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Mathematical modelling for the transmission dynamics of Rift
Valley fever virus with human host

Festus Abiodun Oguntolu1, DeborahW. Yavalah1, Collins F. Udom1, Olumuyiwa James Peter2,
and Kayode Oshinubi3,∗

1Department of Mathematics, Federal University of Technology, Minna, Nigeria
2Department of Epidemiology and Biostatistics, School of Public Health, University of Medical Sciences, Ondo City, Ondo State, Nigeria
3AGIES Research Unit, Universite Grenoble Alpes, Alpes, France

ABSTRACT. Rift Valley Fever (RVF) is a viral zoonosis spread primarily by mosquitos that primarily affects livestock
but has the potential to affect humans. Because of its potential to spread quickly and become an epidemic, it has
become a public concern. In this article, the transmission dynamics of RVF with mosquito, livestock and human host
using a compartmental model is studied and analyzed. The basic reproduction number R0 is computed using next
generation matrix and the disease-free equilibrium state is found to be locally asymptotically stable if R0 < 1 which
implies that rift valley fever could be put under control in a population where the reproduction number is less than 1.
The numerical simulations give insightful results to further explore the dynamics of the disease based on the effect of
three interventions; efficacy of vaccination, culling of livestock and trapping of mosquitoes introduced in the model.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96119, Indonesia.

1. Introduction
Rift Valley fever (RVF) is a viral illness that can cause mild

to severe symptoms in humans and livestock. RVF is also known
as enzootic hepatitis of sheep and cattle [1]. It is an acute, infec-
tious and zoonotic disease of predominantly cattle, sheep, goats,
camels, African buffalo (Syncerus caffer) and humans. The disease
also results in significant financial losses due to the mortality and
early termination of RVF-infected animals. RVF infection is an in-
dividual from the Phlebovirus variety. The disease is caused by an
arbovirus and is associated with periodic outbreaks that mostly
occur on the African continent. It is a febrile disease that is ac-
companied by abortion in livestock and a severe fatal haemor-
rhagic syndrome in humans has been observed [2]. The disease
was first reported among sheep in Kenya during an examination
concerning a scourge among sheep on a ranch in the Rift Valley
of Kenya by Montgomery in 1912 and Stordy in 1913 [1], but the
disease was not isolated until 1931 [3]. From that moment for-
ward, all incidents in Sub-Saharan Africa have been documented.
The RVF infection was introduced to Egypt through diseased an-
imals traded together with the Nile irrigation system framework
in 1977, resulting in a dangerous incident. From 1997to 1998, a
significant outbreak occurred in Kenya, Somalia and Tanzania fol-
lowing El Niño occasion and broad flooding. Following infected
animal exchange from the horn of Africa, RVF spread in Septem-
ber 2000 to Saudi Arabia and Yemen, denoting the primary de-
tailed event of the virus outside the African landmass and raising
worries that it could stretch out to different parts of Asia and
Europe [4]. Many researchers have utilized mathematical mod-
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els to study the epidemiology of diseases in different popula-
tions, and they have proven to be an effective and useful tool.
To gain a better knowledge of the disease’s transmission dynam-
ics and control, many models have been built and studied using
various methodologies. These studies include the following, [5–
12]. There is much previous research that studied critically the
transmission dynamics and contagiousness of this disease in dif-
ferent countries alongside its evolution, most especially recently
where its dynamics are considered with the COVID-19 outbreak.
The analysis of different ways COVID-19 has contributed to the
increase in RVF cases and how it has impacted the interventions
allocated to the disease comparing it with the status of the dis-
ease before the pandemic has been studied [13, 14]. Study in [15]
assessed the effectiveness of surveillance and control measures
against RVF in Mayotte and in the continental EU using mathe-
matical models. [16] further gave insight into the patterns of the
transmission of RVF in humans between the 2018 and 2019 out-
break in Mayotte, using the Bayesian approach, the drivers of RVF
weremodelled in [17]. [18] gave a review on the endemic and epi-
demic status of RVF in Egypt, the virus vectors and their ecology,
transmission dynamics, risk factors and the ecology of the RVF in
terms of animal-human interface, prevention, control measures,
use of environmental and climate data in surveillance systems to
predict disease outbreaks. [19] developed a Rift Valley fever virus
transmission model comprising two hosts, the analysis of the
model demonstrates that both periodic and reactive vaccination
to be used strategically to effectively control the disease which
was also buttressed by [20] while [21] proposed and analysed a
deterministic model with mosquito, livestock and human host
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as a system of non-linear ordinary differential equations and the
numerical simulations support the analytical results in further ex-
ploring theoretically the long-term dynamics of the disease at the
population level. [22] developed an eco-epidemiological com-
partment mathematical model coupled to the dynamics of am-
bient temperature and water availability and it was applied to a
realistic setting using empirical environmental data from Kenya.
The model captures the intermittent nature of RVF occurrence,
explained as low-level circulation under the threshold of detec-
tion, with intermittent emergence and sometimes after long pe-
riods. Also, the patterns of seasons and socioeconomic effect on
the spread of RVF were investigated by [23], the numerical re-
sults present the transmission dynamics of the disease pathogen
over both short and long periods of time, particularly during the
festival time. Other relevant articles like [24–31], gave more in-
sight into the modelling of this disease with different techniques
and approaches in order to better understand the dynamics and
evolution of the outbreak in many scenarios. The goal of this
work is to develop amodel that takes into account three interven-
tions; efficacy of vaccination, culling of livestock and trapping of
mosquitoes. The other parts of the article are divided as follows:
Section 2 describes the model formulation, Section 3 presents
some mathematical analysis of the model, Section 4 displays the
results derived from this article, Sections 5 and 6 presents the
discussion of the results and conclusion from the article.

2. Methods

In formulating the model, we consider horizontal transmis-
sion inmosquitoes; control (culling rate) vector population is also
considered. Humans are considered to be a source of infection to
mosquitoes (contact rate from humans to vectors is assumed to
be almost negligible). We also assume that livestock and humans
get infected when they come in contact with infectious vectors
and that the natural death rate occurs in all three groups. The
model is divided into three populations; the susceptible, Si and
infected, Ii classes, for i = h, l, m for, humans (h), livestock (l)
and mosquitoes (m), respectively. The two susceptible popula-
tions (humans and livestock) become infected via an infectious
mosquito bite at per capita rates βi. The newborns in each cat-
egory are recruited at the per capita birth rate of Λi and hosts
die naturally at per capita rates µi. Recovery in livestock is in-
troduced at a constant rate γl ; recovery in humans at a constant
rate γh. The rates for treatment are; livestock τl, treated humans
τh and the vector is trapped at a constant rate δm. Since a pop-
ulation dynamics model is considered, all the state variables and
parameters are assumed to be non-negative. The pictorial repre-
sentation of the model formulation is presented in Figure 1. The
model equation is given as follows:

dSh

dt
= Λh − βhmImSh

Nh
− µhSh + γhRh

dEh

dt
=
βhmImSh

Nh
− (εh + µh)Eh

dIh
dt

= εhEh − (µh + τh)Ih

dRh

dt
= τhIh − (µh + γh)Rh

dSl

dt
= Λl −

βlmImSl

Nl
− (µl + vε)Sl + γlRl

dEl

dt
=
βlmImSl

Nl
− (µl + τl + εl)El (1)

dIl
dt

= εlEl − (µl + cl + τl)Il

dIR
dt

= vεSl + τlEl + τlIl − (µl + γl)Rl

dSm

dt
= Λm − βmlIlSm

Nm
− βmhIhSm

Nm
− (µm + δm)Sm

dIm
dt

=
βmlIlSm

Nm
+
βmhIhSm

Nm
− (µm + δm)Im

Figure 1. Schematic diagram of the model

3. Mathematical Analysis

3.1. Positivity of the solution

Theorem 1. Let

ψ =



(Sh, Eh, Ih, Rh) ∈ R4 : Sh(0) > 0, Eh(0) > 0,

Ih(0) > 0, Rh(0) > 0, Sh + Eh + Ih +Rh ≤ Nh

µh

(Sh, Eh, Ih, Rh) ∈ R4 : Sh(0) > 0, Eh(0) > 0,

Ih(0) > 0, Rh(0) > 0, Sh + Eh + Ih +Rh ≤ Nh

µh

(Sl, El, Il, Rl) ∈ R4 : Sl(0) > 0, El(0) > 0,

Il(0) > 0, Rl(0) > 0, Sl + El + Il +Rl ≤ Nl

µl

(Sm, Im) ∈ R2 : Sm(0) > 0, Im(0) > 0
Sm + Im ≤ Nm

µm


Then the solutions of Sh, Eh, Ih, Rh, Sh + Eh + Ih +
Rh, Sm, Im are positive for all t ≥ 0.
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Table 1. Values for Population-Independent Parameter of the Model

Parameter Value Source
µl 0.5 Estimated
Λl 0.9 Estimated
γl 0.25 Estimated
εl 0.25 [31]
vε 0.25 [23]
βml 0.25 [31]
Λh 0.8 [27]
Λm 0.64 [23]
cl 0.75 [23]
εh 0.25 [23]
βlm 0.39 [27]
βmh 0.25 [27]
βhm 0.001 [27]
τh 0.25 [23]
τl 0.25 [23]
δm 0.25 [28]
µh 0.01 Assumed
µm 0.67 Assumed

(a) (b) (c)

(d) (e)

Figure 2. Numerical simulations of model (1) using parameter values in Table 1. (a) Effect of treatment on infected livestock population,
(b) Effect of treatment of humans on infected human population, (c) Effect of incubation period on infected livestock population,
(d) Culling rate of livestock on infected livestock population, and (e) Effect of vaccination of livestock on recovered livestock
population
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Proof.

dSh

dt
= Λh − βhmImSh

Nh
− µhSh + γhRh

dSh

dt
≥ − µhSh

dSh

Sh
≥ − µhdt∫

dSh

Sh
≥

∫
−µhdt

Sh(t) ≥ Sh(0) exp(−µht) ≥ 0

(2)

Similarly, it can be shown that the remaining nine equations in
(1) are also positive for all t ≥ 0.

3.2. Effective reproduction number, Rc
Using Next Generation Matrix [32, 33], the Jacobian of In-

fection term matrix is given as

F =


0 0 0 0 βm
0 0 0 0 0

0 0 0 0 βlmk7

k7+vε
0 0 0 0 0
0 βmh 0 βml 0

 , (3)

and the jacobian of transmission term matrix is

V −1 =


1
k1

0 0 0 0
εh

k1k2

1
k2

0 0 0

0 0 1
k5

0 0

0 0 εl
k5k6

1
k6

0

0 0 0 0 1
k8

 , (4)

FV −1 =


0 0 0 0 βhm

k8

0 0 0 0 0

0 0 0 0 βlmk7

k7+vε
0 0 0 0 0

βmhεh
k1k2

βmh

k2

βmlεl
k5k6

βml

k6
0

 , (5)

such that

λ1 = 0, λ2 = 0, λ3 = 0,

λ4 =

√
λ4a

k1k2k5k6k8 (k7 + vε)
,

λ5 = −
√
λ5a

k1k2k5k6k8 (k7 + vε)
,

λ4a = k1k2k5k6k8 (k7 + vε) (βmlβlmk1k2k7εl

+βmhβhmk5k6k7εh + βmhβhmk5k6vεεh) ,

λ5a = k1k2k5k6k8 (k7 + vε) (βmlβlmk1k2k7εl

+βmhβhmk5k6k7εh + βmhβhmk5k6vεεh) .

Clearly, λ4 is the dominant eigen value

Rc =

√
λ4a

k1k2k5k6k8 (k7 + vε)
(6)

3.3. Disease Free Equilibrium (DFE) State
Disease free equilibrium states are steady when all the in-

fectious classes in a population are zero, that is; the population

comprises of susceptible humans and vectors only. At Disease
Free Equilibrium;

E0 = (Sh, Eh, Ih, Rh, Sl, El, Il, Rl, Sm, Im)

=

(
Λh

µh
, 0, 0, 0,

Λlk7
k4k7 − vεγl

, 0, 0,
Λlvε

k4k7 − vεγl
,
Λm

k8
, 0

)
(7)

3.4. Local stability of disease -free equilibrium state
We investigate the local stability at the equilibrium points.

Proof
Linearizing the model eq. (1) at any arbitrary equilibrium

point (E∗) gives the Jacobian

J (Eo) =

a1 0 0 γh 0 0 0 0 0 −βhm
0 a2 0 0 0 0 0 0 0 βhm
0 0 a3 0 0 0 0 0 0 βhmεh

k1

0 0 0 a4 0 0 0 0 0 A1

0 0 0 0 a5 0 0 γl 0 −A2

0 0 0 0 0 a6 0 0 0 A2

0 0 0 0 0 0 a7 0 0 A3

0 0 0 0 0 0 0 a8 0 A5

0 0 0 0 0 0 0 0 a9 −A6

0 0 0 0 0 0 0 0 0 a10


,

where a1 = − (µh + λ), a2 = − (k1 + λ), a3 = − (k2 + λ),
a4 = − (k3 + λ), a5 = − (k4 + λ), a6 = − (k5 + λ), a7 =
− (k6 + λ), a8 = − (A4 + λ), a9 = − (k8 + λ), and a10 =
A7 − λ. Therefore, the eigenvalues are

λ1 = − µh < 0,

λ2 = − k1 = − (µh + εh) < 0,

λ3 = − k2 = − (µh + τh) < 0

λ4 = − k3 = − (µh + γh) < 0

λ5 = − k4 = − (µl + vε) < 0

λ6 = − k5 = − (µl + τl + εl) < 0

λ7 = − k6 = − (µl + cl + τl) < 0

λ8 = −A4 = −
(
k4k7 − γlvε

k4

)
=

−µl (µl + γl + vε)

µl + vε
< 0

λ9 = − k8 = − (µm + δm) < 0

λ10 = A7

=

k5k6k7βhmβmh + k1k7εlβlmβml + k5k6vεβhmβmh

+k1k5k6k7k8 + k1k5k6k8vε

k1k5k6 (k7 + vε)

Therefore Rc < 1. This implies that λ10 < 0 if Rc < 1.
Hence, the disease-free equilibriumEo of the equations is locally
asymptotically stable (LAS) if Rc < 1.

4. Results
We present in this section the parameters used for the sim-

ulation in Table 1 and the graphical representation of various nu-
merical simulations results in Figure 2a. We varied some of the
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parameters (vε, εl, τh) of the model using the values between 0
and 1 in order to see the effect of this variation on the model we
formulated. Other parameters are presented in Table 1.

5. Discussion of the Results

Figure 2a shows the effect of treating livestock, this causes
a decrease in the infected class of livestock. Figure 2b shows
the relationship between treatment of humans and infected hu-
man population. The higher the rate of treatment, the lower the
infected human population. Figure 2c shows the relationship be-
tween incubation period and infected livestock. The longer the
incubation period, the higher the spread of RVF virus among the
vectors and eventually increase in infected livestock population.
Figure 2d shows that the increase in the elimination of infected
livestock (culling rate), decreases the infected livestock popula-
tion. Figure 2e shows the efficacy of vaccination on livestock;
the more livestock are vaccinated, the more the population of re-
covered livestock. For the numerical simulations, the time are in
weeks.

6. Conclusion

The Rift Valley Model formulated in this work exists in
a feasible region where disease free and endemic equilibrium
points are obtained and the local stability of disease-free equilib-
rium was investigated. The positivity of solutions using Wiah’s
method was also determined. The model has three interven-
tions; efficacy of vaccination, culling of livestock and trapping
of mosquitoes. The model showed that disease free equilibrium
exists and is locally asymptotically stable whenever it is associ-
ated with effective reproduction number, that is Rc < 1 and it
has a unique endemic equilibrium when Rc > 1. These results
have important public health implications, since they determine
the severity and outcome of the epidemic that is, clearance or
persistence of infection and provide a framework for the design
of control strategies. Analysis of the model showed that there
exist two possible solutions, namely the disease-free point and
the endemic equilibrium point of the forces of infection. Further
analysis showed that the disease-free point is locally stable imply-
ing that small perturbations and fluctuations on the disease state
will always result in the eradication of the disease if Rc < 1. In
the final analysis, efficacy of vaccination, culling of livestock and
trapping intervention program will effectively control the spread
of rift valley fever. The result in this article will further guide de-
cision makers to proper manage the outbreak of this disease in
different countries.
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