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Stability and bifurcation of a two competing prey-one
predator system with anti-predator behavior

Debasis Mukherjee1,∗

1Department of Mathematics, Vivekananda College, Thakurpukur, Kolkata-70063, India

ABSTRACT. This article considers the impact of competitive response to interfering time and anti-predator behavior
of a three species system in which one predator consumes both the competing prey species. Here one of the competing
species shows anti-predator behavior. We have shown that its solutions are non-negative and bounded. Further, we
analyze the existence and stability of all the feasible equilibria. Conditions for uniform persistence of the system
are derived. Applying Bendixson’s criterion for high-dimensional ordinary differential equations, we prove that the
coexistence equilibrium point is globally stable under specific conditions. The system admits Hopf bifurcation when
anti-predator behavior rate crosses a critical value. Analytical results are verified numerically.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96119, Indonesia.

1. Introduction
In population biology, competition and predation are two

fundamental interspecific interactions. Basic questions arise how
predation affect competitive interactions. Usually predators at-
tack weak competitor. In that case a superior competitor plays
an important role in structuring the community. Actually, there
are some situations where a superior competitor shows anti-
predator behavior which in turn reduce the predation pressure.
This fact occurs due to the evolutionary adaptation of prey and
predator. The prey with the anti-predator behavior may pro-
mote coexistence of all the species. Several studies are carried
out to focus anti-predator behavior [1–4]. Though there are ev-
idence of the anti-predator behavior, mathematical model using
this aspect is few [1, 2, 5]. Ives and Dobson [2] investigated anti-
predator behavior in predator-prey model and found that anti-
predator behavior increases the density of prey and reduces the
ratio of predator-to-prey density and induces damps oscillation
in the predator-prey system. Tang and Xiao [5] analyzed the dy-
namical behavior of predator-prey model with a non-monotonic
functional response and anti-predator behavior. They showed
that anti-predator behavior enhances the coexistence of the prey
and predator and also damps the predator-prey oscillations.

Previous studies [2, 5] did not consider the density of prey
in anti-predator behavior. Saito [6] pointed out that the density
of prey is a factor in anti-predator activity. Janssen et al. [7] re-
marked that prey population can kill the predator when the size
of the prey attain a certain level. Sun et al. [8] investigated a
piecewise dynamic system to address the impact of anti-predator
behavior on predator-prey system. They remarked that an in-
creasing amount of anti-predator behavior rate causes the prey
population to persist though the coexistence of all species of the
system depends upon the anti-predator behavior. Prasad and
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Prasad [9] suggested additional food to a predator in predator-
prey system with anti-predator behavior to control the loss in
predator population. Tang and Qin [10] studied a predator-prey
model with stage structure and anti-predator behavior. They
obtained forward and backward bifurcation and mentioned the
impact of anti-predator behavior upon the equilibrium level of
prey equilibrium density. Mortoja et al. [11] discussed the anti-
predator behavior in stage structure predator-prey model with
Holling type II and IV predator functional response. These studies
are mainly confined into two interacting populations. But in real
ecosystem, complicated dynamics emerges when there are more
than two interacting species. Fujii [12] analyzed two prey-one
predator model with competition between the prey species and
observed globally stable limit cycle surrounding the unstable co-
existence equilibrium point. Takeuchi and Adachi [13] discussed
the stable behavior of two prey, one predator communities. They
remarked that chaotic motion arises from periodic motion when
one of two prey has greater competitive abilities than the other
and predator mediated coexistence is possible depending on the
preferences of a predator and competitive abilities of two prey.
Deka et al. [14] studied the effect of predation on two competing
prey species in the general Gauss type model.

In view of the above, we have interested to study predator-
prey interaction with anti-predator behavior along with competi-
tion between the prey species where each species invest time in
competing individual of the other species. The competition term
suggested in [15] is considered here. Here we consider two com-
peting prey species which share a common predator. Further-
more, one of the competing prey shows anti-predator behavior.
For example, Uganda kobs and buffalo are two competing prey
species. Lions predate both the prey species. The buffalo has
adopted anti-predator behavior.

The rest of the paper is structured as follows. The model is
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presented in Section 2. Positivity and boundedness are checked
in Section 3. The existence and stability of various steady states
and persistence are discussed in Section 4. Global stability anal-
ysis is carried out in Section 5. Bifurcation result is prescribed
in Section 6. Numerical computations are given in Section 7. A
brief discussion follows in Section 8.

2. Model Formulation
Recently, Castillo-Alvino and Marvá [15] revisited the clas-

sical two species Lotka-Volterra competition model considering
the time spent in competition for the interacting species. They
proposed the model by incorporating Holling type II competition
response to interference time as follows:

dx1
dt

= x1

(
r1 − a11x1 −

a12x2
1 + a1x1

)
,

dx2
dt

= x2

(
r2 − a22x2 −

a21x1
1 + a2x2

)
,

(1)

with xi (0) > 0, i = 1, 2.
The variables x1 and x2 denote the densities of two com-

peting species at time t respectively. r1 and r2 represent the
intrinsic growth rate of both the species. aii denotes the intra-
specific competition of species i. aij measures the action of
species j upon the growth rate of species i. ai denotes the
searching rate. It is assumed that a1 ̸= a2. In [15], the authors
showed that the more time interfering with competition takes,
the more likely coexistence and also obtained multi-stability sce-
narios. In the above study, the role of predator is not considered.
Also anti-predator behavior of prey that exhibit complex dynam-
ics has not been investigated yet. So we incorporate a predator
y in system (1) with Holling type II predator functional response
and the prey x2 exhibits anti-predator behavior in the form stud-
ied in [19] is considered here. Thus (1) transformed into:

dx1
dt

= x1

(
r1 − a11x1 −

a12x2
1 + a1x1

− p1y

1 + b1x1

)
,

dx2
dt

= x2

(
r2 − a22x2 −

a21x1
1 + a2x2

− p2y

1 + b2x2

)
,

dy

dt
= y

(
−d+ c1p1x1

1 + b1x1
+

c2p2x2
1 + b2x2

− αx2
1 + βy

)
,

(2)

with xi (0) > 0, i = 1, 2, y (0) > 0.
Here p1 and p2 represent the per capita predator consump-

tion rate, b1 and b2 denote the constant handling time for each
prey captured. c1 and c2 are the conversion rate of prey biomass
to predator biomass. 1/β is the half saturation constant. α/β is
the maximal anti-predator efficiency of the prey x2. α denotes
anti-predator rate. The anti-predator behavior of prey is assumed
to resist predator aggression, though the growth of prey popula-
tion is not increased still it can reduce the growth of the predator
population.

3. Positivity and Boundedness of Solutions
In this section, we present positivity and boundedness of

solutions of system (2) which ensure the biological validity of the
model. We first check positivity.

Lemma 1. All solutions (x1 (t) , x2 (t) , y (t)) of system (2) with
initial values (x10, x20, y0) ∈ R3

+ remain positive for all t > 0.

Proof. The positivity of x1 (t) , x2 (t) , y (t) can be shown by the
equations

x1 (t) = x10 exp
(∫ t

0

{
r1 − a11x1 (s)−

a12x2 (s)

1 + a1x1 (s)

− p1y (s)

1 + b1x1 (s)

}
ds

)
,

x2 (t) = x20 exp
(∫ t

0

{
r2 − a22x1 (s)−

a21x1 (s)

1 + a2x2 (s)

− p2y (s)

1 + b2x2 (s)

}
ds

)
,

y (t) = y0 exp
(∫ t

0

{
−d+ c1p1x1(s)

1 + b1x1(s)
+

c2p2x2(s)

1 + b2x2(s)

− αx2(s)

1 + βy(s)

}
ds

)
,

with x10, x20, y0 > 0. As x10 > 0 then x1 (t) > 0 for all t > 0.
Similarly we can show that x2 (t) > 0 and y (t) > 0 for all t > 0.
Hence the interior of R3

+ is an invariant set of system (2).

Lemma 2. All solutions (x1 (t) , x2 (t) , y (t)) of system (2) with
initial values (x10, x20, y0) ∈ R3

+ are bounded; furthermore,
they enter the region

B =
{
(x1, x2, y) ∈ R3

+ : 0 ≤ c1x1 + c2x2

+y ≤ (r1 + τ)2

4
a11τ +

(r2 + τ)2

4a22τ

}
, where τ < d.

Proof. Define the function

W (t) = c1x1 + c2x2 + y.

The time derivative along a solution of (2) is

dW (t)

dt
= c1x1

(
r1 − a11x1 −

a12x2
1 + a1x1

)
+ c2x2

(
r2 − a22x2 −

a21x1
1 + a2x2

)
− y

(
d+

αx2
1 + βy

)
.

For each τ > 0, the following inequality is fulfilled.

dW

dt
+ τW ≤ c1x1 (r1 − a11x1 + τ)

+ c2x2 (r2 − a22x2 + τ) + y (τ − d)

≤ − c1a11

{(
x1 −

r1 + τ

2a11

)2

−
(
r1 + τ

2a11

)2
}

− c2a22

{(
x2 −

r2 + τ

2a22

)2

−
(
r2 + τ

2a22

)2
}
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+ y(τ − d). (3)

Now choose τ < d. Therefore (3) leads to

dW

dt
+ τW ≤ (r1 + τ)

2

4a11
+

(r2 + τ)
2

4a22
.

By applying comparison theorem [16], we have

0 ≤W (x1 (t) , x2 (t) , y (t))

≤ (r1 + τ)
2

4a11τ
+

(r2 + τ)
2

4a22τ
+
W (x1 (0) , x2 (0) , y (0))

eτt
.

Passing to the limit as t→ ∞, we get

0 < W (t) ≤ (r1 + τ)
2

4a11τ
+

(r2 + τ)
2

4a22τ
= N (say).

Hence system (2) is bounded. From above lemma we can con-

clude that x1(t) ≤
N

c1
, x2(t) ≤

N

c2
, and y(t) ≤ N .

4. Existence of Equilibria and Stability Analysis
4.1. Existence of equilibria

Evidently, system (2) has six non-negative equilibrium
points. The population free equilibrium point E0 = (0, 0, 0) .

The first prey only equilibrium point E1 =

(
r1
a11

, 0, 0

)
. The

second prey only equilibrium point E2 =

(
0,

r2
a22

, 0

)
. Here E0,

E1, and E2 always exist. The predator free equilibrium point
E12 = (x1, x2, 0) . The equilibrium point E12 can be found in
x1 − x2 plane provided it satisfies the following equations:

r1 − a11x1 −
a12x2

1 + a1x1
= 0, (4)

r2 − a22x2 −
a21x1

1 + a2x2
= 0. (5)

From eq. (4), we find the value of x2 as

x2 =
(r1 − a11x1)(1 + a1x1)

a12
. (6)

Now using the value of x2 in. eq. (5), we get the following equa-
tion in x1,

f (x1) = α0x
4
1 + α1x

3
1 + α2x

2
1 + α3x1 + α4 = 0 (7)

where

α0 = a2a22a
2
11a

2
1, ,

α1 = 2a1a2a11a22 (a11 − r1a1) ,

α2 = a2a22

{
(r1a11 − a11)

2 − 2a11a1r1

}
+ a11a1a12 (r2a2 − a22a12) ,

α3 = a2 (r1a1 − a11) (2a22r1 − r2a12) + a212a21,

α4 = (a22r1 − r2a2) (r2a2 + a12) .

Now f (0) = (a22r1 − r2a2) (r2a2 + a12) and f

(
r1
a11

)
=

r1a21 − r2a11
a11

. Clearly, eq. (7) has a positive root between 0 and

r1
a11

if f (0) and f
(
r1
a11

)
are of opposite sign. We note that if

a12
a22

>
r1
r2
>
a11
a21

or
a12
a22

<
r1
r2
<
a11
a21

(8)

then eq. (7) has a positive root. Thus E12 is feasible if (8) and
r1 > a11x1 hold.

The first prey and predator only equilibrium point

E13 = (x̂1, 0, ŷ) where x̂1 =
d

c1p1 − db1
and ŷ =

(r1 − a11x̂1)(1 + b1x̂1)

p1
. It can be shown that E13 is feasible if

db1 < c1p1 and r1 > a11x̂1.
The second prey and predator only equilibrium point

E23 = (0, x̃2, ỹ). The equilibrium point E23 can be found in
x2 − y plane provided it satisfies the following equations:

r2 − a22x2 −
p2y

1 + b2x2
= 0, (9)

−d+ c2p2x2
1 + b2x2

− αx2
1 + βy

= 0. (10)

From eq. (9), we find the value of y as

y =
(r2 − a22x2)(1 + b2x2)

p2
.

Now using the value of y in. eq. (10), we get the following equa-
tion in x2,

g (x2) = β0x
3
2 + β1x

2
2 + β2x2 + β3 = 0 (11)

where

β0 = βa22 (c2p2b2 − d) ,

β1 = dβ (r2 − 2a22b2) + p2 (αb2 + βc2a22 − βc2r2b2) ,

β2 = p2 (db2 + α− c2p2 − c2βr2) + dβ (2r2b2 − a22) ,

β3 = d(p2 + βr2).

We note that

g (0) = d(p2 + βr2) > 0 and

g

(
r2
a22

)
=

p2
a222

{(da22 + αr2) (a22 + b2r2)− c2p2r2a22}

Clearly, g
(
r2
a22

)
< 0 if

(da22 + αr2) (a22 + b2r2) < c2p2r2a22. (12)

If the inequality (12) hold then eq. (11) has a positive root x̃2
between 0 and

r2
a22

. Thus E23 is feasible if (12) and r2 > a22x̃2

hold.
To locate the coexistence equilibrium point E∗ =

(x∗1, x
∗
2, y

∗) of system (2), we use isocline method. x∗1, x
∗
2 and y∗

are the positive solutions of the following system of equations:

r1 − a11x1 −
a12x2

1 + a1x1
− p1y

1 + b1x1
= 0, (13)
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r2 − a22x2 −
a21x1

1 + a2x2
− p2y

1 + b2x2
= 0, (14)

−d+ c1p1x1
1 + b1x1

+
c2p2x2
1 + b2x2

− αx2
1 + βy

= 0. (15)

From, equation (13), we get

y =
(1 + b1x1)

p1

{
r1 − a11x1 −

a12x2
1 + a1x1

}
= ye. (say)

For positivity of y, r1 > a11x1 +
a12x2

1 + a1x1
. Now, we substitute

the value of y in (14) and (15) and obtain

f1 (x1, x2) = r2 − a22x2 −
a21x1

1 + a2x2
− p2ye

1 + b2x2
= 0, (16)

f2 (x1, x2) = − d+
c1p1x1
1 + b1x1

+
c2p2x2
1 + b2x2

− αx2
1 + βye

= 0.

(17)

In eq. (16), when x2 → 0, we have r2 − a21x1 − p2ye = 0. Now,
we have

dx1
dx2

= − ∂f1
∂x2

/
∂f1
∂x1

= −M1

N1

where

M1 = − a22 +
a21a2x1

(1 + a2x2)
2

+ p2

{
a12 (1 + b1x1)

p1 (1 + a1x1) (1 + b2x2)
+

b2ye

(1 + b2x2)
2

}
,

N1 = − a21
1 + a2x2

− p2
1 + b2x2

{
b1
p1

(
r1 − a11x1 −

a12x2
1 + a1x1

)
+
(1 + b1x1)

p1

(
−a11 +

a12a1x1

(1 + a1x1)
2

)}
.

It is clear that
dx1
dx2

> 0 if either (i) M1 > 0 and N1 < 0 or (ii)

M1 < 0 and N1 > 0 hold. Also we get,

dx1
dx2

= − ∂f2
∂x2

/
∂f2
∂x1

= −M2

N2

where

M2 =
c2p2

(1 + b2x2)
2 − α

{
1

1 + βye
+

βa12x2 (1 + b1x1)

(1 + a1x1) (1 + βye)
2

}
,

N2 =
c1p1

(1 + b1x1)
2 + αβx2

{
b1
p1

(
r1 − a11x1 −

a12x2
1 + a1x1

)
+
(1 + b1x1)

p1

(
−a11 +

a12a1x2

(1 + a1x1)
2

)}
.

We note that
dx1
dx2

< 0 if either (i) M2 > 0 and N2 > 0 or (ii)

M2 < 0 and N2 < 0.
From the above analysis, we conclude that the two isoclines

(16) and (17) intersect at the point (x∗1, x
∗
2) under certain condi-

tions. Throughout this paper we assume that E∗ exists.

4.2. Stability analysis
The local stability properties of the equilibrium points can

be determined through the Jacobian matrix around each equilib-
rium point. Clearly, E0 is always unstable. Otherwise, we have
1. E1 is locally stable if r2a11 < a21r1 and d (a11 + b1r1) >
c1p1r1.

2. E2 is locally stable if r1a22 < a12r2 and
(da22 + αr2) (a22 + b2r2) > a22c2p2r2.

3. E12 is locally stable if d+αx2 >
c1p1x1
1 + b1x1

+
c2p2x2
1 + b2x2

and

a11x1 + a22x2 > x1x2{
a12a1

(1 + a1x1)
2 +

a21a2

(1 + a2x2)
2 }.

4. E13 is locally stable if r2 < a21x̂1 + p2ŷ and a11x̂1 >
b1p1x̂1ŷ

(1 + b1x̂1)
2 .

5. E23 is locally stable if r1 < a12x̃2 + p1ỹ, a22 >

ỹ

{
p2b2

(1 + b2x̃2)
2 +

αβ

(1 + βỹ)
2

}
and

c2p2

(1 + b2x̃2)
2 >

α

1 + βỹ
.

To determine the stability of interior equilibrium point E∗, we
find out the characteristic equation around E∗ which is given by

λ3 + γ1λ
2 + γ2λ+ γ3 = 0 (18)

where

γ1 = a11x
∗
1 −

a12a1x
∗
1x

∗
2

(1 + a1x∗1)
2 − b1p1x

∗
1y

∗

(1 + b1x∗1)
2 + a22x

∗
2

− a21a2x
∗
1x

∗
2

(1 + a2x∗2)
2 − b2p2x

∗
2y

∗

(1 + b2x∗2)
2 − αβx∗2y

∗

(1 + βy∗)
∗ ,

γ2 =

{
a11x

∗
1 −

a12a1x
∗
1x

∗
2

(1 + a1x∗1)
2 − b1p1x

∗
1y

∗

(1 + b1x∗1)
2

}
{
a22x

∗
2 −

a21a2x
∗
1x

∗
2

(1 + a2x∗2)
2 − b2p2x

∗
2y

∗

(1 + b2x∗2)
2

}

− αβx∗2y
∗

(1 + βy∗)
2

{
a11x

∗
1 −

a12a1x
∗
1x

∗
2

(1 + a1x∗1)
2 − b1p1x

∗
1y

∗

(1 + b1x∗1)
2

+a22x
∗
2 −

a21a2x
∗
1x

∗
2

(1 + a2x∗2)
2 − b2p2x

∗
2y

∗

(1 + b2x∗2)
2

}

− p2x
∗
2y

∗

1 + b2x∗2

{
c2p2

(1 + b2x∗2)
2 − α

1 + βy∗

}

− a12a21x
∗
1x

∗
2

(1 + a1x∗1)(1 + a2x∗2)
+

c1p
2
1x

∗
1y

∗

(1 + b1x∗1)
3 ,

γ3 =
αβx∗2y

∗

(1 + βy∗)
2 − a12a21x

∗
1x

∗
2

(1 + a1x∗1) (1 + a2x∗2)

−

(
a11x

∗
1 −

a12a1x
∗
1x

∗
2

(1 + a1x∗1)
2 − b1p1x

∗
1y

∗

(1 + b1x∗1)
2

)
(
a22x

∗
2 −

a21a2x
∗
1x

∗
2

(1 + a2x∗2)
2 − b2p2x

∗
2y

∗

(1 + b2x∗2)
2

)

−

(
c2p2

(1 + b2x∗2)
2 − α

1 + βy∗

)
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(
p2x

∗
2y

∗

1 + b2x∗2

(
a11x

∗
1 −

a12a1x
∗
1x

∗
2

(1 + a1x∗1)
2 − b1p1x

∗
1y

∗

(1 + b1x∗1)
2

)

+
p1a21x

∗
1x

∗
2y

∗

(1 + b1x∗1)(1 + a2x∗2)

)
− 1

(1 + b1x∗1)
3(

c1p
2
1x

∗
1

(
a22x

∗
2 −

a21a2x
∗
1x

∗
2

(1 + a2x∗2)
2 − b2p2x

∗
2y

∗

(1 + b2x∗2)
2

)

+
a12c2p1p2x

∗
1x

∗
2y

∗

1 + a1x∗1

)
From the Routh-Hurwitz criterion, we can say that E∗ is locally
asymptotically stable if the following conditions are satisfied.

γ1 > 0, γ3 > 0 and γ1γ2 > γ3. (19)

4.3. Persistence
If all the solutions of system (2) enter the compact region

M ⊂ G = {(x1, x2, y) : x1 > 0, x2 > 0, y > 0} then the system
is said to be persistent.

We now present persistence criterion.

Proposition 1. Suppose E12, E13 and E23 exist. Further sup-
pose that there are no limit cycles in x1 −x2, x1 − y and x2 − y
plane. If r2a11 > a21r1, r1a22 > a12r2, d + αx2 <
c1p1x1
1 + b1x1

+
c2p2x2
1 + b2x2

, r2 > a21x̂1 + p2ŷ and r1 > a12x̃2 +

p1ỹ then system (2) is uniformly persistent.

Proof. Proceeding along the lines in [17], we can prove the theo-
rem and is deleted here.

Remark 1. System (2) is uniformly persistent when the condi-
tions in Proposition 1 are satisfied. Thus we infer that there
exist a time T such that x1 (t) , x2 (t) , y (t) > K, 0 < K <
r1
a11

for t > T.

Remark 2. If there are finite number of limit cycles, then per-
sistence conditions in Proposition 1 becomes∫ σ

0

(
−d+ c1p1ϕ (t)

1 + b1ϕ (t)
+

c2p2ψ (t)

1 + b2ψ (t)
− αψ (t)

)
dt > 0,∫ σ

0

(
r2 − a21ϕ̂ (t)− p2ψ̂ (t)

)
dt > 0,∫ σ

0

(
r1 − a12ϕ̃ (t)− p1ψ̃(t)

)
dt > 0.

For each limit cycle, (ϕ (t) , ψ (t)) in the x1 − x2 plane,
(ϕ̂ (t) , ψ̂ (t)) in the x1−y plane and (ϕ̃ (t) , ψ̃(t)) in the x2−y
respectively where σ is the appropriate period.

5. Global Stability Analysis
We have already observed that the coexistence equilibrium

point E∗ will be locally stable when the inequalities (19) are sat-

isfied. So it will be of interest to know whether this equilibrium
point is globally stable or not. Usually Lyapunov function is used
to examine the global stability. But it is not always possible to
find a suitable Lyapunov function to prove global stability. In
that case, an alternative approach developed in [18] is used. Now
we apply a high-dimensional Bendixson’s criterion of Li and Mul-
downey [18], which is demonstrated below.

LetD ⊂ Rn be an open set and F ϵ C1. Consider a system
of differential equations

dX

dt
= F (X) . (20)

According to the theory described in [18], it is sufficient to show
that the second compound equation

dU

dt
=
∂F [2]

∂X
(X (t,X0))U(t) (21)

with respect to a solution X (t,X0) of system (20) is equi-
uniformly asymptotically stable, namely, for each X0 ∈ D, sys-
tem (21) is uniformly asymptotically stable and the exponential
decay rate is uniform forX0 in each compact subset ofD, where
D ⊂ Rn is an open connected set. Here ∂F/∂X [2] is the second
additive compound matrix of the Jacobian matrix ∂F [2]/∂X . It

is an
(
n
2

)
×
(
n
2

)
matrix and thus (21) is a linear system of

dimension
(
n
2

)
(see Fiedler [19] and Muldowney [20]). For a

general 3× 3 matrix

M =

 m11 m12 m13

m21 m22 m23

m31 m32 m33

 ,

Its compound matrixM [2] is

M [2] =

 m11 +m22 m23 −m13

m32 m11 +m33 m12

−m31 m21 m22 +m33

 . (22)

The equi-uniform asymptotic stability of (21) implies the expo-
nential decay of the surface area of any compact two-dimensional
surfaceD. IfD is simply connected, then it will not allow any in-
variant simple closed rectifiable curve in D, including periodic
orbits. The following result is proved in [18].

Proposition 2. LetD ⊂ Rn be simply connected region. Assume
that the family of linear systems (21) is equi-uniformly asymptoti-
cally stable. Then
(i) D contains no simple closed invariant curves including peri-

odic orbits, homoclinic orbits, heteroclinic cycles;
(ii) each semi-orbit in D converges to a single equilibrium.

In particular, if D is positively invariant and contains an unique
equilibrium X , then X is globally asymptotically stable inD.

One can prove uniform asymptotic stability of system (21)
by constructing a Lyapunov function. For example, (21) is equi-
uniformly asymptotically stable if there exists a positive definite
function V (U), such that dV (U)/dt|(21) is negative definite and
V and dV (U)/dt|(21) are independent of X0.
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We need the following assumptions to show the global sta-
bility of the coexistence equilibrium point E∗ of system (2).
(A1) There exist positive numbers ρ and η such that

max
{
c11 +

c12ρ

η
+ c13ρ,

c21η

ρ
+ c22 + c23η,

c31
ρ

+
c32
η

+ c33

}
< 0

(A2) All the assumptions of Proposition 1 hold.
We again denote X = (x1, x2, y)

T and

F (X) =

(
x1

(
r1 − a11x1 −

a12x2
1 + a1x1

− p1y

1 + b1x1

)
,

x2

(
r2 − a22x2 −

a21x1
1 + a2x2

− p2y

1 + b2x2

)
,

y

(
−d+ c1p1x1

1 + b1x1
+

c2p2x2
1 + b2x2

− αx2
1 + βy

))T

and by (22)

∂F [2]

∂X
=

 n11 n12 n13
n21 n22 n23
n31 n32 n33


where

n11 = r1 + r2 − 2 (a11x1 + a22x2)−
a12x2

(1 + a1x1)
2

− a21x1

(1 + a2x2)
2 − p1y

(1 + b1x1)
2 − p2y

(1 + b2x2)
2 ,

n12 = − p2x2
1 + b2x2

, n13 =
p1x1

1 + b1x1
,

n21 = y

{
c2p2

(1 + b2x2)
2 − α

1 + βy

}
,

n22 = r1 − 2a11x1 −
a12x2

(1 + a1x1)
2 − p1y

(1 + b1x1)
2 − d

+
c1p1x1
1 + b1x1

+
c2p2x2
1 + b2x2

− αx2

(1 + βy)
2 ,

n23 = − a12x1
1 + a1x1

,

n31 = − c1p1y

(1 + b1x1)
2 ,

n32 = − a21x2
1 + a2x2

,

n33 = r2 − 2a22x2 −
a21x1

(1 + a2x2)
2 − p2y

(1 + b2x2)
2 − d

+
c1p1x1
1 + b1x1

+
c2p2x2
1 + b2x2

− αx2

(1 + βy)
2 .

The second compound system is u̇1
u̇2
u̇3

 =
∂F [2]

∂X

 u1
u2
u3


is

u̇1 =

{
r1 + r2 − 2 (a11x1 + a22x2)−

a12x2

(1 + a1x1)
2

− a21x1

(1 + a2x2)
2 − p1y

(1 + b1x1)
2 − p2y

(1 + b2x2)
2

}
u1

− p2x2
1 + b2x2

u2 +
p1x1

1 + b1x1
u3,

u̇2 = y

{
c2p2

(1 + b2x2)
2 − α

1 + βy

}
u1

+

{
r1 − 2a11x1 −

a12x2

(1 + a1x1)
2 − p1y

(1 + b1x1)
2 − d

+
c1p1x1
1 + b1x1

+
c2p2x2
1 + b2x2

− αx2

(1 + βy)
2

}
u2 (23)

− a12x1
1 + a1x1

u3,

u̇3 = − c1p1y

(1 + b1x1)
2u1 −

a21x2
1 + a2x2

u2

+

{
r2 − 2a22x2 −

a21x1

(1 + a2x2)
2 − p2y

(1 + b2x2)
2

−d+ c1p1x1
1 + b1x1

+
c2p2x2
1 + b2x2

− αx2

(1 + βy)
2

}
u3.

where X(t) = (x1(t), x2(t), y(t))
T is arbitrary solution of sys-

tem (2) with X0 (t) = (x10 (t) , x20 (t) , y0 (t))
T ∈ R3

+. Set
W (U) = max{ρ |u1| , η |u2| , |u3|}where ρ, η > 0 are constants.
The direct calculations yield the following inequalities:

d+

dt
ρ |u1| ≤ c11ρ |u1|+

c12ρ η

η
|u2|+ c13ρ |u3| ,

d+

dt
η |u2| ≤

c21 ηρ

ρ
|u1|+ c22 η |u2|+ c23 |u3| η,

d+

dt
|u3| ≤

c31ρ

ρ
|u1|+

c32 η

η
|u2|+ c33 |u3| ,

where d+/dt represents the right hand derivative and

c11 = r1 + r2 − 2K (a11 + a22)−
Ka12c

2
1

(c1 + a1N)
2

− Ka21c
2
2

(c2 + a2N)
2 − Kp1c

2
1

(c1 + b1N)
2 − Kp2c

2
2

(c2 + b2N)
2 ,

c12 = − Kp2c2
c2 + b2N

,

c13 =
NP1

c1 (1 + b1K)
,

c21 =
Nc2p2

(1 + b2K)
2 − αK

1 + βN
,

c22 = r1 − 2a11K − Ka12c
2
1

(c1 + a1N)
2 − Kp1c

2
1

(c1 + b1N)
2

− d+
p1N

1 + b1K
+

p2N

1 + b2N
− αK

(1 + βN)
2 ,

c23 = − Ka12c1
c1 + a1N

,

c31 = − Kp1c
2
1

(c1 + b1N)
2 ,
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c32 =− Ka21c2
c2 + a2N

,

c33 = r2 − 2a22K − Ka21c
2
2

(c2 + a2N)
2 − Kp2c

2
2

(c2 + b2N)
2

− d+
p1N

1 + b1K
+

p2N

1 + b2N
− αK

(1 + βN)
2 .

Therefore,
d+

dt
W (U (t)) ≤ LW (U (t))

with

L = max
{
c11 +

c12ρ

η
+ c13ρ,

c21η

ρ
+ c22 + c23η,

c31
ρ

+
c32
η

+ c33

}
.

Thus under assumptions (A1) and (A2), we find a positive
constant δ such that L ≤ −δ < 0 and thus

W (U (t)) ≤W (U (s)) exp(− δ(t− s)), t ≥ s > 0.

This ensures the equi-uniform asymptotic stability of the second
compound system (23) and hence the coexistence equilibrium
point E∗ is globally stable following Proposition 2. From above
analysis, we now state our global stability result.

Theorem 1. If the assumptions (A1) and (A2) hold then system
(2) has no non-trivial periodic solutions. Furthermore, the coexis-
tence equilibrium point E∗ is globally stable in R3

+.

6. Bifurcation Study
Set h (α) = γ1(α)γ2(α)− γ3(α).

Theorem 2. If there existsα = α∗ such that (i) γi (α∗) > 0, i =
1, 2, 3, (ii) h (α∗) = 0, (iii) h/ (α∗) > 0 then the positive equi-
librium point E∗ is unstable if α < α∗ but is stable for α > α∗

and a Hopf bifurcation of periodic solution appears at α = α∗.

Proof. Proceeding along the lines in [21], we can prove the theo-
rem and is deleted here.

7. Numerical Simulations
In this section, we will discuss some examples to validate

our results found in this paper. Numerical simulations are carried
out with the help of a Matlab software package for a hypothetical
set of data.

Example 1. Suppose r1 = 2, a11 = 0.6, a12 = 1, a1 =
0, p1 = 1, b1 = 0.1, r2 = 4, a22 = 3, a21 = 2, a2 = 0, p2 =
0.1, b2 = 0.1, d = 0.5, c1 = 1, c2 = 0.1, α = 0 and β = 0.
In absence of interfering time and anti-predator behavior, an
oscillation is observed in the system around the equilibrium
point E∗(0.0211, 1.3038, 0.4755) (see Figure 1).

Example 2. Suppose r1 = 2, a11 = 0.6, a12 = 1, a1 =
3, p1 = 1, b1 = 0.1, r2 = 4, a22 = 3, a21 = 2, a2 = 1, p2 =
0.1, b2 = 0.1, d = 0.5, c1 = 1, c2 = 0.1, α = 0.1 and β =
0.1. In presence of interfering time and anti-predator behav-
ior, an oscillation persist in the system around the equilib-
rium point E∗(1.8581, 0.7916, 0.3890)(see Figure 2).

Example 3. Taking α = 0.2, keeping all other parameters in
Example 2, unchanged, we observe multiple limit cycles sur-
rounding the equilibrium point E∗(0.4992, 1.1764, 0.7116)
(see Figure 3).

Example 4. Taking α = 0.8, keeping all other parameters
in Example 2, unchanged, a stable behavior is observed and
the solutions converge to the equilibrium point E∗(1.2363,
0.8515, 1.2080) (see Figure 4). Bifurcation diagram with re-
spect to the parameter α is depicted in Figure 5.

Example 5. Suppose r1 = 2, a11 = 1.5, a12 = 1, a1 =
3, p1 = 1, b1 = 0.1, r2 = 4, a22 = 3, a21 = 2, a2 =
1, p2 = 0.1, b2 = 0.1, d = 0.5, c1 = 1, c2 =
0.1, α = 0.1 and β = 0.1. Then, system (2) has an
equilibrium point E∗ (0.6314, 1.1128, 0.7106) . Conditions
of Proposition 1 are satisfied, hence system (2) is uniformly
persistent. We now choose K = 1. With the above
choice of parameters, we obtain c11 = −3.8781, c12 =
−0.028, c13 = 2.336, c21 = −0.0583, c22 = 0.3134, c23 =
−0.1148, c31 = −0.6328, c32 = −0.0749, c33 =
−0.0334. the positive numbers ρ = 1, η = 4 such that
max{−1.5491,−0.3790,−0.6849} < 0. Therefore E∗ is
globally stable (see Figure 6).

Example 6. Suppose r1 = 2, a11 = 0.6, a12 = 1, p1 =
1,b1 = 0.1, r2 = 4, a22 = 3, a21 = 2, a2 = 1, p2 = 0.1, b2 =
0.1, d = 0.5, c1 = 1, c2 = 0.1, α = 0.1 and β = 0.1. Bifur-
cation diagram with respect to the parameter a1 is depicted
in Figure 7.

8. Discussion

In this paper, we have proposed and analyzed the dynam-
ical behavior of two competing prey-one predator model where
competition process obeys Holling type II competitive response
to interfering time and anti-predator behavior. Here we have
assumed that the prey (superior competitor) can counter attack
their predators. There is an upper threshold value of the anti-
predator efficiency of the prey when predator density increases.
Predation process follows Holling type II response function.

For biological reasons, we have shown positivity and
boundedness of solutions. The existence of all possible steady
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Figure 1. Phase portrait along with time series plot of system (2) for parameter values r1 = 2, a11 = 0.6, a12 = 1, a1 = 0, p1 = 1, b1 =

0.1, r2 = 4, a22 = 3, a21 = 2, a2 = 0, p2 = 0.1, b2 = 0.1, d = 0.5, c1 = 1, c2 = 0.1, α = 0 and β = 0
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Figure 2. Phase portrait along with time series plot of system (2) for parameter values r1 = 2, a11 = 0.6, a12 = 1, a1 = 3, p1 = 1, b1 =

0.1, r2 = 4, a22 = 3, a21 = 2, a2 = 1, p2 = 0.1, b2 = 0.1, d = 0.5, c1 = 1, c2 = 0.1, α = 0.1 and β = 0.1
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Figure 3. Phase portrait along with time series plot of system (2) for parameter values r1 = 2, a11 = 0.6, a12 = 1, a1 = 3, p1 = 1, b1 =

0.1, r2 = 4, a22 = 3, a21 = 2, a2 = 1, p2 = 0.1, b2 = 0.1, d = 0.5, c1 = 1, c2 = 0.1, α = 0.2 and β = 0.1

states is described. We have pointed out the existence criteria
for positive equilibrium point by isoclines method. Though, the

uniform persistence criterion can also ensure the existence of the
positive equilibrium point. Still, it is very difficult to find the co-
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Figure 4. Phase portrait along with time series plot of system (2) for parameter values r1 = 2, a11 = 0.6, a12 = 1, a1 = 3, p1 = 1, b1 =
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Figure 5. Bifurcation diagram with respect to the parameter α where other parameter values are r1 = 2, a11 = 0.6, a12 = 1, a1 =

3, p1 = 1, b1 = 0.1, r2 = 4, a22 = 3, a21 = 2, a2 = 1, p2 = 0.1, b2 = 0.1, d = 0.5, c1 = 1, c2 = 0.1 and β = 0.1

ordinates of the positive equilibrium point in a specific form in
system parameters. As it is known to us that if the positive equi-
librium point is globally stable it must be unique. To examine
the uniqueness of the positive equilibrium point, we have devel-

oped the global stability criterion by the use of high-dimensional
Bendixson’s criterion due to Li and Muldowney [18]. By choosing
ant-predator behavior rate α as bifurcation parameter, we have
shown the existence of limit cycles emerging through Hopf bi-
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Figure 6. Phase portrait along with time series plot of system (2) for parameter values r1 = 2, a11 = 1.5, a12 = 1, a1 = 3, p1 = 1, b1 =

0.1, r2 = 4, a22 = 3, a21 = 2, a2 = 1, p2 = 0.1, b2 = 0.1, d = 0.5, c1 = 1, c2 = 0.1, α = 0.1 and β = 0.1
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Figure 7. Bifurcation diagram with respect to the parameter a1 where other parameter values are r1 = 2, a11 = 0.6, a12 = 1, p1 =

1, b1 = 0.1, r2 = 4, a22 = 3, a21 = 2, a2 = 1, p2 = 0.1, b2 = 0.1, d = 0.5, c1 = 1, c2 = 0.1, α = 0.1 and β = 0.1

furcation. Bifurcation diagram with respect to the parameter is
shown in Figure 5. From numerical simulation, we observe simi-
lar phenomena with respect to the parameter a1 and is depicted
in Figure 7.

Deka et al. [14], Fujii [12] and Takeuchi and Adachi [13] ad-
dressed an ecological system with the same type of species, but
no interfering time to competitive response and anti-predator be-
havior for obtaining coexistence results. Finally, we note that if
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competing takes time to both competing species, then compe-
tition pressure becomes low, which enhances the coexistence
when there is no predator. But in the presence of predators
along with the anti-predator behavior of prey, whether the co-
existence is possible or not is chiefly depend on the preference
of the predator. It is noted that due to anti-predator behav-
ior, the growth of prey (inferior competitor) species increases
while the growth of prey (superior competitor) species and preda-
tor species decrease. If the prey can further increase their anti-
predator behavior, the predator population can persist with sta-
ble, positive equilibrium as there is a choice of the other prey in
the system.

The main novelty in our work is the inclusion of compe-
tition term other than the classical competition law and anti-
predator behavior of prey, which are not considered in [12–14].
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