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Abstract

In this paper, we present a mathematical model for the study of resistance to tuberculosis treatment using fractional derivatives in the Caputo sense. This
model takes into account the relationship between Tuberculosis, HIV/AIDS, and diabetes and differentiates resistance cases into MDR-TB
(multidrug-resistant tuberculosis) and XDR-TB (extensively drug-resistant tuberculosis). We present the basic results associated with the model and
study the behavior of the disease-free equilibrium points in the different sub-populations, TB-Only, TB-HIV/AIDS, and TB-Diabetes. We performed
computational simulations for different fractional orders (α-values) using an Adams-Bashforth-Moulton type predictor-corrector PECE method. Among
the results obtained, we have that the MDR-TB cases in all sub-populations decrease at the beginning of the study for the different α-values. In XDR-TB
cases in the TB-Only sub-population, there is a decrease in the number of cases. XDR-TB cases in the TB-HIV/AIDS sub-population have differentiated
behavior depending on α. This knowledge helps to design an effective control strategy. The XDR-TB cases in diabetics increased throughout the study
period and outperformed all resistant compartments for the different α-values. We recommend special attention to the control of this compartment due to
this growth.

Keywords: Caputo Fractional Derivatives; Diabetes; HIV/AIDS; Resistance; Tuberculosis

1. Introduction

Tuberculosis is a chronic bacterial infectious disease caused by "Mycobacterium Tuberculosis". The main medical
problems faced is the efficacy of treatments for tuberculosis and extensively resistant tuberculosis (XDR-TB) [1].
The number of cases of tuberculosis in the world has been increasing annually.

The rifampicin, isoniazid, pyrazinamide, ethambutol and streptomycin belong to the first line for the treatment
of tuberculosis, and amikacin, kanamycin, capreomycin, cycloserine, moxifloxacin, levofloxacin, ethionamide
are in the second line of treatment. Multidrug-resistant tuberculosis (MDR-TB) is caused by Mycobacterium
tuberculosis strains with resistance to at least isoniazid and rifampin. Extensively drug-resistant tuberculosis
(XDR-TB) is defined as a strain resistant to any type of fluoroquinolones and at least one of the three following
injectable drugs: amikacin, capreomycin, or kanamycin in addition to isoniazid and rifampicin.

Diabetes is a risk factor for lower respiratory infections including TB and is a significant factor for TB infections
at the population level [2]. An important factor is that diabetes increases TB risk 1.5 to 7.8 times and the relative
risk for TB among diabetes patients is 3.11 [3]. Diabetes can affect the effectiveness of first-line anti-TB drugs,
particularly the use of rifampicin [4].

The rate of diabetes for HIV patients when they are infected is the same as for the general population. But certain
metabolic factors related to HIV, and HIV therapy can increase the incidence of diabetes over time.

HIV has a great impact on the dissipation of tuberculosis, increasing the incidence and mortality rates of the
disease. The use of alcohol, illicit drugs, smoking, the presence of diabetes influence the appearance of latent TB
and can interfere with the results of TB-HIV/AIDS co-infection (cure, death, and abandonment of the treatment)
[5].

Two classic problems that have motivated the use of fractional analysis are the Tautochrone problem and the
effect of memory in biological models [6]. Non-integer models have a memory effect, and most operators have
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crossover properties that improve predictions [7]. In particular, classical models with autonomous ordinary
differential equations have no memory. Given an initial value, the solution is uniquely determined for any point
in the domain. In general, this statement is not true for fractional differential equations [6]. One way to introduce
the memory effect in mathematical models is to change the order of the derivative of a classical model so that it
is not an integer [6, 8]. In particular, the authors of [9] study the effect of memory on epidemic evolution using
fractional order differential equations. One type of memory used in ecology and epidemiology is hysteresis. This
memory briefly consists in that the system depends on the current and previous conditions (influence of past
events) [6, 10, 11]. For example, Pimenov et al. [12] incorporate hysteresis into a biological model.

In recent decades, the number of papers using fractional-order derivatives to model epidemics has increased
[7, 13–21]. For example, for the study of Tuberculosis Ullah et al. [13] studied the dynamics of Tuberculosis with
a fractional-order model specifically with Caputo derivative. Fatmawati et al. [7] studied a fractional model for
the dynamics of tuberculosis dividing into two age groups using the fractional operators, Caputo and
Atangana-Baleanu. Rosa and Torres [14] proposed a fractional-order mathematical model in Caputo sense for
the transmission dynamics of tuberculosis and formulated a fractional optimal control problem. For TB and
HIV/AIDS co-infection. Farman et al. [15] proposed a mathematical model of HIV/AIDS and TB co-infection
using Caputo and Caputo-Fabrizo fractional derivative. Khan et al. [16] investigated the Mittag-Leffler
fractional HIV-TB co-infection model and proved the existence of a unique set of the solutions of the model and
the Hyers-Ulam stability. For the study of HIV/AIDS, Pinto and Carvalho [17] presented a fractional-order
model for HIV infection, where latently infected cells, macrophages, and CTLs are included. Fatmawati et al.
[18] presented a Caputo-derivative model for the spread of HIV/AIDS disease in a sex-divided population and
for HIV and HCV (Hepatitis C virus) co-infection. Carvalho et al. [19] presented a fractional-order model for the
HIV/HCV co-infection dynamics. Concerning diabetes dynamics we have, Saleem et al. [20] presented a
non-linear fractional-order model with Caputo-Fabrizio derivative for insulin therapy. Sakulrang et al. [21]
proved that fractional-order differential equation models could give better fits than integer-order models
concerning continuous glucose monitoring data from patients with type 1 diabetes. The objective of this paper is
to study a mathematical model for resistance to treatment of Tuberculosis with the presence of HIV/AIDS and
diabetes using fractional derivatives in the Caputo sense and to observe the behavior of resistance for different
orders.

This paper is organized as follows: In Section 2 we present definitions and preliminary results. In Section 3 we
introduce the model and the basic results then, we study the equilibrium points and their relationship with the
basic reproduction number. Section 4 is devoted to numerical experimentation. We finish the paper with some
conclusions in Section 5.

2. Mathematical Preliminaries

In this section, we present the fundamental definitions that are used in the document. We mention the definition
of fractional derivative in the Caputo sense and a definition of the Mittag-Leffler function.

Definition 1. (See [22]) For α > 0, with n − 1 < α < n, n ∈ N, the fractional derivative in the sense of Caputo is
defined as

cDα
t f (t) =

dα f (t)
dtα

:=
1

Γ(n − α)

∫ t

0
(t − s)(n−α−1) f (n)(s) ds

where Γ(.) is the gamma function. The Riemann-Liouville fractional integral is defined by

Iα
t f (t) =

1
Γ(α)

∫ t

0
(t − s)(α−1) f (s) ds

Note: We have for any p ∈ N, |z| → ∞ and
απ

2
< | arg(z)| ≤ π, that [23, 24]

Eα,β(z) = −
w

∑
k=1

z−k

Γ(β − zα)
+ O(|z|−1−w).

where Eα,β is two-parameters Mittag-Leffler function α, β > 0.

3. Model formulation

In this section, we present the model with Caputo fractional derivative equations introduced in [25] and its
basic properties. This model is used for the study of MDR-TB and XDR-TB, taking into account the influence of
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HIV/AIDS and diabetes.

The model has eighteen compartments that are: uninfected of TB, ST , SH , SD, latently infected, ET , EH , ED,
individuals infected and drug-sensitive TB (IT1 , IH1 , ID1 ), infected MDR-TB (IT2 , IH2 , ID2 ), infected XDR-TB (RT1 ,
RH1 , RD1 ) and recovered of TB (RT , RH , RD) individuals where T represent TB-Only, H are HIV/AIDS cases and
D diabetics individuals.

The M1, M2 and M3 are recruitment rates in the different sub-models, where we do not have HIV/AIDS or
diabetes, HIV/AIDS and diabetes respectively. The rate of acquiring diabetes by use of antiretroviral treatment is
α4 and the rate of an individual who becomes infected with HIV (sexual transmission or otherwise) and develops
diabetes are α2 and α1 respectively.

The TB infection rate is defined as

λT = α∗
IT1 + IT2 + RT1 + ϵ1(IH1 + IH2 + RH1) + ϵ2(ID1 + ID2 + RD1)

N

where α∗ is the effective contact rate and N is the total population. The parameters ϵj, j = 1, 2 are modifications
parameters, associated with increased infectivity in HIV/AIDS and diabetics patients. The natural death rate µ
is the same from any compartment and u1 and u2 are death rate associated with HIV/AIDS and diabetes.

The η is defined as the natural rate of progression of tuberculosis. The β∗ represents the proportion of active TB
cases that are resistant. The ω1, ω2, are the parameters associated with the transmission of tuberculosis in the
HIV/AIDS and diabetes compartments where ω1, ω2 > 1.

We assume that TB-recovered Ri, i = T, D, H acquire partial immunity so that from the recovered compartment
(the cases that recover) enter the latent compartment with a parameter associated with TB reinfection and
reactivation β

′
1 with β

′
1 ≤ 1. We define ϵ∗j , j = 1, 2 as the parameters modification associated with resistance to

tuberculosis treatment in HIV/AIDS and diabetics.

The t1 and t2 are modifications of the parameters associated with diabetes or HIV infection in compartments
where there is active tuberculosis infection. We define death from TB with a rate d1, deaths from the combination
TB and HIV/AIDS with a rate d2 and deaths from the combination TB and diabetes with a rate d3. We assume
that d3 ≥ d1 and d2 ≥ d1 as diabetes and HIV/AIDS experience greater disease induced deaths than their
corresponding only TB and we assume death from TB after the use of treatment. The rates l1, l2 and l3 represent
the cases that will be MDR-TB (first resistance). The expressions (1 − p1)η, (1 − p2)ϵ

∗
1η and (1 − p3)ϵ

∗
2η are the

cases that in a first infection are going to be MDR-TB and p1η, p2ϵ∗1η and p3ϵ∗2η are the cases that are going to be
XDR-TB in a first infection. The t3 parameter is associated with the combination of antirretroviral therapy and the
treatment of tuberculosis and the possibility of developing diabetes. The η11, η12 and η13 is the recovery rate after
being sensitive TB and m1, m2 and m3 is the recovery rate after being MDR-TB. The t

′
l , l = 1, 2, 3 are modification

parameters associated with TB deaths in MDR-TB cases.

The η∗
11, η∗

12 and η∗
13 are the recovery rate after being XDR-TB. The t∗1 , t∗2 and t∗3 are modification parameters

associated with death by TB, death by combination TB-HIV/AIDS and by combination TB-Diabetes after being
XDR-TB. We assume that η1l > η∗

1l and ml > η∗
1l for l = 1, 2, 3. The fractional derivative operator cDα

t has a
dimension time−α, then on the right-hand side of the model all parameters will have power dimension α. The
Table 1 shows the variables and parameters of the model.

Table 1. Variables and Parameters of model eq. (1)

Parameter Description Parameter Description
ST , SH , SD Uninfected of TB ET , EH , ED Latently infected
IT1 , IH1 , ID1 Drug-sensitive TB IT2 , IH2 , ID2 Infected MDR-TB

RT1 , RH1 , RD1 Infected XDR-TB RT , RH , RD Recovered of TB
M1, M2, M3 Recruitment rates α∗ Effective contact rates for TB infection

α1 Acquiring diabetes rate α2 Acquiring HIV rate
α4 Diabetes development rate by use of HIV therapy ω1, ω2, ϵ1, ϵ2 Modification parameters
µ Natural mortality rate η Natural rate of progression to active TB

t1, t2, t3, t∗1 , t∗2 , t∗3 Modification parameters t′1, t′2, t′3 Modification parameters
ϵ∗1 , ϵ∗2 , β

′
1 Modification parameters l1, l2, l3 Resistant TB development rates

d1 TB induced death rate d2 TB-HIV induced death rate
d3 TB-Diabetes induced death rate µ1, µ2 Death rate of HIV/AIDS and diabetes respectively.

m1, m2, m3 TB recovery rates for MDR-TB β∗ Proportion of active TB cases that are resistant.
η11, η12, η13 TB recovery rates of drug-sensitive TB infected η14, η15, η16 Resistant (XDR-TB) TB development rates after being MDR-TB
η∗

11, η∗
12, η∗

13 TB recovery rates of XDR-TB p1, p2, p3 Rates related to developing XDR-TB resistance
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The effectiveness of the TB treatment with the presence of HIV/AIDS and diabetes using Caputo’s functional
derivative can be expressed as:

cDα
t ST = M1 − (µ + α1 + α2 + λT)ST ,

cDα
t SH = M2 + α2(ST + SD)− (α4 + µ + µ1 + ω1λT)SH ,

cDα
t SD = M3 + α4SH + α1ST − (α2 + µ + µ2 + ω2λT)SD,

cDα
t ET = λT(ST + β

′
1RT)− (α1 + α2 + µ + η)ET ,

cDα
t EH = ω1λT(SH + β

′
1RH) + α2(ET + ED)− (ϵ∗1η + µ + µ1 + α4)EH ,

cDα
t ED = ω2λT(SD + β

′
1RD) + α4EH + α1ET − (α2 + ϵ∗2η + µ + µ2)ED,

cDα
t IT1 = (1 − β∗)ηET − (l1 + t1α1 + t2α2 + µ + d1 + η11)IT1 ,

cDα
t IT2 = (1 − p1)β∗ηET + l1 IT1 − (t1α1 + t2α2 + m1 + µ + t

′
1d1 + η14)IT2 ,

cDα
t IH1 = t2α2(IT1 + ID1) + (1 − β∗)ϵ∗1ηEH − (l2 + µ + µ1 + d2 + η12 + t3α4)IH1 ,

cDα
t IH2 = t2α2(IT2 + ID2) + (1 − p2)ϵ

∗
1 β∗ηEH + l2 IH1 − (m2 + µ + µ1 + t

′
2d2 + η15 + t3α4)IH2 ,

cDα
t ID1 = t1α1 IT1 + t3α4 IH1 + (1 − β∗)ϵ∗2ηED − (l3 + t2α2 + µ + µ2 + d3 + η13)ID1 ,

cDα
t ID2 = t1α1 IT2 + t3α4 IH2 + (1 − p3)ϵ

∗
2 β∗ηED + l3 ID1 − (m3 + t2α2 + µ + µ2 + t

′
3d3 + η16)ID2 ,

cDα
t RT1 = p1β∗ηET + η14 IT2 − (η∗

11 + t1α1 + t2α2 + µ + t∗1d1)RT1 ,
cDα

t RH1 = p2β∗ϵ∗1ηEH + η15 IH2 + t2α2(RT1 + RD1)− (η∗
12 + t3α4 + µ + µ1 + t∗2d2)RH1 ,

cDα
t RD1 = p3β∗ϵ∗2ηED + η16 ID2 + t3α4RH1 + t1α1RT1 − (t2α2 + η∗

13 + µ + µ2 + t∗3d3)RD1 ,
cDα

t RT = m1 IT2 + η11 IT1 + η∗
11RT1 − (α1 + α2 + µ + β

′
1λT)RT ,

cDα
t RH = m2 IH2 + η12 IH1 + η∗

12RH1 + α2(RT + RD)− (α4 + µ + µ1 + β
′
1ω1λT)RH ,

cDα
t RD = m3 ID2 + η13 ID1 + η∗

13RD1 + α1RT + α4RH − (α2 + µ + µ2 + β
′
1ω2λT)RD

(1)

with initial conditions:
ST(0) > 0, SH(0) > 0, SD(0) > 0, ET(0) > 0, EH(0) > 0, ED(0) > 0, IT1(0) > 0, IT2(0) > 0, IH1(0) > 0,
IH2(0) > 0, ID1(0) > 0, ID2(0) > 0, RT1(0) > 0, RH1(0) > 0, RD1(0) > 0, RT(0) > 0, RH(0) > 0, RD(0) > 0 and
α ∈ (0, 1].

3.1. Basic properties of model

Now, let us prove the existence and positivity of the solution of the system (1) and let us find the region where
all variables are always nonnegative and the solutions remain positive with positive initial conditions, which we
define as the biologically feasible region.

Existence and non-negativity of solutions

Let us consider

Ω1 = {x =(ST , SH , SD, ET , EH , ED, IT1 , IT2 , IH1 , IH2 , ID1 , ID2 , RT1 , RH1 , RD1 , RT , RH , RD) :
ST , SH , SD, ET , EH , ED, IT1 , IT2 , IH1 , IH2 , ID1 , ID2 , RT1 , RH1 , RD1 , RT , RH , RD ≥ 0}

The following lemma and corollary will be used in the proof of Theorem 4 and they come from [26].

Lemma 2. (Generalized mean value theorem) Suppose that f ∈ C[a, b] and cDα
t f ∈ C[a, b], for α ∈ (0, 1]. Then,

∀t ∈ (a, b], with a ≤ ϵ ≤ t we have

f (t) = f (a) +
1

Γ(α)
cDα

t f (ϵ)(t − a)α

where Γ(.) is the gamma function.

Corollary 3. Consider that f ∈ C[a, b] and cDα
t f ∈ C[a, b], for α ∈ (0, 1]. Then if

• cDα
t f (t) ≥ 0, ∀t ∈ (a, b), then f (t) is non-decreasing for each t ∈ [a, b].

• cDα
t f (t) ≤ 0, ∀t ∈ (a, b), then f (t) is non-increasing for each t ∈ [a, b].

Theorem 4. There is a unique solution x(t) = (ST , SH , SD, ET , EH , ED, IT1 , IT2 , IH1 , IH2 , ID1 , ID2 , RT1 , RH1 , RD1 ,
RT , RH , RD)

T of the model (1) for t ≥ 0 and the solution will remain in Ω1.
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proof. By Theorem 3.1 and Remark 3.2 of [27] we have that the solution in (0, ∞) of the initial value problem (1)
exists and is unique. Now, let’s we will prove the positivity of the solution of the model (1). In order to do, we
need to prove that for every hyperplane bounding the nonnegative orthant, the vector field points to Ω1. From
model (1), we have:

cDα
t ST

∣∣
ST=0 = M1 > 0,

cDα
t SH

∣∣
SH=0 = M2 > 0,

cDα
t SD

∣∣
SD=0 = M3 > 0,

cDα
t ET

∣∣
ET=0 = λT(ST + β

′
1RT) ≥ 0,

cDα
t EH

∣∣
EH=0 = ω1λT(SH + β

′
1RH) + α2(ET + ED) ≥ 0,

cDα
t ED

∣∣
ED=0 = ω2λT(SD + β

′
1RD) + α4EH + α1ET ≥ 0,

cDα
t IT1

∣∣
IT1=0 = (1 − β∗)ηET ≥ 0,

cDα
t IT2

∣∣
IT2=0 = (1 − p1)β∗ηET + l1 IT1 ≥ 0,

cDα
t IH1

∣∣
IH1=0 = t2α2(IT1 + ID1) + (1 − β∗)ϵ∗1ηEH ≥ 0,

cDα
t IH2

∣∣
IH2=0 = t2α2(IT2 + ID2) + (1 − p2)ϵ

∗
1 β∗ηEH + l2 IH1 ≥ 0,

cDα
t ID1

∣∣
ID1=0 = t1α1 IT1 + t3α4 IH1 + (1 − β∗)ϵ∗2ηED ≥ 0,

cDα
t ID2

∣∣
ID2=0 = t1α1 IT2 + t3α4 IH2 + (1 − p3)ϵ

∗
2 β∗ηED + l3 ID1 ≥ 0,

cDα
t RT1

∣∣
RT1=0 = p1β∗ηET + η14 IT2 ≥ 0,

cDα
t RH1

∣∣
RH1=0 = p2β∗ϵ∗1ηEH + η15 IH2 + t2α2(RT1 + RD1) ≥ 0,

cDα
t RD1

∣∣
RD1=0 = p3β∗ϵ∗2ηED + η16 ID2 + t3α4RH1 + t1α1RT1 ≥ 0,

cDα
t RT

∣∣
RT=0 = m1 IT2 + η11 IT1 + η∗

11RT1 ≥ 0,
cDα

t RH
∣∣
RH=0 = m2 IH2 + η12 IH1 + η∗

12RH1 + α2(RT + RD) ≥ 0,
cDα

t RD
∣∣
RD=0 = m3 ID2 + η13 ID1 + η∗

13RD1 + α1RT + α4RH ≥ 0.

Using Corollary (3), we have that the solution will remain in Ω1. ■

Biologically Feasible Region

All the elements of the model (parameters and variables) are defined for a population of humans so they cannot
be negative and we are going to show that Ω is positively invariant for the model (1).

Lemma 5. The closed set Ω =

{
(Si, Ei, Ii1 , Ii2 , Ri1 , Ri) ∈ R18

+ , i = T, H, D : N(t) ≤ M1 + M2 + M3

µ

}
is positively

invariant with respect to model (1).

proof. The derivative of the total population is

cDα
t N(t) = cDα

t ST(t) + cDα
t SH(t) + cDα

t SD(t) + cDα
t ET(t) + cDα

t EH(t) + cDα
t ED(t)+

cDα
t IT1(t) +

cDα
t IT2(t) +

cDα
t IH1(t) +

cDα
t IH2(t) +

cDα
t ID1(t) +

cDα
t ID2(t)+

cDα
t RT1(t) +

cDα
t RH1(t) +

cDα
t RD1(t) +

cDα
t RT(t) + cDα

t RH(t) + cDα
t RD(t)

and we have
cDα

t N(t) + µN(t) ≤ M1 + M2 + M3. (2)

Applying the Laplace transform to (2), we have

sαϕ(N)− sα−1ϕ(0) ≤ M1 + M2 + M3

s
− µϕ(N) (3)
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which further gives

ϕ(N) ≤ M1 + M2 + M3

s(sα + µ)
+

sα−1

sα + µ
N(0). (4)

To continue the prove we use the following definitions.

Definition 6. The Laplace transform of the Caputo fractional derivatives of the function ϕ(t) with order α > 0 is
defined as

L
[ cDα

t ϕ(t)
]
= sαϕ(s)−

n−1

∑
v=0

ϕv(0)sα−v−1. (5)

Definition 7. The Laplace transform of the function tα1−1Eα,α1(±λtα) is defined as

L
[
tα1−1Eα,α1(±λtα)

]
=

sα−α1

sα ∓ λ
(6)

where Eα,α1 is two-parameters Mittag-Leffler function α, α1 > 0. Futher, the Mittag-Leffler function satisfies the
following equation [28]

Eα,α1( f ) = f Eα,α+α1( f ) +
1

Γ(α1)
. (7)

Using the eqs. (5) to (7), we assumed that (ST(0), SH(0), SD(0), ET(0), EH(0), ED(0), IT1(0), IT2(0),
IH1(0), IH2(0), ID1(0), ID2(0), RT1(0), RH1(0), RD1(0), RT(0), RH(0), RD(0)) ∈ R18

+ , then

N(t) ≤ (M1 + M2 + M3)tαEα,α+1(−µtα) + N(0)Eα,1(−µtα). (8)

Using the asymptotic behavior of the Mittag-Leffler function presented in the preliminaries, we can observed

that N(t) → M1 + M2 + M3

µ
as t → ∞. The region Ω (biologically feasible region) is well established and all the

solutions for the initial values that belong to Ω remain in Ω for each time t > 0. ■

3.2. Study of the equilibrium points and the basic reproduction number

The basic reproduction number (ℜ0) is among the most important quantities in infectious disease epidemiology.
The ℜ0 is defined as the average number of an infection caused by a typical infected individual, in a population
consisting only of susceptibles. If 0 < ℜ0 < 1 the infection will die out in the long run. But if ℜ0 > 1 the infection
will be able to spread in a population. The higher the ℜ0 the more difficult it is to control the epidemic [29].

In this section, we study the equilibrium points and their relationship with the basic reproduction number. We
base our study on the infection-free equilibrium points and the basic reproduction number is obtained using
the new generation matrix theory [29]. We work on three sub-models, the sub-model where we do not have
HIV/AIDS and diabetes (TB-Only), the sub-model where we have HIV/AIDS (TB-HIV/AIDS), and the sub-
model where we have diabetes (TB-Diabetes). The calculation of the basic reproduction numbers is in [25].

TB-Only sub-model

We have the TB-Only sub-model when (SH = SD = EH = ED = IH1 = IH2 = ID1 = ID2 = RH1 = RD1 = RH =
RD = 0) which is given by

cDα
t ST = M1 − (µ + α1 + α2 + λT)ST ,

cDα
t ET = λT(ST + β

′
1RT)− (α1 + α2 + η + µ)ET ,

cDα
t IT1 = (1 − β∗)ηET − (l1 + t1α1 + t2α2 + µ + d1 + η11)IT1 ,

cDα
t IT2 = (1 − p1)β∗ηET + l1 IT1 − (m1 + µ + t

′
1d1 + η14 + t1α1 + t2α2)IT2 ,

cDα
t RT1 = β∗p1ηET + η14 IT2 − (η∗

11 + µ + t∗1d1 + t1α1 + t2α2)RT1 ,
cDα

t RT = m1 IT2 + η11 IT1 + η∗
11RT1 − (µ + β

′
1λT + α1 + α2)RT , (9)

with initial conditions:

ST(0) > 0, ET(0) > 0, IT1(0) > 0, IT2(0) > 0, RT1(0) > 0, and RT(0) > 0.
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The TB infection rate for this sub-model is defined as

λT = α∗
IT1 + IT2 + RT1

NT

and the total population is given by

NT = ST + ET + IT1 + IT2 + RT1 + RT .

Due to biological constraints, the system (9) is studied in the following region:

D1 =

{
(ST , ET , IT1 , IT2 , RT1 , RT) ∈ R6

+ : NT(t) ≤
M1

µ

}
.

We can show for this sub-model (9) that the solutions, (ST(t), ET(t), IT1(t), IT2(t), RT1(t), RT(t)) are bounded and
positively invariant in D1 (biologically feasible region).

Disease-free equilibrium point

The disease-free equilibrium point of model (9) is given by ϵT
0 =

(
ST

0 , 0, 0, 0, 0, 0
)

, where ST
0 =

M1

µ + α1 + α2
.

The basic reproduction number is calculated using next-generation matrix method in [25] and is defined as

ℜT
0 =

α∗M1
(
(1 − β∗)η(k13k14 + l1(k14 + η14)) + (1 − p1)β∗ηk12(k14 + η14) + k12k13β∗ηp1

)
NT(α1 + α2 + µ)k11k12k13k14

, (10)

where k11 = α1 + α2 + η + µ, k12 = l1 + t1α1 + t2α2 + µ + d1 + η11, k13 = µ + t
′
1d1 + η14 + m1 + t1α1 + t2α2, and

k14 = µ + t∗1d1 + η∗
11 + t1α1 + t2α2.

Lemma 8. (Theorem 2. of [30]) For any q, r ∈ Z+, such that gcd(q, r) = 1 Let α =
q
r

and we define M = r, then the

disease-free equilibrium is locally asymptotically stable if | arg(λ)| > π

2M
for all roots λ of the associated characteristic

equation
det(diag[λqλqλqλqλqλq − J(ϵT

0 )]) = 0 (11)

where J(ϵT
0 ) is the jacobian matrix of sub-model at ϵT

0 . The disease-free equilibrium ϵT
0 is unstable if ℜT

0 > 1.

proof. The Jacobian of sub-model at disease-free equilibrium is
−(µ + α1 + α2) 0 0 0 0 0

0 −k11 0 0 0 0
0 (1 − β∗)η −k12 0 0 0
0 (1 − p1)β∗η l1 −k13 0 0
0 p1β∗η 0 η14 −k14 0
0 0 η11 m1 η∗

11 −(µ + α1 + α2)


Expanding, det(diag[λq I6 − J(ϵT

0 )]) = 0, where I6 is the identity matrix of order 6, we obtain the following
equation in terms of λ:

(−α1 − α2 − µ − λq)2(λ4q + b1λ3q + b2λ2q + b3λq + b4) = 0 (12)

The arguments of the roots of equation (−α1 − α2 − µ − λq) = 0 are given by:

arg(λk) =
π

q
+ k

2π

q
>

π

M
>

π

2M

where k = 0, 1, ..., (q − 1). Now, the coefficients bi’s of p(λ) = λ4q + b1λ3q + b2λ2q + b3λq + b4 are

b1 = k11 + k12 + k13 + k14,

b2 = k11k12 + k11k13 + k11k14 + k12k14 + k13k14 −
M1α∗η

NT(µ + α1 + α2)
,
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b3 = k11k12k13 + k11k12k14 + k11k13k14 + k12k13k14 −
M1α∗η

NT(µ + α1 + α2)

(
(1 − β∗)(l1 + k13) + (1 − p1)β∗η14

+ β∗p1((t
′
1 − t∗1)d1 + (m1 − η∗

11) + η14
)
,

b4 = k11k12k13k14 −
M1α∗η

NT(µ + α1 + α2)

(
(1 − β∗)(k13k14 + l1(k14 + η14)) + (1 − p1)k12β∗(k14 + η14) + k12k13β∗p1

)
= (1 −ℜT

0 ).

The function p(λ) has eigenvalues with negative real part if bi > 0 for i = 1, 2, 3, 4 and b1b2b3 > b2
1b4 + b2

3. All
bi’s are greater than zero if ℜT

0 < 1, and the conditions b1b2b3 > b2
1b4 + b2

3 ensure the stability of the disease-free
case when ℜT

0 < 1. If ℜT
0 < 1, then the necessary condition fulfil for all the roots of characteristics equation

i.e.,| arg(λ)| > π

2M
. Thus, the infection-free equilibrium point is locally asymptotically stable if ℜT

0 < 1. ■

3.3. TB-HIV/AIDS sub-model

For the sub-model only with HIV/AIDS (TB-HIV/AIDS sub-model) (ST = SD = ET = ED = IT1 = IT2 = ID1 =
ID2 = RT1 = RD1 = RT = RD = 0) and is given by

cDα
t SH = M2 − (α4 + µ + µ1 + ω1λT)SH ,

cDα
t EH = ω1λTSH + β

′
1ω1λT RH − (ϵ∗1η + µ + µ1 + α4)EH ,

cDα
t IH1 = (1 − β∗)ϵ∗1ηEH − (l2 + µ + µ1 + d2 + η12 + t3α4)IH1 ,

cDα
t IH2 = (1 − p2)β∗ϵ∗1ηEH + l2 IH1 − (m2 + µ + µ1 + t

′
2d2 + η15 + t3α4)IH2 ,

cDα
t RH1 = p2β∗ϵ∗1ηEH + η15 IH2 − (η∗

12 + µ + µ1 + t∗2d2 + t3α4)RH1 ,
cDα

t RH = m2 IH2 + η12 IH1 + η∗
12RH1 − (µ + µ1 + β

′
1ω1λT + α4)RH

(13)

with non-negative initial conditions and

λH = α∗
ϵ1(IH1 + IH2 + RH1)

NH

where NH = SH + EH + IH1 + IH2 + RH1 + RH .

Considering biological constraints, the system (13) will be studied in the following region:

D2 =

{
(SH , EH , IH1 , IH2 , RH1 , RH) ∈ R6

+ : NH(t) ≤
M2

µ

}
.

It can be easily shown that te solution
(
SH(t), EH(t), IH1(t), IH2(t), RH1(t), RH(t)

)
of the system are bounded and

positively invariant.

The disease-free equilibrium point is given by ϵH
0 =

(
SH

0 , 0, 0, 0, 0, 0
)

, where SH
0 =

M2

µ + µ1 + α4
, and

ℜH
0 =

α∗ϵ1ω1M2
(
(1 − β∗)ϵ∗1η(k23k24 + l2(k24 + η15)) + (1 − p2)ϵ

∗
1 β∗ηk22(k24 + η15) + k22k23ϵ∗1 β∗ηp2

)
NH(α4 + µ + µ1)k21k22k23k24

, (14)

where k21 = α4 + ϵ∗1η + µ + µ1, k22 = l2 + µ + µ1 + d2 + η12 + t3α4, k23 = µ + µ1 + t
′
2d2 + η15 + m2 + t3α4, and

k24 = µ + µ1 + t∗2d2 + η∗
12 + t3α4.

Applying an analogous procedure to the TB-Only sub-model we obtain the following result:

Lemma 9. The infection-free equilibrium point, ϵH
0 is asymptotically stable if ℜH

0 < 1 and unstable if ℜH
0 > 1.
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TB-Diabetes sub-model

The sub-model that relates diabetes to TB is obtained when SH = ST = EH = ET = IH1 = IH2 = IT1 = IT2 =
RH1 = RH = RT1 = RT = 0 and is given by the system:

cDα
t SD = M3 − (α2 + µ + µ2 + ω2λT)SD

cDα
t ED = β

′
1ω2λDRD + ω2λTSD − (η + µ + µ2 + α2)ED,

cDα
t ID1 = (1 − β∗)ϵ∗2ηED − (l3 + t2α2 + µ + µ2 + d3 + η13)ID1 ,

cDα
t ID2 = (1 − p3)ϵ

∗
2 β∗ηED + l3η ID1 − (t2α2 + m3 + µ + µ2 + t

′
3d3 + η16)ID2 ,

cDα
t RD1 = p3β∗ϵ∗2ηED + η16 ID2 − (η∗

13 + t2α2 + µ + µ2 + t∗1d1)RD1 ,
cDα

t RD = m3 ID2 + η13 ID1 + η∗
13RD1 − (α2 + µ + µ2 + β

′
1ω2λD)RD

(15)

with non-negative initial conditions and

λD = α∗
ϵ2(ID1 + ID2 + RD1)

ND

where ND = SD + ED + ID1 + ID2 + RD1 + RD.

Considering biological constraints, the system (15) will be studied in the following region biologically feasible:

D3 =

{
(SD, ED, ID1 , ID2 , RD1 , RD) ∈ R6

+ : ND(t) ≤
M3

µ

}
.

It can be easily shown that solution
(
SD(t), ED(t), ID1(t), ID2(t), RD1(t), RD(t)

)
of the system are bounded and

positively invariant.

The disease-free equilibrium point is ϵD
0 =

(
SD

0 , 0, 0, 0, 0, 0
)

, where SD
0 =

M3

µ + µ2 + α2
, and

ℜD
0 =

α∗ϵ2ω2M3
(
(1 − β∗)ϵ∗2η(k33k34 + l3(k34 + η16)) + (1 − p3)ϵ

∗
2 β∗ηk32(k34 + η16) + k32k33ϵ∗2 β∗ηp3

)
ND(α2 + µ + µ2)k31k32k33k34

, (16)

where k31 = α2 + ϵ∗2η + µ + µ2, k32 = l3 + µ + d3 + η13 + t2α2 + µ2, k33 = µ + t
′
3d3 + η16 + m3 + t2α2 + µ2, and

k34 = µ + µ2 + t∗3d3 + η∗
13 + t2α2.

The following result is proved by applying the analogous methodology to the sub-model TB-Only.

Lemma 10. The infection-free equilibrium point, ϵD
0 is asymptotically stable if ℜD

0 < 1 unstable if ℜD
0 > 1.

3.4. Analysis of the full model

For the full model (1), infection-free equilibrium point is

ϵG
0 = (ST

0 , SH
0 , SD

0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

and we calculate the basic reproduction number as in the previous sub-models by the next-generation operator
method. The dominant eigenvalues of the next-generation matrix are ℜT

0 ,ℜH
0 and ℜD

0 . Then, the basic
reproduction number of the model (1) is

ℜ0 = max{ℜT
0 ,ℜH

0 ,ℜD
0 }.

Global Stability

Now, we list two conditions that if, also guarantee the global asymptotic stability of the disease-free equilibrium
point. Following [31], we can rewrite the model (1) as

cDα
t S = F(S, I),

cDα
t I = G(S, I), G(S, 0) = 0,

(17)
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where S ∈ R6
+ is the vector whose components are the number of uninfected and recovered and I ∈ R12

+ denotes
the number of infected individuals including the latent and the infectious (the other variables of the model (1)).

The disease-free equilibrium is now denoted by EG
0 = (S∗

0 , 0), S∗
0 = (S0, 0, 0, 0), S0 = (ST

0 , SH
0 , SD

0 ) where ST
0 =

M1

µ + α1 + α2
, SH

0 =
M2

µ + µ1 + α4
and SD

0 =
M3

µ + µ2 + α2
.

The conditions H1 and H2 below must be satisfied to guarantee the global asymptotic stability of EG
0 .

H1 : For cDα
t S = F(S, 0), S∗

0 is globally asymptotically stable,
H2 : G(S, I) = AI − G∗(S, I), G∗(S, I) ≥ 0, for (S, I) ∈ Ω,

(18)

where A = DI G(S∗
0 , 0) (DI G(S∗

0 , 0) is the Jacobian of G at (S∗
0 , 0)) is a M-matrix (the off-diagonal elements of A

are non-negative) and Ω is the biologically feasible region.

For global stability, we have:

Theorem 11. The fixed point EG
0 is a globally asymptotically stable equilibrium of model (1) provided that ℜ0 < 1 and that

the conditions H1 and H2 are satisfied.

This theorem and an analogous proof can be found in the bibliographical reference [32].

proof. Let

F(S, 0) =


M1 − (µ + α1 + α2)ST
M2 − (µ + µ1 + α4)SH
M3 − (µ + µ2 + α2)SD

0
0
0

 .

As F(S, 0) is a linear equation, we have that S∗
0 is globally stable, hence H1 is satisfied. Then,

A =



−k11 0 0 α∗ α∗ α∗ϵ1 α∗ϵ1 α∗ϵ2 α∗ϵ2 α∗ α∗ϵ1 α∗ϵ2
α2 −k21 α2 ω1α∗ ω1α∗ ω1α∗ϵ1 ω1α∗ϵ1 ω1α∗ϵ2 ω1α∗ϵ2 ω1α∗ ω1α∗ϵ1 ω1α∗ϵ2
α1 α4 −k31 ω2α∗ ω2α∗ ω2α∗ϵ1 ω2α∗ϵ1 ω2α∗ϵ2 ω2α∗ϵ2 ω2α∗ ω2α∗ϵ1 ω2α∗ϵ2

(1 − β∗)η 0 0 −k12 0 0 0 0 0 0 0 0
(1 − p1)β∗η 0 0 l1 −k13 0 0 0 0 0 0 0

0 (1 − β∗)ϵ∗1 η 0 α2 0 −k22 α2 0 0 0 0 0
0 (1 − p2)β∗ϵ∗1 η 0 0 α2 l2 −k23 0 α2 0 0 0
0 0 (1 − β∗)ϵ∗2 η α1 0 α4 0 −k32 0 0 0 0
0 0 (1 − p3)β∗ϵ∗2 η 0 α1 0 α4 l3 −k33 0 0 0

p1 β∗η 0 0 0 η14 0 0 0 0 −k14 0 0
0 p2ϵ∗1 β∗η 0 0 0 0 η15 0 0 α2 −k24 α2
0 0 p3ϵ∗2 β∗η 0 0 0 0 0 η16 α1 α4 −k34


,

I =
(
ET , EH , ED, IT1 , IT2 , IH1 , IH2 , ID1 , ID2 , RT1 , RH1 , RD1

)
,

G∗(S, I) = AIT − G(S, I),

G∗(S, I) =



G∗
1 (S, I)

G∗
2 (S, I)

G∗
3 (S, I)

G∗
4 (S, I)

G∗
5 (S, I)

G∗
6 (S, I)

G∗
7 (S, I)

G∗
8 (S, I)

G∗
9 (S, I)

G∗
10(S, I)

G∗
11(S, I)

G∗
12(S, I)


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=



α∗(IT1 + IT2 + RT1 + ϵ1(IH1 + IH2 + RH1) + ϵ2(ID1 + ID2 + RD1))

(
1 −

ST + β
′
1RT

N

)
ω1α∗(IT1 + IT2 + RT1 + ϵ1(IH1 + IH2 + RH1) + ϵ2(ID1 + ID2 + RD1))

(
1 −

SH + β
′
1RH

N

)
ω2α∗(IT1 + IT2 + RT1 + ϵ1(IH1 + IH2 + RH1) + ϵ2(ID1 + ID2 + RD1))

(
1 −

SD + β
′
1RD

N

)
0
0
0
0
0
0
0
0
0



.

Since ST + β
′
1RT , SH + β

′
1RH and SD + β

′
1RD are always less than or equal to N,

ST + β
′
1RT

N
≤ 1,

SH + β
′
1RH

N
≤ 1

and
SD + β

′
1RD

N
≤ 1. Thus G∗(S, I) ≥ 0 for all (S, I) ∈ D. The EG

0 is a globally asymptotically stable. ■

4. Numerical results

The goal of this section is to simulate the model (1). The numerical results of the Caputo derivative are obtained
by the predictor-corrector PECE method of Adams-Bashforth-Moulton type [33, 34]. We use 10 years as the
time horizon. The simulations are conducted with different values of the order of the fractional derivative α =
0.3, 0.5, 0.7, 0.9, 1. The Table 2 shows the values used as the initial conditions and parameters for the simulations.
We present the results of the simulations for the resistance compartments.

Table 2. Values of variables and parameters used in the model (1)

Variables Value Variables Valuee Variables Value
ST(0) 8741400 SH(0) 111000 SD(0) 200000
ET(0) 565600 EH(0) 5000 ED(0) 8500
IT1 (0) 20000 IH1 (0) 1400 ID1 (0) 1800
IT2 (0) 1300 IH2 (0) 400 ID2 (0) 550
RT1 (0) 700 RH1 (0) 210 RD1 (0) 250
RT(0) 8800 RH(0) 500 RD(0) 300
Parameters Value Reference Parameters Value Reference
M1, M2, M3 667685, 10000, 50000 [35], Assumed, Assumed α∗ 9.5 [35–37]
α1, α2 0.0075, 0.009 Assumed, [35, 36] ω1, ω2 1.22, 1.10 [35, 36, 38], assumed
α4 17.3 (per thousand people per year) [39] ϵ1, ϵ2 1.3, 1.1 Assumed, [35, 36]
µ, µ1, µ2 1/53.5, 0.045, 0.03 [35, 36, 38], Assumed η, β∗ 0.5, 0.04 [35, 36, 38, 40, 41]
d1, d2, d3 0.275, 0.33, 1.5 ∗ d1 [35, 36, 38] ϵ∗1 , ϵ∗2 1.3, 1.1 [38], Assumed
t∗1 , t∗2 , t∗3 1.01, 1.02, 1.01 Assumed t′1, t′2, t′3 1, 1.01, 1 Assumed
β
′
1 0.9 [38] l1, l2, l3 0.0018, 0.0022, 0.0048 [37, 42–44], Assumed

m1, m2, m3 0.6266,0.45,0.4054 [35, 36], Assumed η14, η15, η16 0.013, 0.022, 0.006 [37, 42–44], Assumed
η11, η12, η13 0.7372, 0.55, 0.7372 [35, 36], Assumed p1, p2, p3 0.00225,0.0035,0.0041 [40, 41, 45], Assumed
η∗

11, η∗
12, η∗

13 0.4006,0.255,0.3317 [35, 36], Assumed t1, t2, t3 1.01, 1.01, 1.01 Assumed

For MDR-TB cases in all subpopulations at the beginning of the study, we have a decrease in the number of
cases reported. Initially, fewer cases are reported for the lower α-values (lower α-values implies fewer cases). At
about the year of study (depending on the sub-population) behavior changes and higher α-values report lower
numbers of cases, see Figures 1b, 1d and 1f. Then a growth begins in all sub-populations of MDR-TB and at
the end of the study period, a higher number of cases was reported for the highest α-values, see Figures 1a, 1c
and 1e. The highest number of MDR-TB cases was reported by the TB-Only sub-population followed by the
TB-Diabetes sub-population throughout the study period and for the different α-values. Due to these results, it
is recommended to apply MDR-TB control in all sub-populations at the beginning of the study period to control
the growth in the number of cases.

The XDR-TB cases in the TB-Only sub-population decreased throughout the study period. At the beginning of the
study, fewer cases were reported in less time for lower α-values but at the end of the study period, the opposite
occurred (higher α-values reported a lower number of cases). We must pay attention when α = 1 because at the
end of the study there is a slight increase in the number of cases, see Figures 2a and 2b.
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Figure 1. Behavior of MDR-TB cases for different α-values over time
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Figure 2. Behavior of XDR-TB cases for different α-values over time
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In the TB-HIV/AIDS sub-population at the beginning of the study, there is a decrease in the number of cases
where lower α-values report fewer cases (up to approximately one year of study). Over time, the decrease in the
number of cases continues, but now with higher α-values the number of cases is lower. Approximately 5 years
into the study, we have an increase in the number of cases for α > 0.5 and at the end of the period of study, we
have differentiated results for the different α. For α > 0.5, higher α-values the number of reported cases is higher.
For α > 0.5, higher α-values reported a higher number of cases. For α ≤ 0.5, the opposite is true, at lower α-
values the number of reported cases is higher, see Figures 2c and 2d. This event is important to take into account
for the application of an effective control strategy in this sub-population. We recommend applying control from
the beginning of the study in order to avoid the growth of cases taking advantage of the initial decrease in these
compartments.

In the TB-Diabetes sub-population, there was an increase in the number of cases during the full study period. At
the beginning of the study, the highest number of cases was reported for lower α-values, see Figure 2f. At the end
of the study period, it happens that higher α- values report a higher number of cases, see Figure 2e. In general, the
highest number of XDR-TB cases was reported from the TB-Diabetes sub-population. We recommend applying
an effective control strategy in this sub-population with the objective of reducing the number of XDR-TB cases
due to the growth of cases throughout the study period for all α-values.

During the computational experimentation, we found that the MDR-TB compartments have a decrease at the
beginning of the study period and a growth at the end for the different α-values, which allows us to design
a control strategy with the objective of avoiding the growth of the number of cases. For XDR-TB cases, we
recommend paying attention to the TB-HIV/AIDS and TB-Diabetes sub-populations due to the growing number
of cases. In particular to the diabetic XDR-TB cases because they report the highest number of cases among all
TB treatment resistance compartments.

5. Conclusions

In this paper, a mathematical model for the efficacy of TB treatment taking into account its relationship with
HIV/AIDS and diabetes that is in [25] using fractional order derivatives in the Caputo sense is formulated.
We studied MDR-TB and XDR-TB in the different sub-populations TB-Only, TB-HIV/AIDS, and TB-Diabetes.
We calculated and analyzed the break-even points of the different sub-populations using the next-generation
matrix method. The study of the basic reproduction number per sub-population allows us to know how the
epidemic will behave specifically in these sub-populations and to obtain information on the full model (1), since
the basic number of reproduction of the full model is defined as the maximum of the basic reproduction number
of the sub-populations (ℜ0 = max{ℜT

0 ,ℜH
0 ,ℜD

0 }). If ℜ0 = max{ℜT
0 ,ℜH

0 ,ℜD
0 } > 1, this implies that at least one

(can be all) of the basic reproduction numbers will be greater than unity, thus the infection will be able to start
spreading in a population and specifically in sub-populations with basic reproduction number greater than unity.
If ℜ0 = max{ℜT

0 ,ℜH
0 ,ℜD

0 } < 1 this implies that the basic reproduction number by subpopulations and overall
are less than unity with we have that the infection will die out in the long run. The results 8-11 show the behavior
of the infection-free equilibrium points for the sub-populations and the general population depending on the
value of the basic reproduction number.

For the computational simulations, we used a predictor-corrector method in order to study the behavior of the
different resistance compartments over time for different α-values. From the results of the simulations, we have
that in MDR-TB at the beginning of the study, there is a decrease of cases in all sub-populations. Then the
number of cases begins to grow and at the end of the study period in MDR-TB, a higher number of cases is
obtained for the higher α-values. For MDR-TB control, we recommended controlling from the beginning of the
study to avoid the growth in the number of cases. Throughout the study, the number of XDR-TB cases in the
TB-Only sub-population decreased. The XDR-TB cases in the TB-HIV sub-population initially have a decrease in
the number of cases. Approximately 5 years into the study there is a growth in the number of cases for α > 0.5
and at the end of the study, there is a differentiated behavior, for α > 0.5 the higher α-values reported a higher
number of cases and for α ≤ 0.5 the lower the α-values the higher number of cases reported. This factor must
be taken into account to design an effective control strategy. In the TB-Diabetes sub-population throughout the
study period, there is an increase in the number of XDR-TB cases. At the beginning for lower α-values the
number of cases is higher and at the end of the period, the opposite situation occurs. The diabetic XDR-TB are
the highest number of resistance cases compared to all TB treatment resistance compartments. We recommend
paying special attention to the control in this compartment due to its growth. This work allowed us to study
the model for derivatives of different orders, taking advantage of the facilities that fractional derivatives allow
us. Computer simulations provide information for an effective design of a control strategy for Tuberculosis
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(treatment resistance and transmission). In future work, we will study the optimal control problem of reducing
resistance to TB treatment with this model, and perform computational simulations in real scenarios.
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