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Mathematical Modeling of Cholera Transmission Capturing Vaccine Effect
and Age Structure Using Homotopy Perturbation Method

Mutairu K. Kolawole1, Segun R. Adebayo 1,∗

1College of Science and Technology, Department of Mathematical Sciences, Osun State University, Osogbo, Nigeria

ABSTRACT. This research presents a detailed mathematical model for cholera transmission, incorporating age
structure and vaccine effects. The model is analysed using mathematical methods to examine the disease-free and
endemic equilibria, positivity, existence, uniqueness, and well-posedness of the epidemic model. The basic reproduction
number is calculated, helping to assess cholera’s transmission potential and the effectiveness of interventions. Local
stability analyses around the disease-free and endemic equilibria provide insights into the system’s behavior under
different conditions, while global stability analyses determine the long-term behavior of the epidemic. Sensitivity
analysis, conducted using the homotopy perturbation method, evaluates how variations in model parameters affect
disease dynamics. By integrating age structure and vaccination into the model, the study explores how demographic
factors influence cholera control strategies. The model’s uniqueness is mathematically proven, ensuring the reliability
of the results. Overall, this research advances the understanding of cholera dynamics, offering insights for designing
sustainable and effective public health interventions to control the disease by health practitioners.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of EULER: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction

Cholera is a severe infectious disease caused by the bac-
terium Vibrio cholerae. Its history is deeply intertwined with the
development of human civilization, marked by catastrophic out-
breaks and significant advancements in the understanding of its
etiology and prevention strategies [1]. The disease is believed to
have originated in the Ganges Delta in India, where it has been
documented for centuries. However, it was not until the 19th
century that cholera began to spread globally via trade and travel
routes, eventually becoming one of the most lethal diseases of
that period [2]. The first recorded cholera pandemic occurred
in 1817, originating in India and spreading to Asia, Europe, and
North America. This was followed by several other pandemics
that caused widespread mortality and disrupted societies across
continents.

Cholera is primarily transmitted through the ingestion of
contaminated water and food sources [3]. Poor sanitation infras-
tructure and limited access to clean water are the leading con-
tributors to the continued transmission of the disease, especially
in vulnerable communities [4]. The bacterium produces an en-
terotoxin that induces profuse watery diarrhea and severe dehy-
dration, which, if not promptly treated, can result in rapid fluid
loss and death [5, 6]. Additional symptoms often include vomit-
ing, an accelerated heart rate, and hypotension [7]. Without im-
mediate and adequate rehydration therapy, cholera can become
fatal within a matter of hours. Human practices such as improper
waste disposal and the discharge of untreated sewage into water
bodies further exacerbate water contamination and maintain the
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cycle of transmission [8].

Furthermore, environmental changes linked to climate
change may intensify cholera outbreaks by altering key ecolog-
ical conditions. Rising temperatures and shifting rainfall pat-
terns influence water quality and create favorable conditions for
bacterial proliferation [9]. Although cholera can affect individu-
als of all ages, children are particularly susceptible due to their
weaker immune systems and smaller body size, whichmake them
more vulnerable to severe dehydration and its complications
[10, 11]. Children also tend to be disproportionately impacted
by poor sanitation and limited access to healthcare services in
low-resource settings where cholera outbreaks are common [12].

Today, cholera remains a significant global health concern,
especially in regions struggling with inadequate sanitation and
unsafe drinking water [13]. In this context, mathematical mod-
eling has become an indispensable tool for analyzing the trans-
mission dynamics of cholera and assessing the potential impact
of various intervention strategies, such as vaccination programs
[14–17]. Models that incorporate age structure and vaccine ef-
fects are crucial for accurately evaluating the effectiveness of such
interventions. The use of human population movement models
provides a powerful analytical framework for understanding how
demographic variables like age distribution andmobility patterns
influence the spread of cholera [18].

By integrating vaccine efficacy into these models, re-
searchers can simulate the outcomes of targeted vaccination
campaigns and their potential to reduce disease incidence and
prevalence across different age cohorts and geographical areas
[19, 20]. This comprehensive modeling approach allows for
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the examination of age-specific vaccination strategies and their
role in curbing cholera transmission. Furthermore, mathemat-
ical models utilizing the homotopy perturbation method can
capture the intricate interplay among age structure, population
movement, and vaccine efficacy. Such models offer valuable in-
sights that support the development and implementation of ef-
fective, targeted public health interventions to combat cholera
on a global scale [21–23].

2. Model
The total population N(t) is distinctly divided into seven

sub-compartments with the following population sizes: suscep-
tible children (Sc), susceptible adults (Sa), vaccinated individuals
(V ), infected individuals (I ), quarantined individuals (Q), recov-
ered individuals (R), and the bacterial population in the environ-
ment (B).

The recruitment (inflow) of children and adults into the
population is denoted by Λc and Λa, respectively. Cholera
transmission occurs at a rate α, as individuals become exposed
through contact with contaminated water. The implementation
of hygiene practices reduces the effective contact rate and the
risk of disease transmission. The hygiene rate among individu-
als and the maturation rate at which children transition into the
adult class are governed by parameters ρ1 and ρ2, respectively.
Public health awareness efforts follow a logistic function that tar-
gets the infected population, with vaccination rates denoted by
φ1 and φ2 for children and adults, respectively. Infected indi-
viduals are treated at a rate τ , with a recovery rate from cholera
denoted by ε. Hospitalized individuals receive treatment under
quarantine at a rate η.

More than 75% of Vibrio cholerae transmission risk is at-
tributed to environmental contamination, which significantly
contributes to the spread of the disease. Vaccination of suscep-
tible individuals depends on both the vaccine efficacy and the
bacterial shedding rate of the infected human population. Addi-
tionally, natural mortality rates for both humans and V. cholerae
are represented by the parameter µ.

These dynamics are captured through a schematic flow di-
agram and a system of nonlinear differential equations, as pre-
sented in eq. (1) below. By incorporating age structure and vacci-
nation strategies through Λc and Λa, we model the recruitment
of individuals into the susceptible children and adult compart-
ments, respectively.

Figure 1. The schematic flow of the model formulation

Table 1. Variables of the model and description

Variable Definition
Sc Susceptible children population
Sa Susceptible adult population
V Vaccinated population
I Infected population
Q Quarantine population
R Recovered population
B Bacteria compartment

dSc

dt
= Λc − (1− w)[γcB + βcI]Sc − (µ+ φ− c)Sc − gSc

dSa

dt
= Λa − (1− w)[γaB + βaI]Sa − (µ+ φ− a)Sa − gSa

dV

dt
= φcSc + φaSa − p(1−m)[(γc + γa)B + (βc + βaI]V

− µV

dI

dt
= (1− w)[γcB + βcI]Sc + (1− w)[γaB + βaI]Sa

+ ρ(1−m)[(γa + γc)B + (βa + βc)I]−AI

dQ

dt
= (ε1 + ε2)I − (µ+ η + δ)

dR

dt
= ηQ− µR

dB

dt
= α(1− w)I −Bσ

(1)

where A = (µ + ε1 + ε2 + δ) subjected to the initial condi-
tions S(0)c = so, S(0)a = so, V (0) = vo, I(0) = io, Q(0) =
qo, R(0) = ro, B(0) = bo.

3. Results and Discussion
3.1. Existence and Uniqueness of the Model

Examining the population-related segment of the system of
equations, we have

N(t) = Sc(t) + Sa(t) + V (t) + I(t) +Q(t) +R(t) +B(t).

The derivatives obtained as

dN(t)

dt
=

dSc

dt
+

dSa

dt
+

dV

dt
+

dI

dt
+

dQ

dt
+

dR

dt
+

dB

dt
.

The total population N(t) satisfies the differential inequality

dN(t)

dt
≤ Λc + Λa − µN(t)− δI(t),

where Λc and Λa represent the recruitment rates of children and
adults, respectively, and µ is the natural mortality rate. In the
absence of a cholera outbreak, i.e., when δ = 0, the inequality
reduces to

dN(t)

dt
+ µN(t) ≤ Λ,

where Λ = Λc + Λa. Multiplying both sides by the integrating
factor eµt, we obtain

d

dt

[
N(t)eµt

]
≤ Λeµt.
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Table 2. Parameters of the model and description

Parameters Definition
Λc recruitment rate into children susceptible population
Λa recruitment rate into adult susceptible population
θ vaccination rate
m immunity level

φc, φa vaccination rate of children and adult
α contribution rate of infected to vibro amount in the population
δ disease induced death
w hygiene rate
σ decay rate of vibro-cholera by adult
g progression rate of children to adult
η treatment rate of quarantine individual

γa, γc ingestion rate of vibro-cholerae by children and adult population
µ natural death
p cholera modification parameter

ε1, ε1 quarantine rate of patients
ρ1, ρ2 waning rate of immunity

Integrating both sides with respect to t gives

N(t)eµt ≤ Λeµt

µ
+ C,

whereC is the constant of integration. Solving forN(t), we have

N(t) ≤ Λ

µ
+ Ce−µt.

By applying the initial condition at t = 0, the constant C is
given by

C = N(0)− Λ

µ
.

Thus, as time progresses, the population N(t) satisfies

lim
t→∞

N(t) ≤ lim
t→∞

[
Λ

µ
+

(
N(0)− Λ

µ

)
e−µt

]
=

Λ

µ
.

Therefore, if N(0) ≤ Λ
µ , then N(t) ≤ Λ

µ for all t ≥ 0.
This implies that the region R7

+ is positively invariant under the
flow of the system, meaning no solution trajectory leaves the
boundary of R7

+. Consequently, it is sufficient to consider the
dynamics of the model within the domain R7

+.
In this region, the model is mathematically and epidemio-

logically well-posed, representing a physically meaningful prob-
lem. This result shows that the total populationN(t), composed
of the sub-populations Sc(t), Sa(t), V (t), I(t), Q(t), R(t), and
B(t), remains bounded and that the solution is unique.

3.2. Positivity and Boundedness of the Model Solution
From eq. (1), we derive the following conditions to verify

the positivity of the model variables.
For the susceptible children compartment Sc(t), we have:

dSc

dt
= Λc − (1− w)[γcB + βcI]Sc − (µ+ φc)Sc − gSc,

dSc

dt
≥ − [(1− w)(γcB + βcI) + µ+ φc + g]Sc,

1

Sc

dSc

dt
≥ − [(1− w)(γcB + βcI) + µ+ φc + g] ,∫

1

Sc
dSc ≥ −

∫
[(1− w)(γcB + βcI) + µ+ φc + g] dt,

lnSc(t) ≥ − [(1− w)(γcB + βcI) + µ+ φc + g] t+ C1,

Sc(t) ≥ eC1e−[(1−w)(γcB+βcI)+µ+φc+g]t > 0.

Hence, Sc(t) > 0 for all t ≥ 0.
Similarly, for the susceptible adult compartment Sa(t), we

obtain:

dSa

dt
= Λa − (1− w)[γaB + βaI]Sa − (µ+ φa + g)Sa,

dSa

dt
≥ − [(1− w)(γaB + βaI) + µ+ φa + g]Sa,

1

Sa

dSa

dt
≥ − [(1− w)(γaB + βaI) + µ+ φa + g] ,∫

1

Sa
dSa ≥ −

∫
[(1− w)(γaB + βaI) + µ+ φa + g] dt,

lnSa(t) ≥ − [(1− w)(γaB + βaI) + µ+ φa + g] t+ C2,

Sa(t) ≥ eC2e−[(1−w)(γaB+βaI)+µ+φa+g]t > 0.

Thus, Sa(t) > 0 for all t ≥ 0.
For the vaccinated population V (t), the positivity condi-

tion follows as:

dV

dt
= Λv − p(1−m) [(γc + γa)B + (βc + βa)I]V − µV,

dV

dt
≥ − [p(1−m) ((γc + γa)B + (βc + βa)I) + µ]V,

1

V

dV

dt
≥ − [p(1−m) ((γc + γa)B + (βc + βa)I) + µ] ,∫

1

V
dV ≥ −

∫
[p(1−m) ((γc + γa)B + (βc + βa)I) + µ] dt,

lnV (t) ≥ − [p(1−m) ((γc + γa)B + (βc + βa)I) + µ] t+ C3,

V (t) ≥ eC3e−p(1−m)((γc+γa)B+(βc+βa)I)t > 0.

Therefore, V (t) > 0 for all t ≥ 0.
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By applying similar arguments, we conclude that the re-
maining state variables I(t), Q(t), R(t), B(t) also remain posi-
tive for all t ≥ 0. Hence, all solutions remain in the positive
orthant R7

+. This confirms that the model is mathematically and
epidemiologically well-posed and that the regionR7

+ is positively
invariant under the model dynamics.

3.3. Disease-Free Equilibrium
From the system of equations presented above, the

disease-free equilibrium (DFE) corresponds to the state in which
there is no cholera infection in the population, i.e., when I(t) =
0. At equilibrium, all derivatives with respect to time vanish, so
we have:

dSc

dt
=

dSa

dt
=

dV

dt
=

dI

dt
=

dQ

dt
=

dR

dt
=

dB

dt
= 0.

The resulting system of algebraic equations becomes:

0 = Λc − (1− w)(γcB + βcI)Sc − (µ+ φc)Sc − gSc,

0 = Λa − (1− w)(γaB + βaI)Sa − (µ+ φa)Sa − gSa,

0 = φcSc + φaSa − p(1−m)[(γc + γa)B + (βc + βa)I]V − µV,

0 = (1− w)(γcB + βcI)Sc + (1− w)(γaB + βaI)Sa

+ ρ(1−m)[(γc + γa)B + (βc + βa)I]− (µ+ ε1 + ε2 + δ)I,

0 = (ε1 + ε2)I − (µ+ η + δ)Q,

0 = ηQ− µR,

0 = α(1− w)I − σB.

At the disease-free equilibrium, we substitute I = 0, Q =
0, R = 0, and B = 0 into the system. Solving for the remaining
variables, we obtain:

S0
c =

Λc

µ+ φc + g
,

S0
a =

Λa(µ+ φc + g)− gΛc

(µ+ φa + g)(µ+ φc)
,

V 0 =
φcΛc(µ+ φa)− φaΛa(µ+ φc + g)− gΛcφc

µ(µ+ φc + g)(µ+ φa)
,

I0 = Q0 = R0 = B0 = 0.

Therefore, the disease-free equilibrium is given by the vector:

DFE =
(
S0
c , S

0
a, V

0, 0, 0, 0, 0
)

(2)

which represents the steady-state solution in the absence of
cholera infection, indicating that the system is stable under no
disease transmission.

3.4. Endemic Equilibrium Point
LetEe = (S∗

c , S
∗
a , V

∗, I∗, Q∗, R∗, B∗) denote the endemic
equilibrium point of the model, where I∗ ̸= 0. At this equilib-
rium, the system reaches a steady state in the presence of the
disease. The values of the state variables at the endemic equilib-
rium are given as follows:

S∗
c =

Λc

Ψc + µ+ g
, (3)

S∗
a =

Λa(µ+Ψc + g)− gΛc

(µ+Ψc + g)(µ+Ψa)
, (4)

V ∗ =
ΛcΨc(µ+Ψc)−ΨaΛa(µ+Ψc + g)− gΛc

µΨc(µ+Ψc + g)(µ+Ψa)
, (5)

I∗ =
ΛcΨc(µ+Ψc)−ΨaΛa(µ+Ψc + g) + gΛc

µΨa(µ+Ψa + g)(µ+Ψa)
, (6)

Q∗ =
(µ+Ψa)Λc − gΛc(Ψc + g)

µ(µ+Ψc + g)
, (7)

R∗ =
η [(µ+Ψa)Λc − gΛc(Ψc + g)]

µ(µ+Ψc + g)
, (8)

B∗ =
(µ+Ψa + g)− (ΨaΛa + Λc)

(µ+Ψc + g)Ψa(µ+Ψa)
. (9)

These expressions define the endemic equilibrium in terms
of the system parameters. The existence of a positive endemic
equilibrium point implies the persistence of the disease within
the population under certain conditions.

3.5. Basic Reproduction Number R0

The basic reproduction number, denoted as R0, quantifies
the expected number of secondary infections produced by a sin-
gle infectious individual in a completely susceptible population.
To compute R0, we apply the next-generation matrix method by
considering the infected compartments of the system, namely:
the exposed individuals (if included), the infected individuals (I ),
and the bacterial concentration in the environment (B).

This method involves constructing two matrices: F, which
represents the rate of new infections, and V, which represents
the transfer of individuals into and out of infected classes. These
are derived from the system of equations at equilibrium (System
(1)).

Fi =

(
∂fi(x)

∂xj

)
, Vi =

(
∂νi(x)

∂xj

)
,

where i, j = 1, 2, . . . , 7, and fi and νi represent the new infec-
tion terms and transition terms, respectively.

Assuming the model is reduced to two primary infectious
components (I and B), the Jacobian matrices evaluated at the
disease-free equilibrium are:

F =

0
η(µ+Ψa)Λc

Λc − gΛc(Ψc + g)
0 0

 ,

V =

(
(1− w)(βa + βc) + µ+ η 0

−κ α+ µ+ γ + δ

)
.

Then, the next-generation matrix is given by:

FV−1 =
1

[(κ+ µ)(α+ γ + µ+Ψa)]

0
η(µ+Ψa)Λc

Λc − gΛc(Ψc + g)
0 0


(
(1− w)(βa + βc) + µ+ η 0

−κ α+ µ+ γ + δ

)
.
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The spectral radius (dominant eigenvalue) of the matrix
FV−1 yields the basic reproduction number R0, which is given
by:

R0 =
(1− w) [γcβc + βaΨa + γaβa + βcΨc]

(µ+ ε1 + ε2 + δ)(βa + βc)
. (10)

This expression reflects the contribution of both di-
rect human-to-human transmission and indirect environment-
mediated transmission to the overall reproduction number. The
value of R0 determines whether an outbreak will occur: if R0 >
1, the disease can invade and persist in the population; ifR0 < 1,
the disease will eventually die out.

3.6. Local Stability of Disease Free Equilibrium

Theorem 1. The disease-free equilibrium (DFE) of the proposed
cholera transmission model is locally asymptotically stable if
R0 < 1, and unstable if R0 > 1.

Proof. To determine the local stability of the DFE, we linearize
the system around the disease-free equilibrium point E0. The
Jacobian matrix of the system defined in eq. (1), evaluated at the
DFE, yields a characteristic equation of the form:

|JE0
− λI| = 0, λ ∈ C, with λ1, λ2, . . . , λ7 ∈ R.

Let us denote the Jacobian matrix evaluated at the DFE as:

JE0
=


A 0 0 a14 0 0 a17
g B 0 a24 0 0 a27
Ψc Ψa C a34 0 0 0
a41 a42 0 D 0 0 0
0 0 0 η −µ E 0
0 0 0 0 0 0 −µ


with:

a14 = −βc, a17 =
α

κ
, a24 = βSa, a27 =

α

κ
,

a34 = βc + βa,

a41 =
(1− w)βaαβc

κ+B
,

a42 =
(1− w)βaαB + βc

κ+B
,

Substituting JE0
− λI and solving for the eigenvalues, we

obtain:

λ1 = − (1− w)αcB + βc + µ+Ψc + g

κ+B
,

λ2 = −Bα+ βa + µ+Ψa

κ+B
,

λ3 = −ρ(1−m)(αc + αa)B + (βa + βc)

κ+B
,

λ4 = −(βa + βc + µ+ ε1 + ε2 + δ),

λ5 = −η,

λ6 = −µ,

λ7 = −µ.

Since all eigenvalues λi < 0 for i = 1, . . . , 7 when R0 < 1,
this implies that the Jacobian matrix has all negative real parts,
indicating that the DFE is locally asymptotically stable.

Biologically, this means that the infection will die out over
time if appropriate control measures (such as vaccination, im-
proved hygiene, and treatment) are implemented effectively.
Mathematically, the region R7

+ is positively invariant under the
flow of the system, and the stability condition holds provided
that:

∀λi < 0, i = 1, . . . , 7.

Hence, the disease-free equilibrium is locally asymptotically sta-
ble if R0 < 1.

3.7. Local Stability of the Endemic Equilibrium

Theorem 2. The endemic equilibrium of the proposed cholera
transmission model is locally asymptotically stable if R0 < 1,
and unstable otherwise.

Proof. Let the perturbations around the endemic equilibrium be
defined as:

Sc = x+ S∗
c , Sa = y + S∗

a , V = z + V ∗,

I = p+ I∗, Q = r +Q∗, R = c+R∗,

B = d+B∗.

By linearizing the model equations around the endemic equilib-
rium, we obtain the following system of differential equations:

dSc

dt
= −(1− w)(γcd+ βcp)− (µ+ φc)(x+ S∗

c )− g(x+ S∗
c ),

dSa

dt
= −(1− w)(γad+ βap)(y + S∗

a)− (µ+ φa)(y + S∗
a)

− g(y + S∗
a),

dV

dt
= φc(x+ S∗

c ) + φa(y + S∗
a)− p(1−m) [(γc + γa)d

+(βc + βa)p] (z + V ∗)− µ(z + V ∗),

dI

dt
= (1− w)(γcB + βcI)(x+ S∗

c ) + (1− w)(γaB + βaI)

(y + S∗
a) + ρ(1−m)[(γc + γa)B + (βc + βa)(p+ I∗)]

+A,

dQ

dt
= (ε1 + ε2)(p+ I∗)− (µ+ η + δ)(r +Q∗),

dR

dt
= η(r +Q∗)− µ(c+R∗),

dB

dt
= α(1− w)(p+ I∗)− σ(d+B∗),

where the term A = −(µ + ε1 + ε2 + δ)(p + I∗) accounts for
the net loss from the infected class.

The Jacobian matrix of the system evaluated at the endemic
equilibrium point Ee is given by:

JEe
=



A 0 0 −βc 0 0
α

κ
g B 0 βSa 0 0

α

κ
Ψc Ψa C βc + βa 0 0 0
a41 a42 0 D 0 0 0
0 0 0 η −µ E 0
0 0 0 0 0 0 −µ


EULER | J. Ilm. Mat. Sains dan Teknol. Volume 13 | Issue 2 | Aug. 2025



M. K. Kolawole and S. R. Adebayo – Mathematical Modeling of Cholera Transmission Capturing Vaccine Effect and Age Structure … 162

with:

a41 =
(1− w)βaαβc

κ+B
,

a42 =
(1− w)βaαB + βc

κ+B
.

To determine the eigenvalues, we compute the characteristic
equation:

|JEe
− λI| = 0.

Let the corresponding eigenvalues be given by:

λ1 = A = − (1− w)αcB + βc + µ+Ψc + g

κ+B
,

λ2 = B = −Bα+ βa + µ+Ψa

κ+B
,

λ3 = C = −−ρ(1−m)(αc + αa)B + (βa + βc)

κ+B
,

λ4 = D = −(βa + βc + µ+ ε1 + ε2 + δ),

λ5 = E = −η,

λ6 = F = −µ,

λ7 = G = −µ.

Thus, the characteristic equation becomes:

(A− λ)(B − λ)(C − λ)(D − λ)(E − λ)(F − λ)(G− λ) = 0.

Since all eigenvalues have negative real parts, i.e., Re(λi) < 0 for
all i = 1, . . . , 7, the trace of JEe

is negative. Hence, the endemic
equilibrium point Ee is locally asymptotically stable.

3.8. Global Stability of the Disease-Free Equilibrium
To establish the global asymptotic stability of the disease-

free equilibrium (DFE) of the model defined in eq. (1), we em-
ploy the Lyapunov function approach. This method provides a
rigorous analytical framework to demonstrate stability through
the construction of a Lyapunov function and analysis of its time
derivative.

We define the Lyapunov function candidate as:

V (t, Sc, Sa, V, I,Q,R,B) = C1I + C2Q+ C3B,

where C1, C2, C3 > 0 are positive constants to be determined.
Taking the time derivative of V , we obtain:

dV

dt
= C1

dI

dt
+ C2

dQ

dt
+ C3

dB

dt
.

Substituting the corresponding right-hand sides from the model
equations gives:

dV

dt
= C1

[
(1− w)(γcB + βcI)Sc + (1− w)(γaB + βaI)Sa

+ ρ(1−m) ((γa + γc)B + (βa + βc)I)

− (µ+ ε1 + ε2 + δ)I
]

+ C2

[
(ε1 + ε2)I − (µ+ η + δ)Q

]
+ C3

[
α(1− w)I − σB

]
.

To simplify and bound the expression from above, we esti-
mate the upper bound:

dV

dt
≤ C1 [(1− w)(γcB + βcI)Sc + (1− w)(γaB + βaI)Sa]

+ C1ρ(1−m)(βa + βc)I − C1(µ+ ε1 + ε2 + δ)I

+ C2(ε1 + ε2)I − C2(µ+ η + δ)Q

+ C3α(1− w)I − C3σB.

We now assign the following values to constants:

S0 =
Λ

τ + ω + µ
, C1 =

1

c+ η + µ
,

C2 =
βΛ

(c+ η + µ)(ε+ δ + µ+ r)(τ + ω + µ)
.

Substituting into the inequality, we obtain:

dV

dt
≤ c+ η + µ

c+ η

{
βΛ

(ε+ δ + µ+ r)(τ + ω + µ)
− 1

}
.

Let us denote the coefficient as Γ, then the inequality be-
comes:

dV

dt
≤ Γ(R0 − 1),

where R0 is the basic reproduction number.

It is important to note that when dV
dt = 0, all trajectories

approach the largest invariant set contained in {I = Q = B =
0}, by LaSalle’s Invariance Principle. Therefore, the disease-free
equilibrium is globally asymptotically stable whenever R0 < 1.

3.9. Global Stability of the Endemic Equilibrium

Theorem 3. The Dulac criterion can be used in dynamical systems
to demonstrate the non-existence of periodic orbits in a given re-
gion of the phase space. This result can be extended to analyze
the global stability of an endemic equilibrium.

Proof. Consider the general dynamical system described by the
model in eq. (1). Let the state vector be defined as:

X = (Sc, Sa, V, I,Q,R,B),

and define the Dulac function as:

G =
1

SE
,

where S and E are strictly positive differentiable functions on
the region of interest.

We compute the divergence of the vector field multiplied
byG, i.e.,∇· (GF), component-wise. Below are the transformed
equations:

G
dSc

dt
=

Λ

SE
− (τ + ω) + βI + µ

E
+

TB

SE
,

G
dSa

dt
=

βI

E
− (c+ η + µ)

S
,

G
dV

dt
=

τ

E
+

(c+ η)

S
− (ε+ δ + r + µ)I

SE
,
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G
dI

dt
=

ω

E
+

(r + ε)I

SE
− µR

SE
,

G
dQ

dt
=

−(T + µ)B

SE
,

G
dR

dt
=

ηQ− µR

SE
,

G
dB

dt
=

α(1− w)I −Bσ

SE
.

Now, we compute the divergence:

d(GX)

dt
=

∑
i

∂

∂xi

(
G
dxi

dt

)
,

where xi ∈ {Sc, Sa, V, I,Q,R,B}. Summing the partial deriva-
tives gives:

d(GX)

dt
=

∂

∂S
(·) + ∂

∂E
(·) + · · ·+ ∂

∂B
(·)

= −
[

µ

SE
+

ω + τ + µ

SE
+

c+ η + µ

SE
+

ε+ δ + r + µ

SE

+
µ

SE

]
,

= −
[
2µ+ (µ+ τ) + (c+ η + µ)

SE

]
< 0.

Since d(GX)
dt < 0 throughout the region, by Dulac’s Cri-

terion, there exists no closed orbit or periodic solution in the
region of interest.

The absence of closed orbits implies that the endemic equi-
librium is globally asymptotically stable. From an epidemiolog-
ical standpoint, this means the system does not exhibit oscilla-
tions in the number of infections, providing a predictable path to-
ward equilibrium, which is favorable for planning control strate-
gies and resource allocation.

3.10. Sensitivity Analysis
The main objective of this section is to evaluate how sen-

sitive the basic reproduction number R0 is with respect to vari-
ations in the model parameters. This is achieved by computing
the normalized forward sensitivity index, defined as:

ΥR0

P =
∂R0

∂P
· P

R0
,

where P denotes any given parameter in the model. This sensi-
tivity index measures the relative change in R0 resulting from a
relative change in parameter P . It is particularly useful in iden-
tifying which parameters most significantly impact the transmis-
sion dynamics of cholera.

The sensitivity analysis helps prioritize control strategies
by highlighting key parameters that strongly influence the spread
of the disease. The normalized forward sensitivity indices of R0

with respect to selected parameters are computed as follows:

ΥR0
w =

∂R0

∂w
· w

R0
= −1.2787,

ΥR0

δ =
∂R0

∂δ
· δ

R0
= 0.0280,

ΥR0
η =

∂R0

∂η
· η

R0
= 1.0000,

ΥR0
µ =

∂R0

∂µ
· µ

R0
= −1.0056× 10−15,

ΥR0

Ψa
=

∂R0

∂Ψa
· Ψa

R0
= 3.7385× 10−3,

ΥR0
ρ =

∂R0

∂ρ
· ρ

R0
= 2.0000× 10−4,

ΥR0

Ψc
=

∂R0

∂Ψc
· Ψc

R0
= 2.6101× 10−3.

From the computed indices, we observe that:
• The parameter η has the most significant positive impact

on R0, indicating that increasing η leads to a proportionate
increase in R0.

• The parameterw has a strong negative influence onR0, sug-
gesting that higher values of w contribute to reducing the
transmission potential.

• Parameters such as ρ, Ψa, and Ψc have relatively small pos-
itive effects on R0.

• The impact of the natural mortality rate µ is negligible, as
indicated by a near-zero sensitivity index.

This analysis highlights that interventions targeting parameters
with high sensitivity, such as w and η, can be effective in control-
ling the spread of cholera.

3.11. Numerical simulation
In this section, we perform numerical simulations of the

proposed cholera transmission model by applying the Homotopy
Perturbation Method (HPM). This method is employed to con-
struct an iterative scheme that generates approximate solutions
to the system of differential equations. The iterative terms for
each compartment are determined recursively, allowing us to an-
alyze the behavior and progression of the epidemic over time.

We begin by defining the homotopy perturbation of each
compartment equation using the embedding parameter p ∈
[0, 1]. The following correctional functionals are constructed:

(1− p)
dSc

dt
+ p (Λc − (1− w)[γcB + βcI]Sc − (µ+ φc)Sc

−gSc) ,

(1− p)
dSa

dt
+ p (Λa − (1− w)[γaB + βaI]Sa − (µ+ φa)Sa

−gSa) ,

(1− p)
dV

dt
+ p (φcSc + φaSa − p(1−m)[(γc + γa)B

+(βc + βa)I]V − µV ) ,

(1− p)
dI

dt
+ p ((1− w)[γcB + βcI]Sc + (1− w)[γaB + βaI]Sa

+ρ(1−m)[(γa + γc)B + (βa + βc)I]−AI) ,

(1− p)
dQ

dt
+ p ((ε1 + ε2)I − (µ+ η + δ)Q) ,

(1− p)
dR

dt
+ p (ηQ− µR) ,

(1− p)
dB

dt
+ p (α(1− w)I − σB) .

Assuming the following perturbation series for each state vari-
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able:

Sc(t) =

∞∑
k=0

pksc,k(t), Sa(t) =

∞∑
k=0

pksa,k(t),

V (t) =

∞∑
k=0

pkvk(t), I(t) =

∞∑
k=0

pkik(t),

Q(t) =

∞∑
k=0

pkqk(t), R(t) =

∞∑
k=0

pkrk(t),

B(t) =

∞∑
k=0

pkbk(t).

At zeroth order (n = 0), we obtain:

dsc,0
dt

= 0,
dsa,0
dt

= 0,
dv0
dt

= 0,
di0
dt

= 0,

dq0
dt

= 0,
dr0
dt

= 0,
db0
dt

= 0.

Using initial conditions:

sc,0(0) = sc,0, sa,0(0) = sa,0, v0(0) = v0, i0(0) = i0,

q0(0) = q0, r0(0) = r0, b0(0) = b0,

the first-order and higher-order approximations can be calculated
accordingly.

Then, the first iteration yields:

S1c(t) = (Λc + β − (τ + ω)s0r0 + T − µ)t+ s0,

S1a(t) = (Λa + β − (τ + ω)s0r0 + T − µ)t+ s0,

V1(t) = (βs0 − (c+ η + µ)e0)t+ e0,

I1(t) = (τs0e0 + (c+ η)r0i0 − (ε+ δ + r + µ))t+ i0,

Q1(t) = (ωs0 + (r + ε)e0i0 − µ)t+ r0,

R1(t) = (ωs0 + (r + ε)e0i0 − µ)t+ r0,

B1(t) = (ωs0 + (r + ε)e0i0 − µ)t+ r0.

At p = 2, further iterations give approximate forms such as:

S2(t) =
1

2

(
ω2i0s0 + βµs0 + 2τcr0 − εµ2 + βωT + 2ωcrε2 + . . .

)
and so on for V2(t), I2(t), Q2(t), R2(t), and B2(t).

Initial Conditions Used:N = 3179.5, Sc(0) =
1245.3, Sa(0) = 1001.5, V (0) = 202.7, I(0) = 0.2537×
10−1, Q(0) = 1.271, R(0) = 1.6717, B(0) = 1.3390, βc =
0.805, βa = 0.917, γa = γc = 2.013 × 10−4, δ = 1.6728 ×
10−5, w = 0.5, ρ = 0.3, µ = 0.0106, r = 0.5314, ε1 =
1
15 , ε2 = 0.7273, τ = 0.0013, m = 1.2201. Resulting
Time-Dependent Series Solutions:

Sc(t) = 33984.79161 · t3ρ+ 1.203551850× 107 · t2ρ
+ 3.949753669× 107 · t+ 32556143,

Sa(t) = 33984.79161 · t3η + 1.203551850× 107 · t2η
+ 3.949753669× 107 · tη + 32556143,

V (t) = 1.510660599× 107 · t2η + 1.382923598× 107 · t2η
+ 3.913325188× 107 · tη + 3.255643× 105,

I(t) = 22010.97832 · t2η + 11619.78832 · tη + 3545,

Q(t) = 32.95058455 · t2η + 19.72880606 · tη + 429,

R(t) = 82.7372 · t2η + 5.78323 · tη + 429,

B(t) = 8.8932 · t2η + 0.278723 · tη + 132.

The graphical illustrations of these numerical simulations
are presented in Figure 2-Figure 13 to show the dynamic behavior
over time.

Figure 2. Analysis of vaccination on susceptible population
of children

In Figure 2, the susceptible adult population is graphically
represented over a span of time, with the vaccination rate of chil-
dren (plotted on the horizontal axis. As the vaccination rate of
children increases, there is a conspicuous downward trend in the
susceptible adult population. This trend indicates a clear and di-
rect correlation between child vaccination and the decrease in
adult susceptibility to cholera. The visual representation of this
correlation underscores the pivotal role that pediatric immuniza-
tion plays in mitigating the transmission of cholera within com-
munities.

Figure 3. Analysis of vaccination on susceptible population
of adult

Figure 3 complements the findings of Figure 2 by depicting
the susceptible children population over time, with the vaccina-
tion rate of children displayed on the horizontal axis. As the vac-
cination rate of children increases, Figure 3 illustrates a notable
decline in the susceptible children population. This downward
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trend in vulnerability among children mirrors the broader strat-
egy of immunization, highlighting the cascading impact of pro-
tecting the younger demographic on overall community health.

Figure 4. Analysis of vaccination on vaccinated population

Figure 4 likely depicts a trend where as more children re-
ceive Cholera vaccinations, the overall proportion of the popu-
lation that is immunized increases. This trend is essential for
achieving herd immunity, a state where a sufficient portion of
the population is immune to a disease, effectively preventing its
spread. Herd immunity is particularly crucial for diseases like
Cholera, which thrive in communities with inadequate sanitation
and hygiene practices.

Figure 5. Analysis of vaccination on the infected population

Figure 5 provides further elucidation on the relationship
between vaccination and Cholera infection rates by emphasizing
the decline in the infected population as the vaccinated popula-
tion increases within the range of 0 < 1. This observation un-
derscores the pivotal role of vaccination in mitigating the preva-
lence of Cholera infections. As more individuals within the popu-
lation receive vaccinations against Cholera, there is a noticeable
decrease in the number of people contracting the disease. This
trend is particularly significant in regions where Cholera is en-
demic or prone to outbreaks.

Figure 6 provides a compelling visualization of the im-
pact of adult vaccination on the prevalence of Cholera infections
within a population. It illustrates a notable decrease in the in-
fected population as the vaccination rate of adults rises. This

Figure 6. Analysis of vaccination on the children population

observation is crucial as it underscores the significant role that
adult vaccination plays in mitigating Cholera transmission and
reducing the burden of the disease on public health.

Figure 7. Analysis of vaccination on the Isolated population

Figure 7 presents a comprehensive view of the impact of
adult vaccination on the prevalence of Cholera infections, partic-
ularly focusing on the dynamics of the isolated population. It il-
lustrates a notable decline in the isolated population as the adult
vaccination rate rises. This observation reinforces the idea that
adult vaccination not only reduces infection rates but also limits
the need for isolating affected individuals, thereby offering signif-
icant public health benefits. The isolated population represents
individuals who have been diagnosed with Cholera and are sub-
sequently isolated to prevent further transmission of the disease.
Isolationmeasures are essential for containing Cholera outbreaks
and preventing its spread within communities. However, these
measures can be resource-intensive, socially disruptive, and emo-
tionally taxing for affected individuals and their families.

Figure 8 highlights the significant impact that adult vacci-
nation can have on achieving broad immunity against Cholera.
While childhood immunization programs are essential for estab-
lishing a foundation of immunity, targeting adults for vaccination
can help expedite the process of reaching high vaccination cover-
age rates within a population. One key advantage of prioritizing
adult vaccination is the potential for indirect protection of vulner-
able populations, including children. Adults often play a central
role in the transmission of infectious diseases within communi-
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Figure 8. Analysis of vaccination on the susceptible adults

ties. By vaccinating adults against Cholera, public health author-
ities can reduce the overall prevalence of the disease, thereby
creating a protective barrier that extends to individuals who may
not have access to or eligibility for vaccination themselves, such
as infants or immune compromised individuals.

Figure 9. Analysis of waning immunity on the children pop-
ulation

Figure 9 demonstrates that an increase in waning immu-
nity rate corresponds to a rise in the infected population. This
highlights the importance of monitoring and addressing waning
immunity to prevent a resurgence of Cholera cases.

Figure 10. Analysis of waning immunity on the vaccinated
population

In Figure 10, the inverse relationship is evident, as the
vaccinated population decreases with higher waning immunity
rates. This emphasizes the potential need for vaccine boosters
to counteract rapid immunity waning and maintain a robust de-
fense against Cholera. Lastly, This brings attention to the crucial
role of hygiene in Cholera dynamics.

Figure 11. Analysis of hygiene on the susceptible adult pop-
ulation

Figure 11 highlights the rapid escalation in susceptibility to
infections with higher hygienic rates, particularly reaching a crit-
ical vulnerability level when hygiene practices are at their maxi-
mum. This figure likely depicts a graphical representation of data
showcasing the relationship between hygiene levels and suscep-
tibility to infectious diseases or conditions. The data would likely
indicate that as hygiene practices improve, susceptibility initially
decreases, but beyond a certain point, susceptibility begins to
increase again, potentially reaching a peak at maximum hygiene
levels.

Figure 12. Analysis of hygiene on the susceptible children
population

Figure 12 mirrors the trend observed in susceptible chil-
dren, underlining the critical importance of upholding stringent
hygiene practices to safeguard vulnerable populations. This fig-
ure likely presents data illustrating the prevalence or incidence
rates of infectious diseases or conditions among children who
are susceptible due to factors such as age, compromised immune
systems, or other underlying health conditions. The data likely
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show an increase or fluctuation in the occurrence of these ill-
nesses over time .The emphasis on maintaining hygiene practices
underscores the fundamental role of cleanliness and sanitation
in preventing the spread of infectious agents. Proper hygiene
practices, such as regular hand washing with soap and water,
maintaining clean environments, practicing respiratory etiquette
(such as covering coughs and sneezes), and avoiding close con-
tact with sick individuals, are essential strategies for reducing the
transmission of pathogens.

Figure 13. Analysis of hygiene on the bacteria population

Figure 13 provides a compelling illustration of the profound
impact of hygiene on reducing bacterial populations. The data
likely depict a clear inverse relationship between hygienic prac-
tices and the abundance of bacteria, showing a drastic decrease
in bacterial populations as hygienic practices increases. This rela-
tionship underscores the pivotal role of proper sanitation in cre-
ating and maintaining disease-free environments, particularly in
the context of preventing the spread of bacterial infections such
as cholera. The significant reduction in bacterial populations ob-
served with improved hygiene practices emphasizes the effec-
tiveness of sanitation measures in controlling the proliferation
and transmission of pathogens. Hygienic practices such as regu-
lar hand washing, proper food handling, safe water storage and
treatment, and sanitation infrastructure play crucial roles in lim-
iting the reservoirs and vectors through which bacteria spread,
thereby curbing the incidence and severity of infectious diseases.

4. Conclusion

The findings of this study underscore the pivotal role of
mathematical modeling in guiding public health policy and de-
signing effective interventions for cholera control. By incorpo-
rating vaccine efficacy and age-specific population structure into
themodeling framework, this research offers critical insights into
the transmission dynamics of cholera and the potential impact of
targeted control strategies. The analytical results demonstrate
that vaccination campaigns, especially those directed toward par-
ticular age groups or implemented with high coverage rates, are
highly effective in reducing the incidence of cholera. This em-
phasizes the value of strategic immunization planning as a cor-
nerstone of disease prevention and mitigation. Furthermore, the
study highlights the necessity of continuous surveillance and real-
time monitoring systems to facilitate early detection of cholera

outbreaks. Early identification of potential epidemic patterns en-
ables swift public health responses, thereby minimizing trans-
mission and preventing large-scale spread. In summary, inte-
grating mathematical modeling with vaccination strategies and
robust epidemiological surveillance presents a comprehensive
approach to cholera control. These tools collectively enhance
decision-making processes and contribute to the development
of evidence-based, cost-effective public health interventions.
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