a later disease progression [3].

Co-infection of COVID-19 and TB is described as a disease
caused by bothM. tuberculosis and SARS-CoV-2 infection. The cur-
rent study shows that co-infection of COVID-19 and TB is com-
mon worldwide, with nineteen countries reporting co-infected
patients, among them both high- and low-TB-prevalence coun-
tries [4]. There is evidence that TB is a risk factor for severe
COVID-19, and patients with COVID-19 and TB co-infection are
more likely to have severe disease and death than COVID-19
alone [5, 6]. Additionally, case studies have shown an increased
risk of latent TB infections progressing to active TB following
COVID-19 infection [7, 8]. The overlapping symptoms of COVID-
19 and TB make diagnosis of co-infection difficult and may in-
crease the severity of the disease. Early diagnosis of co-infection
and proper medication may increase the patient’s recovery rate
and prevent further damage [9]. As COVID-19 and TB are becom-
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ing public health issues, there is a need for serious attention to
disease mitigation.

Mathematical modeling has been used to study the trans-
mission dynamics of diseases [10–13], as well as co-infection of
COVID-19 and TB, and to suggest appropriate control strategies
to suppress the diseases. A compartmental co-infection model
of COVID-19 and TB was developed in [14], suggesting that a
decrease in contact rates with infectious individuals and an in-
crease in treatments would reduce co-infection cases. [15] then
proposed an optimal control problem by applying control mea-
sures, such as prevention and treatment for both COVID-19 and
active TB, into [14] to minimize the number of infections. The
co-infection model of COVID-19 and TB, which classifies infected
individuals as reported and unreported cases, was developed in
[16] and was extended to the optimal control problem by includ-
ing awareness campaigns against TB in addition to other control
measures. In [17], the co-infection model considered the order
of co-infection of COVID-19 and TB and incorporated COVID-19
vaccination as a control measure in the optimal control problem.
Unlike [17], COVID-19 vaccination in [18] was treated both as a
compartment in the co-infection model and as a control measure,
and it also took into account exogenous reinfection of TB.

As COVID-19 infection elevates the risk of progression of
latent TB to active TB, it is important to properly mitigate both
diseases and their co-infection. With this in mind, we propose an
optimal control strategy to reduce the incidence of COVID-19, TB,
and their co-infection. This strategy includes supervised treat-
ment of active TB, implementation of preventive measures, vacci-
nation, and medical treatment for COVID-19 and its co-infection
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with active TB. The control interventions are incorporated into a
co-infection model of COVID-19 and TB in [19], which addresses
imperfect vaccination for COVID-19 and asymptomatic COVID-
19 individuals. Different from the model in [19], we consider
the susceptibility of individuals vaccinated with COVID-19 to be-
come infected with TB. This paper is structured as follows. In
section 2, the method used in this study is explained. The find-
ings of this study are then given in section 3, including model de-
scription in section 3.1, optimal control problem in section 3.2,
and numerical results in section 3.3. In section 3.1, we present
the co-infection model of COVID-19 and TB in [19] together with
the parameter values, descriptions, and assumptions used. The
existence and the invariant region of the solutions, demonstrat-
ing their biological relevance, are also analyzed. In section 3.2,
the co-infection model with controls is formulated and the opti-
mal control problem is proposed. The existence and characteri-
zation of the optimal control is then derived using Pontryagin‘s
minimum principle. The numerical simulations of the different
control strategies and the analysis of the cost-effectiveness are
presented in section 3.3. Finally the conclusion is given in sec-
tion 4.

2. Methods
This section discusses the method of optimal control used

to mitigate the spread of co-infection of COVID-19 and TB. First,
the co-infection model of COVID-19 and TB is presented in the
form of a system of nonlinear differential equations. The as-
sumptions and the parameter descriptions and values of the co-
infection model are explained. The positivity and boundedness
of the solution of the system are derived analytically to validate
the biological relevance of the co-infection model. The disease-
free equilibrium (DFE) point and the basic reproduction number
describing epidemic transmissibility are determined. Then, the
optimal control problem is posed. The time-dependent control
functions, along with descriptions and constraints, are incorpo-
rated into the co-infection model. The resulting co-infection
model with controls, also called state equation, can generally be
written as

ẋ (t) = f (x (t) , u (t)) , t ≥ t0,

where x ∈ Rm represents the states (i.e., the population com-
partments) of the system and u ∈ Rn represents the control func-
tions. The objective function representing the quantity (i.e., num-
ber of infections, intervention cost) to be minimized is written in
the form of a performance index

J =

∫ tf

t0

g (x (t) , y (t)) dt,

where tf is the final time. The Hamiltonian is then defined by
introducing a Lagrange multiplier λ ∈ Rm as follows

H = g (x (t) , y (t)) + λT · f (x (t) , u (t)) .

The next step is to define a costate equation as

λ̇ = −∂H
∂x

(x (t) , u (t)) ,

which satisfies the transversality condition

λ (tf ) = 0.

The optimal control functions u∗ are determined by using Pon-
tryagin‘s minimumprinciple [20], that is, by solving the stationary
condition

∂H
∂u

= 0.

Some intervention strategies are defined as combinations of the
resulting optimal controls. The intervention strategies are then
simulated using the Forward-Backward Sweepmethod [21] to see
the effectiveness of the optimal controls in minimizing the objec-
tive function. The cost-effectiveness of each intervention strat-
egy is then evaluated using the ICER [22].

3. Results and Discussion
3.1. Description of the Model

The co-infection model of COVID-19 and TB in [19] is be-
ing studied. The total population is grouped into ten compart-
ments: susceptible individuals (S), individuals vaccinated againts
COVID-19 (V ), exposed to COVID-19 individuals (E), asymp-
tomatic COVID-19 infected individuals (Ia), symptomatic COVID-
19 infected individuals (Is), latent TB infected individuals (L), ac-
tive TB infected individuals (A), latent TB co-infectedwith COVID-
19 individuals (Ilc), active TB co-infected with COVID-19 individ-
uals (Iac), and recovered individuals (R). The total population N
is given by

N = S + V + E + Ia + Is + L+A+ Ilc + Iac +R. (1)

The following system of nonlinear differential equations de-
scribes the co-infection dynamics of COVID-19 and TB.

dS

dt
= Π+ ωV + (κc + κt)R− (v + µ+ αc + αt)S,

dV

dt
= vS − [(1− ε)αc + αt + ω + µ]V,

dE

dt
= αcS + (1− ε)αcV − (σc + µ)E,

dIa
dt

= σc (1− ψ)E − (µ+ δc + γ1 + θαt) Ia,

dIs
dt

= σcψE + pIlc +mIac − (µ+ δc + γ2 + θαt) Is,

dL

dt
= αtS + αtV − (σt + µ+ γ3 + θαc)L,

dA

dt
= σtL+ qIlc + nIac − (µ+ δt + γ4 + θαc)A,

dIlc
dt

= θαt (Ia + Is) + θαcL− (µ+ δct + σct + p+ q) Ilc,

dIac
dt

= σctIlc + θαcA− (µ+ δct +m+ n) Iac,

dR

dt
= γ1Ia + γ2Is + γ3L+ γ4A− (µ+ κc + κt)R,

(2)

with the initial conditions

{S (0) > 0, V (0) ≥ 0, E (0) ≥ 0, Ia (0) ≥ 0, Is (0) ≥ 0,

L (0) ≥ 0, A (0) ≥ 0, Ilc (0) ≥ 0, Iac (0) ≥ 0, R (0) ≥ 0}.
(3)
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Figure 1. The co-infection diagram of COVID-19 and TB.

Figure 1 is a diagram depicting the co-infection dynamics
of COVID-19 and TB. Table 1 describes the model parameters and
their values.

In accordance with the model (2), the susceptible individu-
als are infected by COVID-19 and TB, respectively, at the rates αc

and αt defined as follows.

αc =
βc (ηIa + Is) + βct (Ilc + Iac)

N
,

αt =
βtA+ βctIac

N
.

That is, susceptible individuals can become infected with COVID-
19 following exposure to either asymptomatic or symptomatic
COVID-19 infected individuals and co-infected individuals (Ilc
and Iac). The modification parameter η describes the lower in-
fectiousness caused by asymptomatic individuals compared to
symptomatic individuals. Additionally, susceptible individuals
can become latent TB individuals after being exposed to active
TB (A) and active-TB co-infected with COVID-19 (Iac) individuals.
The following are several assumptions used in the system (2).
1. Individuals with COVID-19 are susceptible to TB infection,

likewise individuals with TB are susceptible to COVID-19 in-
fection [5, 19, 23].

2. Exposed to COVID-19 individuals (E) are not infectious.
3. Co-infection is more likely to occur after infection with ei-

ther COVID-19 or TB. This is addressed by the enhancement
factor of the co-infection rate θ, where θ ≥ 1 [19, 24, 25].

4. Co-infected individuals spread either COVID-19 or TB, but
not both simultaneously [16, 19].

5. Co-infected individuals cannot recover from both COVID-19
and TB simultaneously, but recover from one disease at a
time [14, 15]. That is, latent-TB co-infected with COVID-19
individuals recover from either TB at rate p or from COVID-
19 at rate q. Meanwhile, active-TB co-infected with COVID-
19 individuals recover from either TB at rate m or from
COVID-19 at rate n.

6. There are disease-related deaths for asymptomatic and
symptomatic COVID-19 infected individuals, active TB in-
fected individuals, latent and active TB co-infected with
COVID-19 individuals.

7. Individuals vaccinated againt COVID-19 are susceptible to
TB infection.

3.1.1. Positivity and Boundedness of Solutions

The following theorem analyzes the existence of solutions
of the system (2) and the biological relevance of these solu-
tions.

Theorem 1. The dynamical system (2) has unique solutions that
are positively invariant in the region

Γ =

{
(S, V,E, Ia, Is, L,A, Ilc, Iac, R) ∈ R8

+ : 0 ≤ N (t) ≤ Π

µ

}
.

Proof. Let x = (S, V,E, Ia, Is, L,A, Ilc, Iac, R). We write the
system (2) as ẋ = f (x, t) where f (x, t) is the right hand side of
the system (2). Note that f (x, t) ∈ C1 in R8

+. Hence by Picard-
Lindölf theorem [26], the system (2) has unique solutions. To es-
tablish the positivity of the solutions of the system (2) with the
given initial condition (3), note that

dS

dt
> − (v + µ+ αc + αt)S.

Thus, we get

S (t) > S (0) exp
{
−
∫ t

0

(v + µ+ αc + αt)

}
> 0,

for all t ≥ 0. In the same way, it can be proved that solutions for
other states are positive for all t ≥ 0. The rate of change of total
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Table 1. The values and descriptions of the model parameters.

Parameter Description Value Reference
Π Recruitment rate of susceptible individuals (S) 1.2× 104 [19, 27]
η Modification parameter of infection rate for the asymptomatic COVID-19 infected individuals (Ia) 0.45 [19, 28]
v Vaccination rate against COVID-19 0.0203 [29]
βc Transmission coefficient of COVID-19 0.5249 [19, 27]
βt Transmission coefficient of TB 2.9598 [19, 30]
βct Transmission coefficient of COVID-19 and TB co-infection 0.225 [19]
p Recovery rate of Ilc from TB 0.012 [18, 19]
q Recovery rate of Ilc from COVID-19 0.02095 [19, 30]
m Recovery rate of Iac from TB 0.012 [18, 19]
n Recovery rate of Iac from COVID-19 0.02095 [19, 30]
κc Rate of immunity loss in individuals recovering from COVID-19 0.011 [19, 31]
κt Rate of immunity loss in individuals recovering from TB 0.0027 [19, 32]
ω Waning rate of vaccine efficacy againts COVID-19 0.000297 [19, 27]
ε Efficacy of the COVID-19 vaccine 0.7 [19, 27]
σc Progression rate of COVID-19 from exposure (E) to either Ia or Is 0.4 [19, 27]
σt Progression rate from latent TB (L) to active TB (A) 0.0039 [15, 19]
σct Progression rate of co-infection from Ilc to Iac 1.1148 [15, 19]
θ Modification parameter of co-infection rate 1.3 [18, 19]
ψ Proportion of individuals E that progress to Is. 0.6 [19, 33]
µ Rate of natural mortality 0.0003516 [19, 27]
δc Mortality rate due to COVID-19 infection 0.008 [19, 34]
δt Mortality rate due to TB infection 0.00032 [19, 30]
δct Mortality rate due to co-infection 0.002 [15, 19]
γ1 Recovery rate of individuals infected with asymptomatic COVID-19 (Ia) 0.13978 [19, 35]
γ2 Recovery rate of individuals infected with symptomatic COVID-19 (Is) 0.1 [19, 35]
γ3 Recovery rate of individuals infected with latent TB (L) 0.09 [14, 19]
γ4 Recovery rate of individuals infected with active TB (A) 0.35 [16, 19, 36]
ϕ1 Efficacy of control u1 on S 0.5 Assumed
ϕ2 Efficacy of control u2 on Is 0.5 Assumed
ϕ3 Efficacy of control u3 on L 0.5 Assumed
ϕ4 Efficacy of control u4 on A 0.5 Assumed
w1 Weighting cost on u1 50 Assumed
w2 Weighting cost on u2 250 Assumed
w3 Weighting cost on u3 150 Assumed
w4 Weighting cost on u4 300 Assumed
w5 Weighting cost on u5 100 Assumed

population N (t) is given by

dN

dt
= Π− µN − δc (Ia + Is)− δtA− δct (Ilc + Iac)

< Π− µN.

This imply that

N (t) < N (0) e−µt +
Π

µ

(
1− e−µt

)
.

Thus, as t → ∞ , for N (0) > 0, we have N (t) < Π
µ . It means

that all solutions of the system (2) are positively invariant in Γ.

As all solutions of the system (2) are positively invariant, this
means that the COVID-19 and TB co-infection model is epidemi-
ologically well-posed in mathematical perspective.

3.1.2. Basic Reproduction Number
The co-infection system of COVID-19 and TB (2) has a

disease-free equilibrium (DFE) given by

E0 = (S∗, V ∗, E∗, I∗a , I
∗
s , L

∗, A∗, I∗lc, I
∗
ac, R

∗)

=

(
π (ω + µ)

µ (v + ω + µ)
,

πv

µ (v + ω + µ)
, 0, 0, 0, 0, 0, 0, 0, 0

)
.

By the use of the next generation matrix operator [37], the fol-
lowing basic reproduction number is obtained.

R0 = max{RC
0 , R

T
0 }, (4)

where

RC
0 =βcσc

(ω + µ+ (1− ε) v)

(v + ω + µ) (σc + µ)

(
η (1− ψ)

µ+ δc + γ1
+

ψ

µ+ δc + γ2

)
,

RT
0 =

βtσt
(µ+ γ3 + σt) (µ+ δt + γ4)

.

This basic reproduction number tells the tendency of the diseases
to be endemic or to vanish. That is, the diseases will be endemic
if R0 > 1 and will vanish if R0 < 0.
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3.2. Optimal Control Problem

This section presents the optimal control problem along
with its objective and constraints. We add five time-dependent
control functions ui, for i = 1, 2, 3, 4, 5, to the system (2) as
follows.
1. u1 represents the preventive measures taken to reduce the

contact between healthy individuals and those infected with
COVID-19, including the frequent washing of hands, the use
of antiseptics andmasks, the avoidance of public gatherings,
and the imposition of travel restrictions. Hence, we modify
the COVID-19 infection rate as (1− ϕ1u1)αc, where the ef-
fectiveness of the control u1 is ϕ1.

2. u2 represents the measures taken to optimize the treatment
for patients with COVID-19, both asymptomatic (Ia) and
symptomatic (Is) individuals. This includes the provision of
concentrated isolation facilities for COVID-19 patients who
are either asymptomatic or exhibiting mild symptoms and
the increase in bed capacities at hospitals for patients with
severe COVID-19. The effectiveness of the control u2 is ϕ2.

3. u3 represents the treatment for individuals co-infected with
COVID-19 and active TB (Iac), where the efficacy is ϕ3. The
treatment combines the recommended TB regimen with the
standard COVID-19 treatment [38]. This implies that co-
infected individuals recover from either TB or COVID-19 at
a rate of (1 + ϕ3u3)m and (1 + ϕ3u3)n, respectively.

4. u4 represents the efforts to prevent treatment failure in pa-
tients with active TB (A), e.g., by supervising patients, help-
ing them to take their TB medicines regularly, and complet-
ing TB treatment. The effectiveness of the control u4 is ϕ4.

5. u5 represents COVID-19 vaccination for susceptible individ-
uals (S).
The mathematical model representing the co-infection of

COVID-19 and TB with controls, is given by the following system
of nonlinear ordinary differential equations.

dS

dt
= Π+ ωV + (κc + κt)R

− (v + u5 + µ+ (1− ϕ1u1)αc + αt)S,

dV

dt
= (v + u5)S − [(1− ε) (1− ϕ1u1)αc + αt + ω + µ]V,

dE

dt
= (1− ϕ1u1)αcS + (1− ε) (1− ϕ1u1)αcV − (σc + µ)E,

dIa
dt

= σc (1− ψ)E − (µ+ δc + γ1 + ϕ2u2 + θαt) Ia,

dIs
dt

= σcψE + pIlc +m (1 + ϕ3u3) Iac

− (µ+ δc + γ2 + ϕ2u2 + θαt) Is,

dL

dt
= αtS + αtV − (σt + µ+ γ3 + θ (1− ϕ1u1)αc)L,

dA

dt
= σtL+ qIlc + n (1 + ϕ3u3) Iac

− (µ+ δt + γ4 + ϕ4u4 + θ (1− ϕ1u1)αc)A,

dIlc
dt

= θαt (Ia + Is) + θ (1− ϕ1u1)αcL

− (µ+ δct + σct + p+ q) Ilc,

dIac
dt

= σctIlc + θ (1− ϕ1u1)αcA

− (µ+ δct + (1 + ϕ3u3) (m+ n)) Iac,

dR

dt
= (γ1 + ϕ2u2) Ia + (γ2 + ϕ2u2) Is + γ3L

+ (γ4 + ϕ4u4)A− (µ+ κc + κt)R. (5)

We consider the set of admissible control functions as fol-
lows.

Ω = {u = (u1 (·) , u2 (·) , u3 (·) , u4 (·) , u5 (·))

∈ (L∞ (0, T ))
5 |0 ≤ ui (t) ≤ 1, ∀t ∈ [0, T ] , i = 1, . . . , 5}.

(6)

In this form, if the control ui is zero, no effort is made to reduce
infections. Conversely, if the control ui is equal to one, the mea-
sure of effort made is equal to the effectiveness of the associated
control ϕi. As in the model (5), the rate of COVID 19 vaccination
is influenced by both v and u5. We assume that 0 ≤ u5 ≤ 1− v,
ensuring that the model (5) is more medically plausible. This im-
plies that the vaccination rate against COVID-19 is at most 1.

The goal is to minimize the number of individuals suffering
from the diseases in the compartments E, Ia, Is, L, A, Ilc, Iac,
and the cost of implementing interventions associated with the
controls ui, i = 1, 2, 3, 4, 5. The objective function we consider
here is given by

J (u) =

∫ T

0

E (t) + Ia (t) + Is (t) + L (t) +A (t)

+ Ilc (t) + Iac (t) +
1

2

5∑
i=1

wiu
2
i dt, (7)

where the constants wi, for i = 1, 2, 3, 4, 5, are the weighting
costs associated with the controls ui, for i = 1, 2, 3, 4, 5, respec-
tively. Therefore, the aim is to find the optimal value of the con-
trol u∗ ∈ Ω such that the associated state trajectories S∗, V ∗,
E∗, I∗a , I

∗
s , L

∗, A∗, I∗lc, I
∗
ac, and R

∗ with initial conditions (3)
are solutions of the system (5) on the time interval [0, T ] and the
objective function (7) is minimized, i.e.,

J (u∗) = min
Ω

J (u) . (8)

Using Pontryagin‘s minimum principle [20], the problem is solved
by minimizing the following Hamiltonian H.

H =E (t) + Ia (t) + Is (t) + L (t) +A (t) + Ilc (t) + Iac (t)

+
1

2

5∑
i=1

wiu
2
i + λT (t) · g (S, V,E, Ia, Is, L,A, Ilc, Iac, R) ,

(9)

where g is the right-hand side of the system (5) and λ
is a continuous mapping [0, T ] → R10 where λ =
(λ1 (t) , λ2 (t) , . . . , λ10 (t)) called adjoint vector. The existence
of such optimal control u∗ and its characterizations are given in
the following theorems.

Theorem 2. Given the objective function (7) subjected to the
model with controls (5) on the time interval [0, T ], there exists
optimal control u∗ = (u∗1, u

∗
2, u

∗
3, u

∗
4, u

∗
5) ∈ Ω and associated

state trajectories (S∗, V ∗, E∗, I∗a , I
∗
s , L

∗, A∗, I∗lc, I
∗
ac, R

∗)
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such that
J (u∗) = min

Ω
J (u) .

Proof. The states of the system (5) are continuously differen-
tiable. When the controls are absent, based on the theorem 1,
the system (5) has continuous and bounded solutions. As a con-
sequence, together with the admissible controls (6), the partial
derivatives with respect to the states are bounded. This leads to
the system (5) satisfying the Lipschitz condition with respect to
the states. Hence, based on the Picard-Lindelöf theorem [26], the
solutions of the system (5) with the associated control functions
exist.

Note that the system (5) is written in linear form in terms of
the control functions, where the coefficients are time and state
dependent. Besides, the integrand of the objective function (7)
is quadratic in the control functions and therefore convex in u.
Therefore, it follows from [39] that optimal control u∗ minimizing
the objective function (7) exists.

The necessary condition for optimality is provided by Pon-
tryagin‘s minimum principle [20] as stated in the theorem be-
low.

Theorem 3. Let u∗ = (u∗1, u
∗
2, u

∗
3, u

∗
4, u

∗
5) be the

optimal control to the problem (5), (6), (8), and
(S∗, V ∗, E∗I∗a , I

∗
s , L

∗, A∗, I∗lc, I
∗
ac, R

∗) be the associated
optimal states on the time interval [0, T ]. Then, there exist
adjoint functions λ1, λ2, . . . , λ10 satisfying

dλ1
dt

= λ1 (v + u5 + µ+ (1− ϕ1u1)αc + αt)− λ2 (v + u5)

− λ3 (1− ϕ1u1)αc − λ6αt,

dλ2
dt

=− λ1ω + λ2 [(1− ε) (1− ϕ1u1)αc + αt + ω + µ]

− λ3 (1− ε) (1− ϕ1u1)αc − λ6αt,

dλ3
dt

=− 1 + λ3 (σc + µ)− λ4σc (1− ψ)− λ5σcψ,

dλ4
dt

=− 1 + λ4 (µ+ δc + γ1 + ϕ2u2 + θαt)− λ8θαt

− λ10 (γ1 + ϕ2u2) ,

dλ5
dt

=− 1 + λ5 (µ+ δc + γ2 + ϕ2u2 + θαt)− λ8θαt

− λ10 (γ2 + ϕ2u2) ,

dλ6
dt

=− 1 + λ6 (σt + µ+ γ3 + θ (1− ϕ1u1)αc)− λ7σt

− λ8θ (1− ϕ1u1)αc − λ10γ3,

dλ7
dt

=− 1 + λ7 (µ+ δt + γ4 + ϕ4u4 + θ (1− ϕ1u1)αc)

− λ9θ (1− ϕ1u1)αc − λ10 (γ4 + ϕ4u4) ,

dλ8
dt

=− 1− λ5p− λ7q + λ8 (µ+ δct + σct + p+ q)

− λ9σct,

dλ9
dt

=− 1− λ5m (1 + ϕ3u3)− λ7n (1 + ϕ3u3)

+ λ9 (µ+ δct + (m+ n) (1 + ϕ3u3)) ,

dλ10
dt

=− λ1 (κc + κt) + λ10 (µ+ κc + κt) , (10)

subjected to the transversality conditions

λi (T ) = 0, i = 1, 2, 3, . . . , 10. (11)

Furthermore,

u∗1 (t) = min
{
max

{
0,
ϕ1αc[U1]

w1

}
, 1

}
,

u∗2 (t) = min
{
max

{
0,
ϕ2 [(λ4 − λ10) Ia + (λ5 − λ10) Is]

w2

}
, 1

}
,

u∗3 (t) = min
{
max

{
0,
ϕ3 (−λ5m− λ7n+ λ9 (m+ n)) Iac

w3

}
, 1

}
,

u∗4 (t) = min
{
max

{
0,
ϕ4 (λ7 − λ10)A

w4

}
, 1

}
,

u∗5 (t) = min
{
max

{
0,

(λ1 − λ2)S

w5

}
, 1− v

}
. (12)

with

U1 = (−λ1 + λ3)S + (−λ2 + λ3) (1− ε)V + θ (−λ6 + λ8)L

+ θ (−λ7 + λ9)A.

Proof. The results follow from Pontryagin‘s minimum principle
[20] by utilizing the Hamiltonian functionH in (9). It asserts that
the optimal solutions are achieved by fulfilling the adjoint equa-
tion requirements

dλ1
dt

= − ∂H
∂S

,
dλ2
dt

= −∂H
∂V

,
dλ3
dt

= −∂H
∂E

,
dλ4
dt

= −∂H
∂Ia

,

dλ5
dt

= − ∂H
∂Is

,
dλ6
dt

= −∂H
∂L

,
dλ7
dt

= −∂H
∂A

,
dλ8
dt

= − ∂H
∂Ilc

,

dλ9
dt

= − ∂H
∂Iac

,
dλ10
dt

= −∂H
∂R

,

which leads to system (10) and satisfies the transversality condi-
tions in eq. (11). Furthermore, the optimal control u∗ is derived
by minimizing the HamiltonianHwith respect to u, which comes
from the optimality conditions

∂H
∂u1

= 0,
∂H
∂u2

= 0,
∂H
∂u3

= 0,
∂H
∂u4

= 0,
∂H
∂u5

= 0.

(13)
Taking into account the constraints on the control u in eq. (6),
the optimal control u∗ is then derived as in eq. (12).

3.3. Numerical Results
The numerical results of implementing optimal control

strategies for the co-infection model of COVID-19 and TB (5) sub-
jected to the objective function (7) are presented. The state sys-
tem (5), the adjoint system (10) along with the transversality con-
dition (11), and the optimal controls (12) are solved numerically
employing the Forward-Backward Sweep method presented in
[21]. The values of parameters in the model (5) and the weighting
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Table 2. Cost-effectiveness of different intervention strategies.

Strategy
Population size at final time (T ) Averted Cost ICER no.

E Ia Is L A Ilc Iac ×107 ×107

No control 1,199,700 1,059,900 2,630,100 4,759,200 439,330 293,740 7,286,700
A 12,182 17,484 40,574 5,986 103 2 468 17,591,871 89,150,000 6
B 149,380 158,470 322,950 9,899 193 26 1,253 17,026,499 83,143,000 5
C 1,084,400 989,720 2,533,500 4,582,500 433,100 226,620 4,724,500 3,094,330 1,913,500,000 7
D 24 17 32 475 8 1 34 17,668,079 6,575,800 4
E 18 14 26 449 8 1 32 17,668,122 5,012,200 3
F 14 10 21 427 7 1 30 17,668,160 4,680,700 2
G 7 6 12 159 3 1 9 17,668,473 4,471,600 1
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Figure 2. State solutions of the co-infected model: (a) susceptible (S); (b) exposed (E); (c) COVID-19 vaccinated (V ); and (d) recovered
(R) compartments when the seven strategies are implemented.

costs in the objective function (7) are given in the Table 1. The ini-
tial values of the states used in the simulation are assumed to be
S (0) = 114227436, V (0) = 0, E (0) = 200000, Ia (0) = 565,
Is (0) = 80000, L (0) = 100000, A (0) = 30000, Ilc (0) = 5000,
Iac (0) = 500, and R (0) = 27058. There are seven differ-
ent strategies that we consider here as we want to see how
COVID-19 prevention (u1), COVID-19 and TB co-infection treat-
ment (u3), and COVID-19 vaccination (u5) mitigate the spread of
co-infection, in addition to the treatment of both asymptomatic
and symptomatic COVID-19 individuals (u2) and active TB individ-
uals (u4). The results of implementing the seven optimal control
strategies are shown in Figure 2–Figure 4. Besides, the number
of individuals in infected compartments at the end of simulation

is given in Table 2.

3.3.1. Strategy A (u1 ̸= 0)

In this strategy, COVID-19 prevention (u1) is implemented
while other intervention controls are set to zero. Due to the con-
trol strategy, all COVID-19 infected compartments, including ex-
posed (E), COVID-19 infected (Ia and Is), and COVID-19 and TB
co-infected (Ilc and Iac), are significantly reduced compared to
no control, as shown in Figure 2 (b) and Figure 3. This strat-
egy then results in far fewer individuals in the recovered com-
partment (R) compared to no control, as the number of infected
individuals to be treated decreases. Also, the number of suscep-
tible individuals (S) gradually decreases as many of themmove to
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Figure 3. State solutions of the co-infected model: (a) asymptomatic COVID-19-infected (Ia); (b) symptomatic COVID-19-infected (Is);
(c) COVID-19 and latent TB co-infected (Ilc); and (d) COVID-19 and active TB co-infected (Iac) compartments when the seven
strategies are implemented.
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Figure 4. State solutions of the co-infected model: (a) latent TB (L) and (b) active TB (A) compartments when the seven strategies are
implemented.

the COVID-19 vaccinated compartment (V ). As shown in Table 2,
at the end of the simulation, the number of infected individuals
is still in the thousands, especially the number of symptomatic
COVID-19 infected individuals (Is) which is 40,574. The control
profile for this strategy is shown in Figure 5 (a), which shows that

control u1 is at its maximum value 1 throughout the simulation.

3.3.2. Strategy B (u5 ̸= 0)

In this strategy, COVID-19 vaccinations (u5) are used to
minimize the objective function (7), while the other controls are
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Figure 5. Control profiles: (a) u1 dan (b) u2 for all the seven strategies.

set to zero. The control profile u5 used in this strategy is shown
in Figure 6 (c), which indicates that the control is at its maximum
value 1−v throughout the simulation. This strategy results in an
increase in the number of COVID-19 vaccinated individuals (V )
from the beginning of the simulation, as shown in Figure 2 (c).
However, COVID-19 vaccination alone is not sufficient to contain
the spread of the diseases. From Figure 2 (b) and Figure 3 (a)–
(b), it can be seen that the number of exposed (E), asymptomatic
(Ia), and symptomatic (Is) COVID-19 infections increases with the
simulation time, although it is much lower compared to when no
control is implemented.

3.3.3. Strategy C (u3 ̸= 0)

In this strategy, the spread of the diseases is controlled
by providing treatment (u3) to individuals co-infected with both
COVID-19 and active TB (Iac). As shown in Figure 3 (d), the num-
ber of Iac individuals starts to differ significantly from those with-
out control after 90 days, but with an increasing trend. The simi-
lar decrease can also be seen for individuals co-infected with both
COVID-19 and latent TB (Ilc), as shown in Figure 3 (c). On the
other hand, Table 2 shows that control measures u3 alone are not
sufficing to suppress COVID-19 and active TB co-infections, as
the number of Iac individuals when the simulation ends is higher
compared to other strategies. This strategy also does not have
much effect on mitigating other compartments, as their dynam-
ics are not much different from those without control, as shown
in Figure 2 – Figure 4. This indicates the need for additional in-
terventions other than control effort u3. The optimal treatment
u3 for Iac individuals is at its maximum value 1 throughout the
simulation as shown in Figure 6 (a).

3.3.4. Strategy D (u2, u4 ̸= 0)

In this strategy, the interventions used to control the dis-
eases are treatments for both asymptomatic and symptomatic
COVID-19-infected individuals (u2) and for active TB individuals
(u4). As shown in Figure 2 (b) and Figure 3–Figure 4, all infected
compartments, including exposed (E), COVID-19 infected (Ia and
Is), COVID-19 and TB co-infected (Ilc and Iac), and both latent
and active TB (L and A), are significantly reduced compared to
those with no control. The decrease is also seen in the recov-

ered compartment (R) as the number of infected individuals to be
treated also decreases. The increase in the COVID-19 vaccinated
compartment (V ) is due to the decreasing number of suscepti-
ble individuals (S) being infected with the diseases. The imple-
mented controls are shown in Figure 5 (b) and Figure 6 (b). The
controls u2 and u4 are at the maximum value 1 for approximately
63 days and 14 days, respectively, and start to diminish gradually
towards the end of the simulation.

3.3.5. Strategy E (u2, u4, u5 ̸= 0)

This strategy includes treatment of both asymptomatic and
symptomatic COVID-19-infected individuals (u2), treatment of ac-
tive TB individuals (u4), and COVID-19 vaccination (u5). The im-
plementation of the u5 control gives rise to the number of sus-
ceptible individuals vaccinated againt COVID-19 (progress to the
V compartment) from the start of the simulation. This then has
a significant decrease on the number of infected individuals, in-
cluding exposed (E), COVID-19 infected (Ia and Is), COVID-19
and TB co-infected (Ilc and Iac), and both latent and active TB (L
andA), as shown in Figure 2 (b) and Figure 3–Figure 4. The num-
ber of recovered individuals (R) also decreases as the number of
infected individuals to be treated decreases, as shown in Figure 2
(d). The control profiles of this strategy are shown in Figure 5 (b)
and Figure 6 (c)–(d). It can be seen that the controls u2, u4 and
u5 are at the maximum value for about 39 days, 13 days, and 6
days respectively and start to decrease gradually towards the end
of the simulation as the number of infections decreases.

3.3.6. Strategy F (u1, u2, u4, u5 ̸= 0)

This strategy implements all control measures except treat-
ment for individuals co-infected with COVID-19 and TB, which is
set to zero (u3 = 0). The profiles for each control measure are
shown in Figure 5 and Figure 6 (b)–(c). It is observed that the
maximum values of the control measures u1, u2, u4, and u5 are
at about 103 days, 26 days, 14 days, and 5 days, respectively.
The dynamics of the compartments in this strategy do not differ
much from those of strategy E. However, the additional COVID-
19 prevention (u1) in this strategy results in the lower numbers
of individuals in the infected compartments than that of strategy
E in the end of simulation, as shown in Table 2. This can be seen
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Figure 6. Control profiles: (a) u3, (b) u4, and (c) u5 for all the seven strategies.

from the number of infections averted by strategy F, 17,668,160,
which is more than those averted by strategy E.

3.3.7. Strategy G (u1, u2, u3, u4, u5 ̸= 0)

In this strategy, all control measures u1, u2, u3, u4, and
u5 are applied to the model. The number of exposed (E),
asymptomatic (Ia), and symptomatic (Is) individuals infected
with COVID-19 is significantly reduced compared to the case with
no control, as shown in Figure 2 (b) and Figure 3 (a)–(b). A de-
crease is also observed in the number of individuals co-infected
with COVID-19 and TB (Ilc, Iac), as shown in Figure 3 (c)–(d). In
addition, Figure 4 shows that the number of latent and active
TB individuals (L, A) decreases in the short term without a peak
compared to the one with no control. The control profiles in this
strategy are shown in Figure 5 and Figure 6. We see that all the
controls are at their maximum value from the beginning, with
the COVID-19 prevention effort (u1) being the longest at about
73 days, while the other controls, u2, u3, u4, are at about 24 days,
52 days, 14 days, and 6 days, respectively. All controls start to
decrease gradually as the number of individuals in infected com-
partments decreases.

3.3.8. Comparison of Different Intervention Strategies

The seven intervention strategies have already been de-
scribed. To compare the efficiency of the interventions in control-

ling the epidemic, the incremental cost-effectiveness ratio (ICER)
[22] is used. The ICER allows the incremental cost-effectiveness
of an intervention to be compared with that of a less effective
alternative. The ICER [22] formula is as follows.

ICER =
difference in intervention costs

difference in the total number of infection averted
.

The total number of averted infections is defined as the dif-
ference between the number of new infections with control and
without control at the end of the simulation. Table 2 shows the
ICER ranking. Table 2 shows that single control strategies A, B,
and C are the three lowest cost interventions among the others,
with strategy C being the least effective. It is seen from these
three strategies that there are still significant numbers of indi-
viduals infected with either COVID-19 or TB in the final period,
especially in the least effective strategy, C, with hundreds of thou-
sands of individuals infected with the diseases. This indicates the
need for combined interventions to mitigate the diseases. Mean-
while, strategy D performs quite well, as the number of infections
averted does not differ much from the top three strategies, E, F,
and G, although it is more costly than the other top three strate-
gies. In addition, strategy G emerges as the most cost-effective
intervention, with the highest number of infections averted at
the lowest cost. Table 2 shows that the more control combina-
tions there are, the more effective the strategies become, both in
terms of disease aversion and cost spend. This shows that each
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control measure has its own role in mitigating the co-infection
epidemic of COVID-19 and TB.

4. Conclusion

In this paper, we study and make some adjustments to the
co-infection model of COVID-19 and TB in [19]. The properties
of the model are investigated, including its existence, positivity,
boundedness of solutions, and basic reproduction number. The
co-infection model was extended to an optimal control problem
by adding five control measures with the aim of mitigating the
co-infection of COVID-19 and TB. The existence and character-
ization of optimal controls are presented analytically. The op-
timal characterizations are derived using Pontryagin‘s minimum
principle. Numerical simulations of seven different intervention
strategies are then performed to demonstrate the impact of op-
timal control in suppressing the diseases. The results of the in-
tervention strategies are compared with the dynamics without
control, which shows a significant reduction in the number of
infection cases. The control profiles of each strategy show that
interventions are applied at their maximum values from the be-
ginning and gradually decrease as the diseases vanish. This sug-
gests that maximum interventions should be applied from the
beginning of the outbreak to effectively mitigate the diseases. In
addition, the ICER evaluation shows that the intervention strat-
egy with more control combinations leads to more cost-effective
disease control strategies. It is shown that the strategy using
all control measures performs best among the others in effec-
tively and successfully reducing new infections. We note that the
optimal control designed here is implemented in a determinis-
tic model that doesn’t take into account the uncertainties in the
co-infection epidemic of COVID-19 and TB. Therefore, it is con-
sidered that a robust control should be developed in future work
to address the uncertainties in the mitigation of the diseases.
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