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Fear induced dynamics on Leslie-Gower predator-prey
system with Holling-type IV functional response

Debasis Mukherjee∗

Department of Mathematics, Vivekananda College, Thakurpukur, Kolkata-70063, India

ABSTRACT. This paper analyzes the effect of fear in a Leslie-Gower predator-prey system with Holling type IV
functional response. Firstly, we show positivity and boundedness of the system. Then we discuss the structure of the
positive equilibrium point, dynamical behavior of all the steady states and long term survival of all the populations in
the system. It is shown that fear factor has an impact on the prey and predator equilibrium densities. We have shown
the occurrence of transcritical bifurcation around the axial steady state. The presence of a Hopf bifurcation near the
interior steady state has been developed by choosing the level of fear as a bifurcation parameter. Furthermore, we
discuss the character of the limit cycle generated by Hopf bifurcation. A global stability criterion of the positive steady
state point is derived. Numerically, we checked our analytical findings.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction
Predator-prey systems have been investigated extensively

for over a hundred years. Most of the existing predator-prey
models are based on Lotka-Volterra formalism. The functional
response is a basic characteristic in any predator-prey interac-
tions as it establishes the link between trophic levels. It de-
scribes the variation of biomass of the prey related to the preda-
tor biomass when prey biomass modify. In [1], the author in-
troduced three types of functional response to various types of
species to address the role of predation, which modified the well-
known Lotka-Volterra system. There is an another type of func-
tional response, Holling type IV suggested by Andrews [2] that
is different from the above types on a group defense capability
and does not follow monotonic response. This group defense
activity demonstrates that when the biomass of prey attains an
high degree, the prey increases its protection to limit the rising
rate of predator. Such a situation is observed in aquatic ecosys-
tem where aquatic snails (Nucella lamellosa) protect themselves
by solidifying shells [3] due to predation by the crabs. As de-
fense capability has a major influence on the reproduction of the
prey, numerous studies on this issue on predator-prey interac-
tions have been carried out.

In predator-prey model, Leslie-Gower [4] suggested an-
other aspect which refers to the fact that the interrelated pop-
ulation develop following the logistic rule and that the carrying
capacity for the predator depends on the number of prey. In case
of scarcity of prey , predator canmove for alternative food, but its
development will be restricted as their primary prey is not avail-
able. To overcome this case, in [5], the authors suggested an im-
proved Leslie-Gower model by incorporating a positive quantity
that estimates the environmental defense for the predator. After
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then, several authors have investigated the Leslie-Gower model
with different kinds of functional response [6–14].

In studying predator-prey interactions, it is usually ob-
served that predator affects prey by direct killing only. But re-
cent field studies [15] shows that predator can affect the behavior
of prey by imposing fear on them. As a result, all creatures ex-
hibit anti-predator defense by changing their dwelling, surveil-
lance, hunting activity and biological conversion [6, 7, 16, 17].
To lessen the predation pressure, prey move from their habitat
from a high risk area in a low risk area. Furthermore, the fearful
prey may forage less which in turn cause hunger and less repro-
duction [18, 19]. For instance, mule deer limit foraging activities
when lions predate them [6]. Elk modifies reproductive mecha-
nism when wolves attack them [18]. Based on the experimental
work [15], in [20], the authors studied the role of fear term in
the prey’s growth rate in a predator-prey system and showed the
stabilizing effect of fear on the system. Subsequently, several
models on prey-predator interaction considering the fear effect
is formulated and analyzed [21–32].

Above investigations indicate that the fear can diminish
prey reproduction as well as predator population, the density of
predators can be regulated by extra food. So it is reasonable to
study the predator-prey interaction, allowing fear factor and the
alternative diet source for the predator. The above discussions
motivated us to develop a system that incorporates both the as-
pects.

The main goal in this work is to address, the fear effect
on a predator-prey system in the form of modified Leslie-Gower
model with Holling type IV schemes.

The article is organized as follows. In Section 2, we pro-
pose our model. Positivity, boundedness, the existence of equi-
libria, stability, bifurcation, uniform persistence and the influ-
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ence of fear factor on the prey and predator equilibrium densities
are discussed in the same section. A criterion for global stabil-
ity is derived in Section 3. We verify our results numerically in
Section 4. Finally, we give precise discussion in Section 5.

2. The Model
In this part, we develop predator-prey model incorporat-

ing the following issues: (i) modified Leslie-Gower system with
Holling type IV schemes [33], (ii) fear effect [20]. Recent field
experiments showed that fear factor can reduce the production
of prey populations. This motivated Wang et al. [20] to intro-

duce the fear factor
1

1 + ky
in predator-prey model, after then

it is used in [23, 25–27]. For more details, see Wang et al. [20].
Based on the above facts, we propose the following model:

dx

dt
=

rx

1 + ky
− αx2 − pxy

a+ bx+ x2
:= f1 (x, y) ,

dy

dt
= y

(
h− qy

x+ c

)
:= f2(x, y),

(1)

with x (0) = x0 > 0 and y (0) = y0 > 0. Here x (t) and
y(t) stands for the density of prey and predator species at time

t, respectively.
1

1 + ky
stands for the fear effect on the natu-

ral growth rate of prey population and k represents the level
of fear. α is the intraspecific competition coefficient among
the prey species. The non-monotonic functional response [34]
g (x) =

px

a+ bx+ x2
, where p and a are positive constants, and

b > −
√
2a (so that a + bx + x2 > 0 for all x ≥ 0 and hence

g (x) > 0 for all x > 0) which describes the antipredator behav-
ior (APB) phenomenon called defense group formation [35, 36],
or else, the phenomenon of aggregation [37], or inhibitory effects
[38].

The alternative food for predators is represented by the ad-
dition of a parameter c > 0, in the variable environmental car-
rying capacity of predators. Implicitly, this implies the predators
are generalist [39]. r and h represent the intrinsic growth rate of
the prey and the predator species respectively. p is the consump-
tion rate. a is a positive constant. q is an estimate of the food
standard that the prey supplies for transformation into the preda-
tor’s birth. System parameters r, k, h, α, and q are considered
to be positive.

2.1. Positivity and boundedness of solutions
In this part, we first examine positivity and boundedness of

(1). These are crucial as they relate to the biological validation.
We first show the positivity.

Lemma 1. All solutions (x (t) , y (t)) of system (1) with initial
values (x0, y0) ∈ R2

+ will be positive for all t > 0.

Proof. The positivity of x(t) and y(t) can be checked by the fol-
lowing equations:

x (t) = x0 exp
{∫ t

0

[
r

1 + ky (s)
− αx (s)− py (s)

a
+ bx (s)

+x2 (s)
]
ds
}

y (t) = y0 exp
∫ t

0

[
h− qy(s)

x (s) + c

]
ds

with x0, y0 > 0. As x0 > 0 then x (t) > 0 for all t > 0. Similarly,
we can show that y (t) > 0.

Lemma 2. All solutions (1) that initiate in R2
+ will enter the set

B =

{
(x, y) ∈ R2

+ : x ≤ r

α
, y ≤ h (r + cα)

qα

}
.

Proof. From the first equation of (1), we have

dx

dt
≤ x(r − αx) (2)

which implies that

lim
t→∞

sup x(t) ≤ r

α
.

Using the estimate of x(t) on the second equation of (1), we have

dy

dt
≤ y

(
h− qαy

r + cα

)
which implies that

lim
t→∞

sup y (t) ≤ h (r + cα)

qα
= µ(say).

Hence system (1) is bounded.

2.2. Valid steady states and their behavior
Clearly, there are three non-negative steady states for sys-

tem (1) namely E0 = (0, 0) , E1 =
( r

α
, 0
)
and E2 =

(
0,

ch

q

)
.

Theorem 1. (i) E0 and E1 are always unstable.

(ii) E2 is locally asymptotically stable if r <
pch(q + kch)

aq2
.

Proof. Proof can be shown by the linearization technique at the
steady states.

Now we find out the restriction for existence of interior
steady state E∗ = (x∗, y∗) . Here x∗ and y∗ must be positive
and satisfy equations below:

r

1 + ky
− αx− py

a+ bx+ x2
= 0, (3)

h− qy

x+ c
= 0. (4)

From eq. (3), we find the value of y as y =
h(x+ c)

q
. Putting the

value of y in eq. (3), we have:

a0x
4 + 4a1x

3 + 6a2x
2 + 4a3x+ a4 = 0 (5)
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where

a0 = αqkh,

a1 =
αq

4
(q + bkh+ khc) ,

a2 =
1

6

{
bαq (q + khc) + akhαq + kph2 − rq2

}
,

a3 =
1

4

{
(αqa+ ph) (q + khc) + kpch2 − rbq2

}
,

a4 = phc (q + khc)− raq2.

Before investigating the existence of roots of eq. (5), we require

I = a0a4 − 4a1a3 +3a22, J =

∣∣∣∣∣∣
a0 a1 a2
a1 a2 a3
a2 a3 a4

∣∣∣∣∣∣, I3 − 27J2 = D,

where D is the discriminant of (5). The criteria of the positive
steady states is stated below.

Theorem 2. Suppose that phc (q + khc) < raq2. Equation (5)
admits
(i) only one positive root x∗ when D < 0.
(ii) multiple when D > 0.

Proof. Since a4 < 0, the eq. (5) possesses at least one positive
and one negative roots. IfD < 0, eq. (5) admit two real and two
imaginary roots. Consequently, in case (i), eq. (5) has exactly one
positive root. When D > 0, all roots of eq. (5) are either real or
imaginary. As it is already shown that eq. (5) admits at least one
positive root, so in case (ii), all the roots are real. This ensures
the presence of multiple roots. Hence the theorem.

If one choose r = 76
35 , α = 2

35 , p = 1, q = 1, a = 1. b =
1, c = 1, h = 1 then system (1) has three positive equilibrium
points (1, 2), (2, 3) and (0.24037, 1.24037). As we are not inves-
tigating multiple equilibria, so condition for stability of unique
equilibrium point will be derived.

Theorem 3. Consider the condition (i) of Theorem 2 be fulfilled.

Further assume that α >
(b+ 2x∗)py∗

(a+ bx∗ + x∗2)
2 . Then E∗ becomes

stable.

Proof. The variational matrix of system (1) at E∗ is

J (E∗) =

(
b1 b2
b3 b4

)
,

where

b1 = − x∗{α− (b+ 2x∗)py∗

(a+ bx∗ + x∗2)
2 },

b2 = − x∗{ rk

(1 + ky∗)
2 +

p

a+ bx∗ + x∗2 },

b3 =
qy∗2

(x∗ + c)
2 ,

b4 = − qy∗

x∗ + c
.

The characteristic equation around E∗ is

λ2 + p1λ+ p2 = 0 (6)

where

p1 =
qy∗

x∗ + c
+ x∗

{
α− (b+ 2x∗)py∗(

a+ bx∗ + x∗2
)2

}
,

p2 =
qx∗y∗

x∗ + c

[{
α− (b+ 2x∗) py∗(

a+ bx∗ + x∗2
)2

}

+
y∗

x∗ + c

{
rk

(1 + ky∗)
2 +

p

a+ bx∗ + x∗2

}]
.

Now p1 > 0 and p2 > 0 if α >
(b+ 2x∗)py∗

(a+ bx∗ + x∗2)
2 . In that case,

eq. (6) contains two roots whose real parts are negative. Hence,
E∗ becomes stable under the assumption of the theorem.

2.3. The effect of fear factor
Now, we shall examine the influence of fear factor on the

equilibrium densities. Now we first show the effect of k on x∗

and y∗. We have already observed that the coordinates of E∗

must satisfy

r

1 + ky∗
− αx∗ − py∗

a+ bx∗ + x∗2 = 0, (7)

h− qy∗

x∗ + c
= 0. (8)

Differentiating (8) with respect to k, we have

dy∗

dk
=

h

q

dx∗

dk
. (9)

Differentiating (7) with respect to k, we get

− r

(1 + ky∗)
2

{
y∗ + k

dy∗

dk

}
− α

dx∗

dk

−
p{dy

∗

dk

(
a+ bx∗ + x∗2)− y∗ (b+ 2x∗)

dx∗

dk
}

(a+ bx∗ + x∗2)
2 = 0. (10)

Using (9) in (10), we obtain

dx∗

dk

{
rkh

q(1 + ky∗)
2 + α+

ph

q(a+ bx∗ + x∗2)

− py∗(b+ 2x∗)

(a+ bx∗ + x∗2)
2

}
= − ry∗

(1 + ky∗)
2 .

Here we consider two cases.
Case 1 If rkh

q(1+ky∗)2
+ α + ph

q(a+bx∗+x∗2) > py∗(b+2x∗)

(a+bx∗+x∗2)2
then

dx∗

dk < 0 which in turn implies that dy∗

dk < 0.

Case 2 If rkh
q(1+ky∗)2

+ α + ph
q(a+bx∗+x∗2) < py∗(b+2x∗)

(a+bx∗+x∗2)2
then

dx∗

dk > 0 which in turn implies that dy∗

dk > 0.
In Case 1, we note that increasing amount of fear decrease the
density of prey as well as predator species whereas opposite
holds in Case 2. The condition in Case 2 indicates that the posi-
tive equilibrium point is unstable.

JJBM | Jambura J. Biomath Volume 3 | Issue 2 | December 2022



D. Mukherjee – Fear induced dynamics on Leslie-Gower predator-prey system… 52

2.4. Local bifurcation analysis

Theorem 4. System (1) admits a transcritical bifurcation at E2

related to the parameter r if r =
pch(q + kch)

aq2
= r (say) and

bpch

qa2
̸= α+

h

q

{
kpch

a (q + kch)
+

p

a

}
.

Proof. System (1) is written in the form Ẋ = F (X) where X =

(x, y)
T and F = (f1, f2)

T
. The variational matrix of system (1)

at E2 is

J (E2) =


rq

q + kch
− pch

aq
0

h2

q
−h


and the corresponding eigenvalues are

λ1 =
rq

q + kch
− pch

aq
,

λ2 = − h.

If r =
pch(q + kch)

aq2
then λ1 = 0 and λ2 is always negative. If

v = (v1, v2)
T and w = (w1, w2)

T represent the eigenvectors in
respect of the zero eigenvalue of the matrix J(E2) and J(E2)

T ,
we get

h

q
v1 − v2 = 0 and w = (1, 0)

T
.

Note that wT [Fr (E2, r)] = (1, 0) (0, 0)
T

= 0. So saddle-
node bifurcation around E2 cannot occur for the system. Again
wT [DFr (E2, r) v] =

v1q

q + kch
̸= 0. Further,

wT
[
D2F (E2, r) (v, v)

]
= −2

(
α− pbch

qa2

)
v21

− 2

{
kpch

a (q + kch)
+

p

a

}
v1v2 =

− 2v21

[
α− pbch

qa2
+

h

q

{
kpch

a (q + kch)
+

p

a

}]
,

since v2 =
h

q
v1. By the assumption of the theorem, it fol-

lows thatwT
[
D2F (E2, r) (v, v)

]
̸= 0. Thus using Sotomayor’s

theorem [40], we obtain transcritical bifurcation for the system
around E2 with respect to the parameter r.

2.5. Hopf bifurcation
Set f (k) = p1 (k) .

Theorem 5. Suppose there is a k = k∗ such that f (k∗) = 0 and
f ′(k∗) < 0 then the interior equilibrium E∗ is stable if k < k∗

but is unstable for k > k∗ and a Hopf bifurcation of periodic
solution appears at k = k∗.

Proof. We now follow the technique developed in [41]. We ob-
serve that f(k) is a decreasing function in the neighborhood of

k = k∗ as f (k) > 0 for k < k∗ then E∗ is stable. Also,
f (k) < 0 for k > k∗ and hence E∗ is unstable. Applying a
result in [42], we find Hopf bifurcation.

2.6. Nature of limit cycle
To determine the character of the limit cycle, we now com-

pute the first Lyapunov number [40] σ at E∗ of system (1). Let
x = u − x∗, y = v − y∗ and then expand in Taylor series we
obtain

du

dt
= a10u+ a01v + a11uv + a20u

2 + a02v
2 + a30u

3

+ a21u
2v + a12uv

2 + a03v
3 + P (u, v)

dv

dt
= b10u+ b01v + b11uv + b20u

2 + b02v
2 + b30u

3

+ b21u
2v + b12uv

2 + b03v
3 +Q (u, v)

where

a10 = − x∗{α− py∗ (b+ 2x∗)(
a+ bx∗ + x∗2

)2 },
a01 = − x∗

{
rk

(1 + ky∗)
2 +

p

a+ bx∗ + x∗2

}
,

a11 = −

{
rk

(1 + ky∗)
2 +

p
(
a− x∗2)(

a+ bx∗ + x∗2
)2

}

a20 = − α+
py∗

(
3ax∗ + ab− x∗3)(

a+ bx∗ + x∗2
)3 ,

a02 =
x∗rk2

(1 + ky∗)
3 ,

a30 =
py∗

(
a2 − 4abx∗ − ab2 − 6ax∗2 − 3x∗4)(

a+ bx∗ + x∗2
)4 ,

a21 =
p
(
3ax∗ + ab− x∗3)(
a+ bx∗ + x∗2

)3 , a12 =
rk2

(1 + ky∗)
3 ,

a03 = − rk3

(1 + ky∗)
4 , b10 =

qy∗2

(x∗ + c)
2 , b01 = −h,

b11 =
2qy∗

(x∗ + c)
2 , b20 = − qy∗2

(x∗ + c)
3 , b02 = − q

x∗ + c
,

b30 =
qy∗2

(x∗ + c)
4 , b21 = − 2qy∗

(x∗ + c)
3 ,

b12 =
q

(x∗ + c)
2 , b03 = 0,

P (u, v) =
∑4

i+j aiju
ivj and Q (u, v) =

∑4
i+j biju

ivj .Thus,
Lyapunov number σ as developed in [40] is

σ = − 3π

2a01∆3/2
{
[
a10b10

(
a211 + a11b02 + a02b11

)
+ a10a01

(
b211 + a20b11 + a11b02

)
+ b210 (a11a02 + 2a02b02)− 2a10b10

(
b202 − a20a02

)
− 2a10a01

(
a220 − b20b02

)
− a201 (2a20b20 + b11b20)

+
(
a01b10 − 2a210

)
(b11b02 − a11a20)

]
−

(
a210 + a01b10

)
[3 (b10b03 − a01a30)
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+2a10 (a21 + b12) + (b10a12 − a01b21)]}

where ∆ = a10b01 − a01b10. The sign of σ indicates the nature
of limit cycle.

2.7. Persistence
Biologically, persistence indicates that none of the species

facing extinction in the long run. Mathematically, it ensures the
occurrence of a compact set in the interior of R2

+ in which all
populations must lie ultimately, Now we investigate the uniform
persistence of system (1).

Theorem 6. Consider that r >
pch(q + kch)

aq2
. Then system (1)

is uniformly persistent.

Proof. We establish the result by the method developed in [43].
Consider the average Lyapunov function

ρ (X) = xc1yc2

where each ci > 0, i = 1, 2. In the interior of R2
+, one finds

1

ρ(X)

dρ(X)

dt
= γ (X)

=
c1
x

dx

dt
+

c2
y

dy

dt

= c1

(
r

1 + ky
− αx− py

a+ bx+ x2

)
+ c2

(
h− qy

x+ c

)
.

If γ (X) > 0 for all feasible equilibria X ∈ R2
+, for an appro-

priate selection of ci > 0, i = 1, 2, then (1) will be uniformly
persistent. So, we have to check the following constraints on the
boundary steady states E0, E1 and E2:

E0 : c1r + c2h > 0, (11)

E1 : c2h > 0, (12)

E2 : c1

(
qr

q + kch
− pch

qa

)
> 0. (13)

As ci > 0, i = 1, 2, the inequalities (11) and (12) are automati-

cally satisfied. Since r >
pch(q + kch)

aq2
positivity of (13) is obvi-

ous. This completes the proof.

3. Global Stability
We now examine global stability of the positive equilibrium

point E∗. Lyapunov function will be used to prove global stabil-
ity. From Lemma 2, we note that x (t) ≤ r

α
and y (t) ≤ µ.

Theorem 7. Let the assumptions of Theorem 3 be satisfied. Fur-

ther assume that r >
pch(q + kch)

aq2
and

4q

x∗ + c

{
α− pµ(bα+ 2r)

α(a+ bx∗ + x∗2)

}
> { rk

1 + ky∗
+

p

a+ bx∗ + x∗2 +
qµ

c(x∗ + c)
}
2

Then E∗ is globally asymptotically stable.

Proof. First we note that E0 and E1 are always unstable. Again

the condition r >
pch(q + kch)

aq2
indicates that E2 is unstable.

Consider a function V : R2
+ → R+ defined by

V (x, y) =
(
x− x∗ − x∗ln

x

x∗

)
+

(
y − y∗ − y∗ln

y

y∗

)
.

Differentiating V with respect to time, we have

dV

dt
= (x− x∗)

ẋ

x
+ (y − y∗)

ẏ

y

= (x− x∗)

(
r

1 + ky
− αx− py

a+ bx+ x2

)
+ (y − y∗)

(
h− qy

x+ c

)
= (x− x∗)

(
r

1 + ky
− r

1 + ky∗
− αx+ αx∗

− py

a+ bx+ x2
+

py∗

a+ bx∗ + x∗2

)
+ (y − y∗)

(
qy∗

x∗ + c
− qy

x+ c

)
= (x− x∗)

[
rk (y∗ − y)

(1 + ky) (1 + ky∗)
− α (x− x∗)

+ p

{
y∗ − y

a+ bx∗ + x∗2

+
y (x− x∗) (b+ x+ x∗)

(a+ bx+ x2)
(
a+ bx∗ + x∗2

)}]

+ q (y − y∗)

{
y∗ − y

x∗ + c
+

y (x− x∗)

(x∗ + c) (x+ c)

}
= − (x− x∗)

2

{
α− py (b+ x+ x∗)

(a+ bx+ x2)
(
a+ bx∗ + x∗2

)}

+ (x− x∗) (y − y∗)

{
qy

(x∗ + c) (x+ c)

− rk

(1 + ky) (1 + ky∗)
− p

a+ bx∗ + x∗2

}
− q(y − y∗)

2

x∗ + c

≤ − (x− x∗)
2

{
α− pµ (bα+ 2r)

α
(
a+ bx∗ + x∗2

)}

+ |x− x∗| |y − y∗|
{

qµ

c (x∗ + c)
+

rk

1 + ky∗

+
p

a+ bx∗ + x∗2

}
− q(y − y∗)

2

x∗ + c

= −XTMX
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Figure 1. (a) represents the phase diagram of (1) when k = 0.25, (b) represents the phase diagram of (1) when k = 0.7, r = 18, α =

3, p = 18, a = 1, b = 1, h = 1, q = 2, c = 1.
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Figure 2. Bifurcation diagram for (a) prey population x, (b) predator population y with respect to the parameter k when r = 18, α =

3, p = 18, a = 1, b = 1, h = 1, q = 2, c = 1.
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Figure 3. Phase diagram of (1) when r = 10.125, α = 3, p = 18, a = 1, b = 1.88, k = 0.25, h = 1, q = 2, c = 1.
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Figure 4. Phase diagram of (1) k = 19/41, r = 3, α = 2, p = 1, a = 18, b = 1, h = 1, q = 2 , c = 1 showing global stability of
the equilibrium point E∗ = (1, 1) .

where M = {|x− x∗| , |y − y∗|} and M = [mij ]2×2. The com-
ponents of the matrix M are

m11 = α− py (b+ x+ x∗)

(a+ bx+ x2)
(
a+ bx∗ + x∗2

) ,
m12 = m21

= − 1

2

{
qµ

c (x∗ + c)
+

rk

1 + ky∗
+

p

a+ bx∗ + x∗2

}
,

m22 =
q

x∗ + c
.

Hence M is positive definite if

4q

x∗ + c

{
α− pµ(bα+ 2r)

α(a+ bx∗ + x∗2)

}
>{

rk

1 + ky∗
+

p

a+ bx∗ + x∗2 +
qµ

c(x∗ + c)

}2

.

Conditions of the theorem establish that M is positive definite

which in turn implies that
dV

dt
< 0 and hence E∗ is globally

asymptotically stable.

4. Numerical Analysis
In this part, we present our findings through numerical

computations. We mainly discuss the role of fear factor on sys-
tem dynamics.
Example 1. Suppose r = 18, α = 3, p = 18, a = 1, b = 1, h =

1, q = 2, c = 1. Then it follows from Theorem 5, that a
Hopf bifurcation of periodic solution occurs at k = k∗ =
0.695. when k = 0.25 < k∗, the system becomes stable
(see Figure 1(a)). when k = 0.7 > k∗, the system becomes
unstable (see Figure 1(b)). bifurcation diagram with respect
to the parameter k is shown in Figure 2.

Example 2. Suppose k = 0.25, α = 3, p = 18, a = 1, b =
1.88, h = 1, q = 2, c = 1. Then it follows from Theorem 4,
that a transcritical Hopf bifurcation around the equilibrium
point E2(0, 0.5) at r = r = 10.125 (see Figure 3).

Example 3. Suppose k =
19

41
, r = 3, α = 2, p = 1, a = 18, b =

1, h = 1, q = 2, c = 1. Then it follows from Theorem 7,
that all solutions converge globally to the equilibrium point
E∗ = (1, 1) (see Figure 4).

5. Discussion

In this paper, we primarily concentrated on the effect of
fear in a Leslie-Gower predator-prey system using Holling type IV
functional response. The inclusion of fear effect and extra food
resource to the predator makes the systemmore realistic that the
investigation may enable one to point out that the usual analysis
regarding direct killing cannot address the natural ecosystem. As
group defense ability of prey is considered in the model, it has
an significant role in the reproduction of the prey population.

Positivity and boundedness of solutions are shown to jus-
tify the biological validity of the model. Four biologically reason-
able equilibrium points are obtained. The population free equi-
librium point always exists and unstable. This indicates that the
system cannot crash for any parameter values. The predator free
equilibrium point always exists and is unstable, which in turns im-
plies that predator population can go to extinction, whereas, the
prey attains a maximum population size in the environment. The
prey free equilibrium point always exists, but attains stability or
instability, according as the intrinsic growth rate of prey is below
or above than a fixed value. Existence of unique or multiple pos-
itive equilibrium points is discussed in Theorem 2. The criterion
for local stability of interior steady state is derived. By using So-
tomayor’s theorem, we derived conditions for the occurrence of
transcritical bifurcation around the boundary equilibrium point.
When the fear effect is low, the system is under controlled. If the
fear effect is increased, the system admits stable oscillation and
limit cycle appears surrounding the positive equilibrium point.
We observed that when the intrinsic growth rate of prey crosses
a certain threshold value, all the populations survive in long run.
Furthermore, we have shown the impact of fear factor on equi-
librium densities of the populations.
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The results in this paper improve the previous related
works [20, 25, 26]. The analytical results obtained in this article
may encourage the experimental ecologists to carry out some ex-
perimental investigations which in turn improves the population
biology to some degree. As our system is not a case study, so it
is hard to determine parameter values from quantitative assess-
ment. To check the results, a hypothetical set of parameter values
is utilized. In future, it will be better performing numerical ex-
periments by employing realistic data to measure the parameters
and reformulate the model accordingly.
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