
RESEARCH ARTICLE   OPEN ACCESS

Fear effect in discrete prey-predator model
incorporating square root functional response
P. K. Santra

To cite this article:
P. K. Santra, "Fear effect in discrete prey-predator model incorporating square root functional response",
Jambura J. Biomath, vol. 2, no. 2, pp. 51–57, 2021

DOI: https://doi.org/10.34312/jjbm.v2i2.10444
© 2021 Author(s).

Articles You may be interested in
Bifurkasi Hopf pada model prey-predator-super predator dengan
fungsi respon yang berbeda
D. Savitri and H. S. Panigoro
http://dx.doi.org/10.34312/jjbm.v1i2.8399

Analisis kestabilan model predator-prey dengan infeksi penyakit
pada prey dan pemanenan proporsional pada predator
S. Maisaroh, Resmawan, and E. Rahmi
http://dx.doi.org/10.34312/jjbm.v1i1.5948

Bifurkasi Hopf pada model Lotka-Volterra orde-fraksional dengan
Efek Allee aditif pada predator
H. S. Panigoro and D. Savitri
http://dx.doi.org/10.34312/jjbm.v1i1.6908

Discrete-time prey-predator model with θ−logistic growth for prey
incorporating square root functional response
P. K. Santra
http://dx.doi.org/10.34312/jjbm.v1i2.7660

A stage-structure Rosenzweig-MacArthur model with effect of prey
refuge
L. K. Beay and M. Saija
http://dx.doi.org/10.34312/jjbm.v1i1.6891

https://doi.org/10.34312/jjbm.v2i2.10444
http://dx.doi.org/10.34312/jjbm.v1i2.8399
http://dx.doi.org/10.34312/jjbm.v1i1.5948
http://dx.doi.org/10.34312/jjbm.v1i1.6908
http://dx.doi.org/10.34312/jjbm.v1i2.7660
http://dx.doi.org/10.34312/jjbm.v1i1.6891


Fear effect in discrete prey-predator model incorporating
square root functional response

P.K. Santra

Abada Nsup School, Abada, Howrah-711313, India

Corresponding author. Email: prasunsantra5@gmail.com

Jambura Journal of Biomathematics
Jambura J. Biomath. Volume 2, Issue 2, pp. 51–57, December 2021

Journal Homepage: http://ejurnal.ung.ac.id/index.php/JJBM/index
https://doi.org/10.34312/jjbm.v2i2.10444

E-ISSN: 2723-0317

Received: 30 April 2021, Accepted: 27 August 2021, Published Online: 12 Oktober 2021

Abstract

In this work, an interaction between prey and its predator involving the effect of fear in presence of the predator and the square root functional response is
investigated. Fixed points and their stability condition are calculated. The conditions for the occurrence of some phenomena namely Neimark-Sacker, Flip,
and Fold bifurcations are given. Base on some hypothetical data, the numerical simulations consist of phase portraits and bifurcation diagrams are
demonstrated to picturise the dynamical behavior. It is also shown numerically that rich dynamics are obtained by the discrete model as the effect of fear.
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1. Introduction

The prey-predator model, still now an exciting topic in mathematical biology. Most of this ecological problem
which studies the interaction between a prey and its predator is modeled by deterministic approach using first-
order differential equation [1–5], fractional-order differential equation [6–8], or with discrete-time equation [9–
13]. Particularly, discrete models are an essential tool for mathematical biology problems. The discrete-time
population models are based on a phenomenon in which time is not considered a continuous function. These
models focus on such biological situations in which it is natural to view an event at discrete time intervals. The
discrete-time population model is applicable for non-overlapping generation models. Such models appear to be
more realistic than continuous ones when the population size is small.

Din [9] discussed chaos control in a discrete-time prey-predator system. Zhao and Du [10] investigated a discrete-
time prey-predator model with an Allee effect. Santra and Mahapatra [11] studied the dynamics of a discrete-
time prey-predator model under imprecise biological parameters. Santra et al. [12] investigated bifurcation and
chaos of a discrete predator-prey model with Crowley-Martin functional response. For some more dynamical
investigations related to different versions of prey-predator models, we refer to Singh and Deolia [14], Khan and
Khalique [15], and references therein.

If we look further in nature, the predation process depends on which organisms interacted. For example, a
bilinear predation process that appears in most marine ecosystems, a saturated predation process in the forest
ecosystem, and a ratio-dependent predation process that assumes both prey and predator densities affect the
predator’s ability in predation. This mechanism is called the predation functional response which corresponds to
the prey and predator natural behaviors. One popular predation mechanism is square root functional response
which states the prey has herd behavior so that the predator is difficult to hunts when the population density of
prey is high [3, 16, 17]. Although the prey has herd behavior, naturally they have fear of the presence of prey.
The effect of fear has a direct impact on prey reproduction [18–21]. Based on those descriptions, we study the
dynamical behaviors of a discrete-time prey-predator system involving both fear effect and square root functional
response.

We arrange this paper as follows. In Section 2, the discrete-time model is formulated using Euler’s scheme. The
existence of fixed points and their local stability are given in Section 3. In Section 4, the existence condition of
Neimark-Sacker, Flip, and Fold bifurcations are proposen. To support the theoretical findings, we present some
numerical simulations in Section 5. Finally, this paper ends with a conclusion in Section 6.
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2. Model formulation

These works study the impact of fear to the dynamics of a modified Lotka-Volterra model with square root
functional response [19]. The following system of the equation governs the prey-predator dynamics.

dx
dt

= rx
(

1− x
k

) 1
1 + φy

− by
√

x,

dy
dt

= cy
√

x− dy,
(1)

where x(t) and y(t) represent the density of prey and predator populations respectively, with initial condition
x(0) ≥ 0, and y(0) ≥ 0. The parameters r, k, φ, b, c, and d respectively denote the intrinsic per capita growth
rate of prey, the environmental carrying capacity of prey, the fear effect due to predation, the maximal per capita
consumption rate of predators, the efficiency with which predators convert consumed prey into new predators,
and the per capita death rate of predators. Now, by applying the forward Euler’s scheme to (1), we achieve the
discrete model as follows.

x 7→ x + h
[

rx
(

1− x
k

) 1
1 + φy

− by
√

x
]

y 7→ y + h
[
cy
√

x− dy
] (2)

where h is the step size and {r, k, φ, b, c, d} ∈ R+. The dynamics are investigated in the region Ω = {(x, y) : x ≥
0, y ≥ 0} for the biological reason.

3. General stability analysis
3.1. Fixed points

The following equations are solved to determine fixed points of the system (2).

x = x + h
[

rx
(

1− x
k

) 1
1 + φy

− by
√

x
]

y = y + h
[
cy
√

x− dy
]

Therefore, three types biological fixed points are obtained namely the origin P0 = (0, 0), the extinction of predator

point P1 = (k, 0), and the co-existence point P2 = (x2, y2), where x2 =

(
d
c

)2
and y2 is a positive solution of

y2 +
y
φ
− rd

φbc

(
1− d2

kc2

)
= 0.

3.2. Local stability analysis

In this section, we discuss the local stability of fixed points. By linearization around (x, y), the Jacobian matrix J
for the system (2) is given by

J =

 1 + h
[

r
(

1− 2x
k

)
1

1 + φy
− by

2
√

x

]
h
[
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(
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) φ
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x
]

hcy
2
√

x
1 + h

[
c
√

x− d
]

 . (3)

Therefore, from matrix J, we acquire the characteristic equation λ2 − Tλ + D = 0, where
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JJBM | Jambura J. Biomath Volume 2 | Issue 2 | December 2021



Santra – Fear effect in discrete prey-predator model. . . 53

−
[

h
[
−rx

(
1− x

k

) φ

(1 + φy)2 − b
√

x
]] [

hcy
2
√

x

]

Hence, the following statements hold.

(i) If |D| < 1 then system (2) is a dissipative dynamical system.
(ii) |D| = 1 if and only if system (2) is a conservative dynamical system.

(iii) system (2) is an undissipated dynamical system otherwise.

Now, the following theorems are given to describe the dynamical behavior around each fixed points.

Theorem 1. The fixed point P1 = (k, 0) is

(i) Sink if |1− rh| < 1, and
∣∣∣1 + h

[
c
√

k− d
]∣∣∣ < 1,

(ii) Source if |1− rh| > 1, and
∣∣∣1 + h

[
c
√

k− d
]∣∣∣ > 1,

(iii) Saddle if |1− rh| > 1, and
∣∣∣1 + h

[
c
√

k− d
]∣∣∣ < 1; or |1− rh| < 1, and

∣∣∣1 + h
[
c
√

k− d
]∣∣∣ > 1,

(iv) Non-hyperbolic if |1− rh| = 1 or
∣∣∣1 + h

[
c
√

k− d
]∣∣∣ = 1.

proof. By substituting P1 = (k, 0) to (3), we obtain

J =

[
1− rh −bh

√
k

0 1 + h
[
c
√

k− d
] ] ,

which gives a pair of eigenvalues λ1 = 1− rh and λ2 = 1+ h
[
c
√

k− d
]
. Obeying Lemma 1 in [13], all statements

are proven. �

Theorem 2. If 1− T + D > 0, then interior fixed point P2 (x2, y2) is: (i) Sink if 1 + T + D > 0 and D < 1, (ii) Source
if 1 + T + D > 0 and D > 1, (iii) Saddle if 1 + T + D < 0, (iv) Non-hyperbolic if 1 + T + D = 0 and T 6= 0, 2, or
T2 − 4D < 0 and D = 1.

proof. From the Jacobian matrix at the interior fixed point P2 (x2, y2) , we get

1− T + D = −1− h
[
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[
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]
By using Lemma 1 and 2 in [13] and obeying Juri condition [22], the dynamics given by Theorem 2 are completely
proven. �
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Figure 1. The bifurcation diagram with respect to the step size h

Figure 2. Phase portraits of the system for different values of step size h

4. Bifurcation Analysis

Bifurcation is a non-linear phenomenon that exhibits the change of dynamical behavior when one or more
parameters are varied. In this section, we propose some one-parameter bifurcations namely Neimark-Sacker
bifurcation, flip, and fold bifurcations. Neimark-Sacker bifurcation indicates the occurrence of closed invariant
curves that isolates a fixed point after its stability change sign. Another bifurcation, flip bifurcation (also known
as period-doubling bifurcation), occurs when the system switches to a new limit-cycle twice the period of the
existing one. Fold bifurcation, in which two fixed points collide and disappear into the system. The sufficient
conditions for the occurrence of those bifurcations are given as follows.

(i) Condition for the occurrence of Neimark Sacker bifurcation [23] at an interior fixed point P2 (x2, y2) is
D = 1. i.e.

h [c
√

x2 − d] + h
[

r
(

1− 2x2

k

)
1

1 + φy2
− by2

2
√

x2

]
[1 + h [c

√
x2 − d]]

=

[
h
[
−rx2

(
1− x2

k

) φ

(1 + φy2)2 − b
√

x2

]] [
hcy2

2
√

x2

]
(ii) Condition for the occurrence of Flip bifurcation [23] at an interior fixed point P2 (x2, y2) is 1 + T + D = 0.

i.e.

3 + h
[

r
(

1− 2x2

k

)
1

1 + φy2
− by2

2
√

x2
+ c
√

x2 − d
]
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Figure 3. The bifurcation diagram with respect to the fear effect φ

Figure 4. Phase portraits of the system for different values of fear effect φ

+

[
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]
(iii) Condition for the occurrence of Fold bifurcation [23] at an interior fixed point P2 (x2, y2) is 1− T + D = 0.

i.e.

− 1− h
[
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(

1− 2x2
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)
1
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2
√
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]

+

[
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[
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2
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]

5. Numerical simulations

In order to support our analytical results, we perform some numerical simulations consist of bifurcation diagrams
and their appropriate phase portraits. We set the hypotetical parameter values as follows

r = 0.5, k = 1.0, φ = 0.1, b = 0.7, c = 0.5, d = 0.3.
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By varying the step size h in interval [0.1, 1], we portray the bifurcation diagram in Figure 1. For 0.1 ≤ h < 0.45,
the interior point is a sink. This behavior is changed when h crosses 0.415 and nearby solutions converge to a
stable limit-cycle till h = 1. This phenomenon confirms the occurrence of Neimark Sacker bifurcation driven by
step size h given by the previous analytical study. We choose h = 0.4 and 0.45 to ensure the dynamical behaviors
for each condition using phase portraits, see Figure 2.

Now, the influence of the fear effect is studied numerically. By keeping the parameter same as before, using step
size h = 0.4, and varying φ in interval (0, 1], we obtain the bifurcation diagram as in Figure 3. The interior point
which is stable for 0 < φ < 0.155 losses its stability via Neimark-Sacker bifurcation when φ passes through 0.155.
Again, we give two phase portraits to show the dynamics for each case i.e. when φ = 0.1 which gives a stable
interior point as in Figure 4A and when φ = 0.2 where the stability of interior point is gone and the solution
converge to the limit-cycle as in Figure 4B.

From numerical results, we conclude that the step size h and the fear effect due to predator φ are the parameters
for Neimark-Sacker bifurcations. Those parameters play crucial roles in controlling the dynamical behaviors of
the system. The biological meanings of these numerical phenomena show us that there exists a condition when
the interior point loses its stability, the existence of both populations still maintained by changing their densities
periodically.

6. Conclusion

The impact of the step size and the effect of fear on the dynamical behaviors of the prey-predator interaction
have been investigated both analytically and numerically. The biological conditions of the local dynamics for
each fixed point have been given. The sufficient condition for the occurrence of Neimark-Sacker, flip, and fold
bifurcation also have been identified analytically. Some numerical simulations exhibit that the step size and the
effect of fear have an impact on the dynamics of the system especially in the interior of the system. The impact
of the Neimark-Sacker bifurcation shows that the density of both populations changes periodically when the
interior point loses its stability.

References
[1] L. K. Beay and M. Saija, “Dynamics of a stage–structure Rosenzweig–MacArthur model with linear harvesting in prey

and cannibalism in predator,” Jambura Journal of Biomathematics (JJBM), vol. 2, no. 1, pp. 42–50, 2021.
[2] P. Majumdar, S. Debnath, S. Sarkar, and U. Ghosh, “The Complex Dynamical Behavior of a Prey-Predator Model

with Holling Type-III Functional Response and Non-Linear Predator Harvesting,” International Journal of Modelling and
Simulation, vol. 00, no. 00, pp. 1–18, 2021.

[3] M. G. Mortuja, M. K. Chaube, and S. Kumar, “Dynamic analysis of a predator-prey system with nonlinear prey
harvesting and square root functional response,” Chaos, Solitons and Fractals, vol. 148, p. 111071, 2021.

[4] L. K. Beay and M. Saija, “A Stage-Structure Rosenzweig-MacArthur Model with Effect of Prey Refuge,” Jambura Journal
of Biomathematics (JJBM), vol. 1, no. 1, pp. 1–7, 2020.

[5] H. S. Panigoro, E. Rahmi, N. Achmad, and S. L. Mahmud, “The Influence of Additive Allee Effect and Periodic
Harvesting to the Dynamics of Leslie-Gower Predator-Prey Model,” Jambura Journal of Mathematics, vol. 2, no. 2, pp.
87–96, 2020.

[6] H. S. Panigoro, A. Suryanto, W. M. Kusumawinahyu, and I. Darti, “A Rosenzweig–MacArthur model with continuous
threshold harvesting in predator involving fractional derivatives with power law and mittag–leffler kernel,” Axioms,
vol. 9, no. 4, p. 122, 2020.

[7] L. Dai, J. Wang, Y. Ni, and B. Xu, “Dynamical analysis of a new fractional-order predator–prey system with Holling
type-III functional,” Advances in Difference Equations, vol. 2021, no. 1, 2021.

[8] J. Alidousti and E. Ghafari, “Dynamic behavior of a fractional order prey-predator model with group defense,” Chaos,
Solitons and Fractals, vol. 134, p. 109688, 2020.

[9] Q. Din, “Complexity and chaos control in a discrete-time prey-predator model,” Communications in Nonlinear Science and
Numerical Simulation, vol. 49, pp. 113–134, 2017.

[10] M. Zhao and Y. Du, “Stability of a discrete-time predator-prey system with Allee effect,” Nonlinear Analysis and
Differential Equations, vol. 4, no. 5, pp. 225–233, 2016.

[11] P. K. Santra and G. S. Mahapatra, “Dynamical study of discrete-time prey–predator model with constant prey refuge
under imprecise biological parameters,” Journal of Biological Systems, vol. 28, no. 03, pp. 681–699, 2020.

[12] P. K. Santra, G. S. Mahapatra, and G. R. Phaijoo, “Bifurcation and chaos of a discrete predator-prey model with
Crowley–Martin functional response incorporating proportional prey refuge,” Mathematical Problems in Engineering, vol.
2020, pp. 1–18, 2020.

[13] H. S. Panigoro and E. Rahmi, “The Dynamics of a Discrete Fractional-Order Logistic Growth Model with Infectious
Disease,” Contemporary Mathematics and Applications, vol. 3, no. 1, pp. 1–18, 2021.

JJBM | Jambura J. Biomath Volume 2 | Issue 2 | December 2021



Santra – Fear effect in discrete prey-predator model. . . 57

[14] A. Singh and P. Deolia, “Dynamical analysis and chaos control in discrete-time prey-predator model,” Communications
in Nonlinear Science and Numerical Simulation, vol. 90, p. 105313, 2020.

[15] A. Q. Khan and T. Khalique, “Bifurcations and chaos control in a discrete-time biological model,” International Journal of
Biomathematics, vol. 13, no. 04, p. 2050022, 2020.

[16] P. Chakraborty, U. Ghosh, and S. Sarkar, “Stability and bifurcation analysis of a discrete prey–predator model with
square-root functional response and optimal harvesting,” Journal of Biological Systems, vol. 28, no. 01, pp. 91–110, 2020.

[17] P. Santra, “Discrete-time prey-predator model with θ-logistic growth for prey incorporating square root functional
response,” Jambura Journal of Biomathematics, vol. 1, no. 2, pp. 41–48, 2020.

[18] R. Ma, Y. Bai, and F. Wang, “Dynamical behavior analysis of a two-dimensional discrete predator-prey model with prey
refuge and fear factor,” Journal of Applied Analysis and Computation, vol. 10, no. 4, pp. 1683–1697, 2020.

[19] X. Wang, L. Zanette, and X. Zou, “Modelling the fear effect in predator–prey interactions,” Journal of Mathematical
Biology, vol. 73, no. 5, pp. 1179–1204, 2016.

[20] Z. Zhu, R. Wu, L. Lai, and X. Yu, “The influence of fear effect to the Lotka–Volterra predator–prey system with predator
has other food resource,” Advances in Difference Equations, vol. 2020, no. 1, pp. 1–13, 2020.

[21] D. Barman, J. Roy, H. Alrabaiah, P. Panja, S. P. Mondal, and S. Alam, “Impact of predator incited fear and prey refuge in
a fractional order prey predator model,” Chaos, Solitons and Fractals, vol. 142, p. 110420, 2021.

[22] E. I. Jury, Inners and stability of dynamic systems. Wiley, 1976.
[23] S. N. Elaydi, Discrete chaos: with applications in science and engineering, 2nd ed. Chapman & Hall/CRC, 2007.

©2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, State University of Gorontalo, Jln.
Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96119, Indonesia.

JJBM | Jambura J. Biomath Volume 2 | Issue 2 | December 2021

https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.34312/jjbm.v2i2.10444


Submit your manuscript at
http://ejurnal.ung.ac.id/

Jambura Journal of
Mathematics

Jambura Journal of
Biomathematics

Jambura Journal of
Mathematics Education

Jambura Journal of
Probability and Statistics

Published by
Department of Mathematics

Faculty of Mathematics and Natural Sciences
State University of Gorontalo

http://ejurnal.ung.ac.id/
http://ejurnal.ung.ac.id/index.php/jjom/
http://ejurnal.ung.ac.id/index.php/jjbm/
http://ejurnal.ung.ac.id/index.php/jjom/
http://ejurnal.ung.ac.id/index.php/jjom/
http://ejurnal.ung.ac.id/index.php/jjbm/
http://ejurnal.ung.ac.id/index.php/jjbm/
http://ejurnal.ung.ac.id/index.php/jmathedu
http://ejurnal.ung.ac.id/index.php/jps
http://ejurnal.ung.ac.id/index.php/jmathedu
http://ejurnal.ung.ac.id/index.php/jmathedu
http://ejurnal.ung.ac.id/index.php/jps
http://ejurnal.ung.ac.id/index.php/jps

	Introduction
	Model formulation
	General stability analysis
	Fixed points
	Local stability analysis

	Bifurcation Analysis
	Numerical simulations
	Conclusion

