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Effects of Acceptance of Enlightenment on COVID-19
Transmission using Homotopy Perturbation Method

Tawakalt Abosede Ayoola1,∗, Mutairu Kayode Kolawole2,
and Amos Oladele Popoola3

1,2,3Department ofMathematical Sciences, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria

ABSTRACT. The deadly Corona virus disease has had a significantly devastating impact on the general public,
necessitating the study of transmission dynamics. A mathematical model of a non-linear differential equation for
COVID-19 infection is investigated with the effects of some basic factors, such as the acceptance of enlightenment to
avoid being exposed and the acceptance of enlightenment to go for vaccination. The basic reproduction number, which
determines the disease’s spread, is calculated. The local and global stability analyses of the model are carried out. The
sensitivity analysis is also computed. Numerical simulation using the homotopy perturbation method demonstrates
the effect of the acceptance of enlightenment on the population. Our results indicate that when the populace accepts
vaccination, the rate at which COVID-19 spreads reduces.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction
A worldwide outbreak of COVID-19 has taken hold. New

coronavirus hotspots have been identified in Wuhan, China, in
December 2019. When a large number of people were admitted
to the hospital in the latter days of December 2019, it was clear
that the epidemic had begun. Pneumonia was discovered in these
people [1]. At first, physicians in Wuhan, China’s Hubei Province,
suspected a seafood and wet animal market was to blame. Ac-
cording to the World Health Organization (WHO), Coronavirus
Disease 2019 (COVID) is caused by the virus Severe Acute Res-
piratory Syndrome Coronavirus 2, which is also known as SARS-
CoV-2 [2] . In March 2020, the World Health Organization (WHO)
proclaimed the COVID-19 pandemic. World Health Organization
(WHO), 2020a. It was confirmed on February 27, 2020, in Nige-
ria that the index case had been established. the establishment
of a multi-sectoral Emergency Operations Center by the Nigerian
Center for Disease Control (EOC). with a total of 11,516 cases and
323 deaths [2].

Numerous hypotheses have been put forth by profession-
als to explain COVID-19’s peculiar behaviors. It was found that
a mathematical model established by [3] included undiagnosed
infectious cases, hospital sensitization conditions, and a propor-
tion of known cases. Using a mathematical model, [4] investi-
gated how mask use affects the general public. [5] presented
a new mathematical model of COVID-19 that accounts for the
effects of the first and second doses of vaccination. The basic
reproduction number that represents an epidemic indicator was
obtained, and the stability analysis criteria were determined. The
study concluded that the double-dose vaccination was recom-
mended as the best way to curb the spread of COVID-19. Also,
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researchers like [6] studied the impact of COVID-19 infections
on social interactions. It was shown that social awareness and
speedy testing had an impact on a COVID-19 transmission model
[7]. The research takes into consideration both known and un-
known COVID-19 infections in the exposed phase of infection.
[8] studied the influence of public awareness efforts on the dy-
namics of COVID-19 infection.

Furthermore, one of the semi-analytical techniques for solv-
ing linear and nonlinear ordinary differential equations is the ho-
motopy perturbation method. Several researchers now use nu-
merical techniques such as the Adomian Decomposition Method
established by [9], the Variational IterationMethod introduced by
[10], and the Homotopy Perturbation Method introduced by [11]
to obtain their approximate solution. Authors like [12] used the
homotopy perturbation method to analyze the Equine Infectious
Anemia Virus (EIAV) model.[13] used the homotopy perturbation
method to obtain an approximate solution to the fractional-order
integral-differential equation. Their results converge faster to the
exact solution when compared to other numerical methods. [14]
discussed the future condition of COVID-19 in Bangladesh by an-
alyzing the current situation with an SIR model according to the
present data for Bangladesh.

The research into an effective COVID-19 vaccination con-
tinues apace. A new mathematical model of the COVID-19 pan-
demic, including the vaccination campaign, was studied by [20].
The World Health Organization (WHO) Strategic Advisory Group
of Experts on Immunization (SAGE) defined vaccine hesitancy as
a delay in acceptance or refusal of vaccination despite the avail-
ability of vaccination services. According to [21], who carried
out a cross-sectional survey on health students on the determi-
nants of COVID-19 vaccine acceptance and hesitancy, the results
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Figure 1. Schematic Picture of the proposed COVID-19 model

Table 1. Detailed description of the Model

Parameters Description Values References
β Recruitment rate 68,597.853 Estimated
α Transmission rate 0.09091 Jumanne et al. [15]
ε Wane rate of vaccine 0.25 Assumed
ρ Exit rate from Exposed class 0.13 Tang et al. [16]
τ Exit rate from Infectious class 0.0833 Babaei et al. [17]
π Proportion of infectious who recovered naturally 0.05 Deressa et al. [18]
x Acceptance of enlightenment to avoid being exposed 0.2 Assumed
z Acceptance of enlightenment to go for vaccination 0.3 Assumed
µ Natural Death rate 0.0003205128 Estimated
δ Covid-19 Induced death rate 0.018 Garba et al. [19]
k Recovery rate of Quarantine Individuals 0.0701 Garba et al. [19]
γ Vaccination rate 0.4 Assumed

show that 491 (77.81%) students actually received the COVID-19
vaccine, and of the 140 unvaccinated, 69 were hesitant and 71 re-
jected it. The goal of this study is to present the use of the homo-
topy perturbation method to examine the impact of acceptances
of enlightenment on the entire population in order to avoid be-
ing exposed to COVID-19 and to enlighten them to go for vacci-
nation.

2. Model Formulation
A mathematical model of the COVID-19 mode of transmis-

sion has been developed, with the population under investiga-
tion divided into six divisions, depending on the epidemiological
state of each person in the population, there are Susceptible sec-
tions S(t); Vaccinated V (t); Exposed class E(t); Infected class
I(t); Quarantine class Q(t); Recovered classR(t); The entire hu-
man population N(t)is calculated as follows:

N(t) = S(t) + V (t) + E(t) + I(t) +Q(t) +R(t).

The model is SVEIQR not SVEIQRS, which implies that anybody
in recovered class are assumed to have permanent immunity.
Hence, the rate at which the susceptible class is recruited is by
immigration or birth at β, and the force of infection λ = αSI ,
where α denotes the effective transmission rate between suscep-
tible and infectious people, and ρ, denotes the rate of progres-
sion from exposed to infected. Let x be the rate of acceptance

of enlightenment to avoid being exposed, while z is the rate of
acceptance of enlightenment to go for vaccination. The vaccina-
tion rate is γ and wane rate of vaccine is ε. Let τ be the rate
of exit from Infected class to quarantine, in which a proportion
(1−π) is quarantined and a proportion π is naturally recovered.
The quarantine individuals are treated and recovered at a rate
k, natural death occurs in all six classes at a rate µ, and death
from COVID -19 occurs at a rate δ. Thus, we have the following
nonlinear differential equation systems.

dS

dt
= β − α(1− x)SI − (1 + z)γS − µS + εV = g1

dV

dt
= (1 + z)γS − (ε+ µ)V = g2

dE

dt
= α(1− x)SI − (µ+ ρ)E = g3

dI

dt
= ρE − (µ+ δ + τ)I = g4

dQ

dt
= τ(1− π)I − (µ+ δ + k)Q = g5

dR

dt
= τπI + kQ− µR = g6.

(1)

The schematic diagram of the model (1) is given by Figure 1 and
its biological parameters are given by Table 1.
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Remark 1. (i) For 0 ≤ x ≤ 1, when x = 0 infers that either
the susceptible people are not informed or that the ed-
ucational effort has no effect on the level of COVID-19
exposure.

(ii) For 0 ≤ z ≤ 1, when z = 0 it indicates that the suscep-
tible individuals have not been immunized or that the
vaccine has had no impact on them.

3. Model Analysis
3.1. Existence and Uniqueness of Solution

A Lipchitz criterion will be used to check for the existence
and uniqueness of solution. For g1 = β − α(1 − x)SI − (1 +
z)γS − µS + εV , we have∣∣∣∣dg1dS

∣∣∣∣ = |−α(1− x)I − (1 + z)γ − µ| ,∣∣∣∣dg1dV

∣∣∣∣ = |ε| ,
∣∣∣∣dg1dE

∣∣∣∣ = 0,∣∣∣∣dg1dI

∣∣∣∣ = |−α(1− x)S | ,
∣∣∣∣dg1dQ

∣∣∣∣ = 0,

∣∣∣∣dg1dR

∣∣∣∣ = 0.

(2)

For g2 = (1 + z)γS − (ε+ µ)V , we get∣∣∣∣dg2dS

∣∣∣∣ = |(1 + z)γ| ,
∣∣∣∣dg2dV

∣∣∣∣ = |−ε− µ| ,∣∣∣∣dg2dE

∣∣∣∣ = 0,

∣∣∣∣dg2dI

∣∣∣∣ = 0,

∣∣∣∣dg2dQ

∣∣∣∣ = 0,

∣∣∣∣dg2dR

∣∣∣∣ = 0.

(3)

For g3 = α(1− x)SI − (ρ+ µ)E, we obtain∣∣∣∣dg3dS

∣∣∣∣ = |α(1− x)I| ,
∣∣∣∣dg3dV

∣∣∣∣ = 0,

∣∣∣∣dg3dE

∣∣∣∣ = |−ρ− µ| ,∣∣∣∣dg3dI

∣∣∣∣ = |α(1− x)S| ,
∣∣∣∣dg3dQ

∣∣∣∣ = 0,

∣∣∣∣dg3dR

∣∣∣∣ = 0.

(4)

For g4 = ρE − (µ+ τ + δ)I , we acquire∣∣∣∣dg4dS

∣∣∣∣ = 0,

∣∣∣∣dg4dV

∣∣∣∣ = 0,

∣∣∣∣dg4dE

∣∣∣∣ = |ρ| ,∣∣∣∣dg4dI

∣∣∣∣ = |−µ− τ − δ| ,
∣∣∣∣dg4dQ

∣∣∣∣ = 0,

∣∣∣∣dg4dR

∣∣∣∣ = 0.

(5)

For g5 = τ(1− π)I − (µ+ k + δ)Q, we have∣∣∣∣dg5dS

∣∣∣∣ = 0,

∣∣∣∣dg5dV

∣∣∣∣ = 0,

∣∣∣∣dg5dE

∣∣∣∣ = 0,∣∣∣∣dg5dI

∣∣∣∣ = |τ(1− π)| ,
∣∣∣∣dg5dQ

∣∣∣∣ = |−µ− k − δ| ,
∣∣∣∣dg5dR

∣∣∣∣ = 0.

(6)

Again, for g6 = τπI + kQ− µR, we finally get∣∣∣∣dg6dS

∣∣∣∣ = 0,

∣∣∣∣dg6dV

∣∣∣∣ = 0,

∣∣∣∣dg6dE

∣∣∣∣ = 0,

∣∣∣∣dg6dI

∣∣∣∣ = τπ,∣∣∣∣dg6dQ

∣∣∣∣ = |−k| ,
∣∣∣∣dg6dR

∣∣∣∣ = |−µ| .
(7)

These partial derivatives exist are continuous and are bounded,
therefore the model (1) exist and has a unique solution in R6.

3.2. Invariant Region

Lemma 1. For t ≥ 0, all variables and parameters are assumed
to be nonnegative. We demonstrate that the area where the model
is sensible is positively invariant and appealing to the model for all
t ≥ 0, such that all the solution in Ω remains in Ω for all t ≥ 0.

Proof. Recall that, the entire human population is defined as
N(t) = S(t) + V (t) + E(t) + I(t) + Q(t) + R(t) since human
population changes in terms of time

dN

dt
=

dS

dt
+

dV

dt
+

dE

dt
+

dI

dt
+

dQ

dt
+

dR

dt
= β − α(1− x)SI − (1 + z)γS − µS + εV

+ (1 + z)γS − εV − µV + α(1− x)SI − ρE

− µE + ρE − µI − τI − δI + τI − τπI − µQ

− kQ+ δQ+ τπI + kQ− µR

= β − µ(S + V + E + I +Q+R)− δ(I +Q).

In the absence of COVID-19 induced death (δ = 0), the above
equation becomes

dN

dt
= β − µN (8)

Integrating both side of eq. (8), we have that∫ t

0

dN

β − µN
≤

∫ t

0

dt

− 1

µ
In(β − µN) ≤ t

(9)

From eq. (9) we have

N ≤ β

µ
−
[
β − µN0

µ

]
e−µt

As t → ∞we haveN ≤ β
µ . This implies that the proposedmodel

(1) can be studied in the feasible region

Ω =

{
(S, V,E, I,Q,R) ∈ R6 : N ≤ β

µ

}

3.3. Positivity of Solution

Theorem 1. Given S > 0, V ≥ 0, E ≥ 0, I ≥ 0, Q ≥ 0
andR ≥ 0. Then the solution{

(S, V,E, I,Q,R) ∈ R6 : N ≤ β

µ

}
are positive invariant for t ≥ 0.

Proof. Recall, based on the initial equation (1) by introducing the
force of infection λ for simplicity of the expression then:

dS(t)

dt
≥ − (λ(1− x) + (1 + z)γ + µ)

dS(t)

S(t)
≥ − (λ(1− x) + (1 + z)γ + µ) dt
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dS(t)

S(t)
≥

∫
− (λ(1− x) + (1 + z)γ + µ) dt.

By solving using method of separation of variable and also ap-
plied the initial condition, we have

S(t) ≥ S0e
−(λ(1−x)+(1+z)γ+µ)t ≥ 0. (10)

Repeating the same procedure for the rest of the equations we
obtain

V (t) ≥ V0e
−(ε+µ) ≥ 0,

E(t) ≥ E0e
−(µ+ρ) ≥ 0,

Q(t) ≥ Q0e
−(µ+δ+k) ≥ 0,

R(t) ≥ R0e
−µ ≥ 0.

Obviously, the solution of the model is positive. This completes
the proof of the theorem.

Having satisfied all the basic properties of an epidemiology
model, we conclude that the proposed model is suitable to study
COVID-19 in human population.

3.4. Existence of Disease-Free Equilibrium and Basic Reproduction
Number (R0).

The disease-free equilibrium point of the model (1) can be
found by setting E = I = 0. Hence, the disease free equilibrium
point is obtained by

T 0 = (S0, V 0, E0, I0, Q0, R0)

=

(
β(ε+ µ)

µ(γz + γ + µ+ ε)
,

(1 + z)γβ

µ(γz + γ + µ+ ε)
, 0, 0, 0, 0

)
(11)

Basic Reproduction Number
Diekmannn and Heesterbeek [22] define the basic repro-

duction number, commonly denoted by R0, as the average num-
ber of secondary infections induced by a typical infectious person
during the duration of his or her infectious period. F is the rate of
appearance of new infections in compartment i, Vi

+is the rate of
transfer of individuals into the compartment by all other means.
Vi

− is the rate of transfer of individuals out of the compartment,
such that V = V − − V +. In this section, we’ll consider three
different types of equations:

•
E = α(1− x)SI − (ρ+ µ)E

•
I = ρE − (µ+ τ + δ)I

•
Q = τ(1− π)I − (µ+ k + δ)Q

(12)

From the above equation, we obtained

F =

0 α(1− x)S 0
0 0 0
0 0 0


FDFE =

0 α(1− x)S0 0
0 0 0
0 0 0



V =

(ρ+ µ) 0 0
−ρ (µ+ τ + δ) 0
0 −τ(1− π) (µ+ k + δ)


V −1 =

 1
(ρ+µ)

0 0
ρ

(ρ+µ)(µ+τ+δ)
1

(µ+τ+δ)
0

ρτ(1−π)
(ρ+µ)(µ+τ+δ)(µ+k+δ)

τ(1−π)
(µ+τ+δ)(µ+k+δ)

1
(µ+k+δ)

 .

Since, R0 = FV −1 we have

FV −1 =

 α(1−x)S0ρ
(ρ+µ)(µ+k+δ)

α(1−x)S0

(µ+k+δ) 0

0 0 0
0 0 0


The basic reproduction number R0 is obtained by taking the
largest (dominant) eigenvalue or spectral radius of ρ(FV −1).

R0 =
α(1− x)S0ρ

(ρ+ µ)(µ+ τ + δ)

Such that

S0 =
β(µ+ ε)

µ(γz + γ + µ+ ε)

Therefore

R0 =
α(1− x)βρ(µ+ ε)

(ρ+ µ)(µ+ τ + δ)µ(γz + γ + µ+ ε)
. (13)

3.5. Local Stability Analysis of Diseases Free Equilibrium
The following outcomes are demonstrated while studying

the stability of the model’s equilibria.

Lemma 2. The model’s disease-free equilibrium is locally asymp-
totically stable if R0 < 1, otherwise, it is unstable if R0 > 1.

Proof. We look at the system’s Jacobian of the model (1) which is
given by

J(T 0) =
−(1 + z)γ − µ ε 0 −X 0 0

(1 + z)γ −µ − ε 0 0 0 0
0 0 −ρ − µ X 0 0
0 0 ρ −δ − µ − τ 0 0
0 0 0 τ(1 − π) −µ − δ − k 0
0 0 0 τπ k −µ


Where

X =
α(1− x)β(µ+ ε)

µ(γz + γ + µ+ ε)

The four eigenvalues are negative: −µ,−µ,−γz−γ−µ−ε,
−µ−k−δ. The remaining two eigenvalues are given in the form
of 2 by 2 matrix [

−ρ− µ α(1− x)S0

ρ −τ − δ − µ

]
Characteristics polynomial is λ2 + a1λ+ a2, where

a1 = ρ+ 2µ+ δ + τ

a2 = (ρ+ µ)(δ + µ+ τ)µ(γz + γ + µ+ ε)[1−R0]

Thus, last two of eigenvalues are negative if a2 > 0which is attain
if R0 < 1. Therefore, the disease-free equilibrium is asymptoti-
cally stable locally.
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3.6. Existence of Endemic Equilibrium State
The endemic equilibrium point of the model (1) is discov-

ered when S ̸= V ̸= E ̸= I ̸= Q ̸= R ̸= 0.Hence the endemic
equilibrium point is given by T ∗ = (S∗, V ∗, E∗, I∗, Q∗, R∗)
where

S∗ =
g4g5
αρg1

,

V ∗ =
g3g4g5
αρg1g2

,

E∗ =
g5g8(R0 − 1) + g3g5(ε+ 1)

αρg1g2
,

I∗ =
g8(R0 − 1) + g3(ε+ 1)

αg1g2
,

Q∗ =
g7g8(R0 − 1) + g3g7(ε+ 1)

αg1g2g6
,

R∗ =
(τπg6 − kg7) [g8(R0 − 1) + g3(ε+ 1)]

αµg1g2g6
.

(14)

Where g1 = (1− x), g2 = (ε+ µ), g3 = (1+ z)γ, g4 = (ρ+ µ),
g5 = (τ + µ + δ), g6 = (µ + δ + k), g7 = τ(1 − π), g8 =
µ(µ+ γz + γ + ε). Equation (14) shows that if R0 > 1, then the
endemic equilibrium T ∗(S∗, V ∗, E∗, I∗, Q∗, R∗) ∈ D.

3.7. Local Stability Analysis of Endemic Equilibrium

Lemma 3. The endemic equilibrium T ∗is locally asymptotically
stable if R0 > 1.

Proof. We consider the Jacobian of the model (1) at T ∗ =
(S∗, V ∗, E∗, I∗, Q∗, R∗)which is given by

J(T ∗) =
A ε 0 −α(1− x)S∗ 0 0

(1 + z)γ −µ− ε 0 0 0 0
α(1− x)I∗ 0 −ρ− µ α(1− x)S∗ 0 0

0 0 ρ −δ − µ− τ 0 0
0 0 0 τ(1− π) −µ− δ − k 0
0 0 0 τπ k −µ


LetA = −α(1−x)I∗−(1+z)γ−µ, the characteristics equation
from det (J(T ∗)− λI) = 0 is (λ+ µ)(λ+ µ+ δ + k)(λ+ µ+
δ + τ)(λ3 + a2λ

2 + a1λ+ a0) = 0, where

a2 = 3µ+ ρ+ ε+ α(1− x)I∗ + γ(1 + z)

a1 = α(1 + x)I∗ (2µ+ ε+ ρ) + 3µ2

+ 2µ(γz + γ + ε+ ρ) + γρ(1 + z) + ρε

a0 = (ρ+ µ) [α(1 + x)I∗(ε+ µ) + µ(µ+ γz + γ + ε)]

= (ρ+ µ) [µ(µ+ γz + γ + ε)(R0 − 1)

+(1 + z)(γ + εγ) + µ(µ+ γz + γ + ε)]

a2a1 − a0 = [3µ+ ρ+ ε+ α(1− x)I∗ + γ(1 + z)][
α(1 + x)I∗ (2µ+ ε+ ρ) + 3µ2

+2µ(γz + γ + ε+ ρ) + γρ(1 + z) + ρε]−
[(ρ+ µ) [α(1 + x)I∗(ε+ µ) + µ(µ+ γz + γ + ε)]]

> 0

⇒ [3µ+ρ+ε+α(1−x)I∗+γ(1+z)][α(1+x)I∗ (2µ+ ε+ ρ)

+ 3µ2 + 2µ(γz + γ + ε+ ρ) + γρ(1 + z) + ρε] >

[(ρ+ µ) [α(1 + x)I∗(ε+ µ) + µ(µ+ γz + γ + ε)]]

It is easy to verify that a2 > 0, a1 > 0, a0 > 0 and a2a1 > a0
if I∗ > 0,from eq. (14) it is clear that I∗is positive if R0 >
1.Therefore, by the Routh-Hurwitz stability criterion, the En-
demic Equilibrium point T ∗ of the model (1) is locally asymptot-
ically stable for R0 > 1.

3.8. Global Stability of Disease Free and Endemic Equilibria
The Castillo-Chavez approach is used to demonstrate

global stability [23]. Consider a model of the form:

dF
dt = F (x, Y )

dI
dt = G(x, Y ), G(x, 0) = 0

 (15)

Where x ∈ Rm represents individuals that are not infected in the
population and Y ∈ Rn represent infected individuals. Follow-
ing the above representation, it is possible to express the disease-
free equilibrium of this system as T 0 = (x∗, 0). The following
two conditions (H1) and (H2) below must be met to guarantee
global asymptotic stability.
(H1) For dx

dt = F (x, 0), x∗ is globally asymptotically stable.

(H2) G(x, Y ) = AY −
∧
G(x, Y ),

∧
G(x, Y ) ≥ 0 for (x, Y ) ∈ Ω,

where A = DY G(x∗, 0) is an M-matrix (the off-diagonal compo-
nents of A are nonnegative), and Ω is where the model makes bi-
ological sense. If system (15) satisfies the above two conditions,
then the following theorems hold:

Lemma 4. [23] The fixed point T 0 = (x∗, 0) is globally asymp-
totically stable (g.a.s) equilibrium of (15) provided that R0 ≤ 1
and assumption that (H1) and (H2) are satisfied.

Theorem 2. The DFE T 0of the model (1) is globally asymptoti-
cally stable if R0 < 1.

Proof. The model (1) above is re-written as in form of (15) by set-
ting x = (S, V ),

Y = (E, I,Q,R),

T 0 = (x∗, 0)

=

(
β(ε+ µ)

µ(γz + γ + µ+ ε)
,

(1 + z)γβ

µ(γz + γ + µ+ ε)
, 0

)
And the system dx

dt = F (x, 0) becomes{ •
S = β − (1 + z)γS − µS + εV
•
V = (1 + z)γS − (ε+ µ)V

This equation has a unique equilibrium point are

x∗ =

(
β(ε+ µ)

µ(γz + γ + µ+ ε)
,

(1 + z)γβ

µ(γz + γ + µ+ ε)

)
,

JJBM | Jambura J. Biomath Volume 3 | Issue 2 | December 2022



T. A. Ayoola, M. K. Kolawole, and A. O. Popoola – Effects of Acceptance of Enlightenment on COVID-19 Transmission… 44

which is asymptotically stable, therefore (H1) is satisfied. For
(H2) can be verified. The model (1) has

G(x, Y ) =


α(1− x)SI − (ρ+ µ)E

ρE − (µ+ τ + δ)I
τ(1− π)I − (µ+ k + δ)Q

τπI + kQ− µR



DY G(x∗, 0) =

−µ− ρ α(1− x)S 0 0
ρ −δ − µ− τ 0 0
0 τ(1− π) −δ − k − µ 0
0 τπ k −µ


Clearly, A = DY G(x∗, 0) is a M-Matrix, On the other hand,

⇒
∧
G(x, Y ) = AY −G(x, Y ) =


0
0
0
0

 (16)

Hence,
∧
G = (x, Y ) = 0 for all (x, Y ) ∈ Ω, therefore conditions

(H1) and H2 are satisfied. With Lemma 4, the global stability of
DFE is obtained and which complete the proof.

Theorem 3. If R0 > 1, the global asymptotically stable of en-
demic equilibrium point of the model (1) is found.

Proof. In order to prove that the model’s endemic equilibrium is
globally stable, we use a Lyapunov function.

V (S∗, V ∗,E∗, I∗, Q∗, R∗) =(
S − S∗ − S∗ ln

S∗

S

)
+

(
V − V ∗ − V ∗ ln

V ∗

V

)
+

(
E − E∗ − E∗ ln

E∗

E

)
+

(
I − I∗ − I∗ ln

I∗

I

)
+

(
Q−Q∗ −Q∗ ln

Q∗

Q

)
+

(
R−R∗ −R∗ ln

R∗

R

)
.

The by-product of V along this solution of the model (1) by direct
calculation gives:

dV

dt
=

(
S − S∗

S

)
dS

dt
+

(
V − V ∗

V

)
dV

dt
+

(
E − E∗

E

)
dE

dt

+

(
I − I∗

I

)
dI

dt
+

(
Q−Q∗

Q

)
dQ

dt
+

(
R−R∗

R

)
dR

dt

=

(
S − S∗

S

)
[β − α(1− x)SI − (1 + z)γS − µS + εV ]

+

(
V − V ∗

V

)
[(1 + z)γS − (ε+ µ)V ]

+

(
E − E∗

E

)
[α(1− x)SI − (ρ+ µ)E]

+

(
I − I∗

I

)
[ρE − (τ + µ+ δ)I]

+

(
Q−Q∗

Q

)
[τ(1− π)I − (µ+ δ + k)Q]

+

(
R−R∗

R

)
[τπI + kQ− µR]

=
1

S
((S − S∗)β − α(1− x)(S − S∗)2(I − I∗)

− [(1 + z)γ + µ] (S − S∗)2 + ε(V − V ∗)(S − S∗))

+
1

V
((1 + z) γ(S − S∗)(V − V ∗)− (ε+ µ)(V − V ∗)2)

+
1

E
(α(1− x)(S − S∗)(I − I∗)(E − E∗)

− (ρ+ µ)(E − E∗)2) +
1

I
(ρ(E − E∗)(I − I∗)

− (τ + µ+ δ)(I − I∗)) +
1

Q
(τ(1− π)(I − I∗)(Q−Q∗)

− (µ+ δ + k)(Q−Q∗)2) +
1

R
(τπ(I − I∗)(R−R∗)

− k(Q−Q∗)(R−R∗)− µ(R−R∗)2)

= − (S − S∗)
2

S
α(1− x)(I − I∗)

− (S − S∗)
2

S
[(1 + z)γ + µ]− (V − V ∗)

2

V
(ε+ µ)

− (E − E∗)
2

E
(ρ+ µ)− (I − I∗)

2

I
(τ + µ+ δ)

− (Q−Q∗)
2

Q
(µ+ δ + k)− (R−R∗)

2

R
µ

+
(S − S∗)

S
β +

(S − S∗)

S
ε(V − V ∗)

+
(V − V ∗)

V
(1 + z) γ (S − S∗)

+
(E − E∗)

E
α(1− x)(S − S∗)(I − I∗)

+
(I − I∗)

I
ρ(E − E∗) +

(Q−Q∗)

Q
τ(1− π)(I − I∗)

+
(R−R∗)

R
[τπ(I − I∗) + k(Q−Q∗)]

accumulating both positive and negative terms ; dV
dt = M −N ,

where

M =
(S − S∗)

S
[β + ε(V − V ∗)] +

(V − V ∗)

V
(1 + z)γ(S − S∗)

+
(E − E∗)

E
α(1− x)(S − S∗)(I − I∗)

+
(I − I∗)

I
ρ (E − E∗) +

(Q−Q∗)

Q
τ(1− π)(I − I∗)

+
(R−R∗)

R
[τπ(I − I∗) + k(Q−Q∗)]

N =
(S − S∗)

S

2

[α(1− x)(I − I∗) + [(1 + z)γ + µ]]

+
(V − V ∗)

V

2

(ε+ µ) +
(E − E∗)

E

2

(ρ+ µ)

+
(I − I∗)

I

2

(τ + µ+ δ) +
(Q−Q∗)

Q

2

(µ+ δ + k)

if M < N ,then dV
dt will be negative, dV

dt = 0, if and only
if S = S∗, V = V ∗, E = E∗, I = I∗, Q = Q∗,
and R = R∗. Thus the largest compact invariant set is{
(S∗, V ∗, E∗, I∗, Q∗, R∗) ∈ Ω : dV

dt = 0
}

is just the singleton
set {T ∗} is the Endemic Equilibrium, by LaSalle’s Invariant prin-
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Table 2. Sensitivity Indices of R0 to parameters of the model (1)

Parameter Description Sensitivity Index (R0)
α Effective Contact Rate + 1.000000000
β Transmission Rate + 1.000000000
ε Wane rate of Vaccine 0.6901996944
τ Exit rate from infectious class -0.8451619895
x Acceptance of enlightenment to avoid being exposed -0.4285714286
δ Covid-19 Induced death rate -0.1521291581
γ Vaccination rate -0.6910845660
ρ Exist rate from Exposed Class 0.00255754453
µ Natural death rate -1.004381527
z Acceptance of enlightenment to go for vaccination -0.1974527331

ciple, it implies that T ∗ is globally asymptotically stable (g.a.s) in
Ω if M < N.

3.9. Sensitivity Analysis
The sensitivity indices with respect to the parameter values

given in form of:

χβ
R0

=
∂R0

∂β
× β

R0

R0 =
α(1− x)βρ(µ+ ε)

(µ+ ρ)(µ+ δ + τ)µ(γz + γ + µ+ ε)
(17)

The numerical values showing the relative importance of R0 pa-
rameters are shown in Table 2. It can be shown that based on the
findings above, α and β have a clear effect on the virus stability.
Therefore, by increasing α and β by 1%, R0 would increase by
1% in influence. There are parameters with positive relation and
those with a negative relation. A negative relationship suggests
that an increase in the values of the metric would help to reduce
the pandemic brutality. While a positive relationship indicates
that frequency of the pandemic would be greatly influenced by
an increase in the values of those parameters.

3.10. Homotopy Perturbation Method
Homotopy perturbation technique in solving differential

equations is shown with the differential equation form:

D(u) = k(r), r ∈ Ω (18)

Subject to the boundary condition

B(u, un) = 0, r ∈ Γ (19)

The general differential operator is denoted as D, and B repre-
sent the boundary operator, K(r) is an analytic function, Γ is
the boundary of the domain Ω and un represent the derivative
following the typical path directed externally from Ω. Thus we
can write

D(u) = LT (u) +NT (u) (20)

Where LT (u), NT (u) represent the linear term, and the nonlin-
ear term of the differential equation respectively. Thus eq. (20)
becomes

LT (u) +NT (u) = k(r) r ∈ Ω (21)

We can construct a Homotopy for (21) so that

H(m, p) = (1− p) [LT (m)− LT (u0)]

+ p [D(m)− k(r)]

= 0

(22)

Simplifying this,

H(m, p) = LT (m)− LT (u0) + p[LT (u0)]

+ p [NT (u0)− k(r)]

= 0,

(23)

where p ∈ [0, 1] and u0 denotes the initial approximation. Now,
as p → 0,

H(m, 0) = LT (m)− LT (u0) = 0, (24)

and as p → 1,

H(m, 1) = D(m)− k(r) = 0.

and we can express the solution of the differential equation as

M(t) = M0(t) + pM1(t) + p2M2(t) + · · · (25)

Substituting (25) into (3.10) and comparing coefficients of equal
powers of P the resulting equation is solved to obtain the value of
M0(t),M1(t), M2(t) such that the approximate solution of the
differential equation in (18).

lim
p→1

M(t) = M0(t) +M1(t) +M2(t) + · · · (26)

3.11. Application of Homotopy Perturbation Method

Here, the homotopy perturbation approach is used to ap-
proximate the solution to differential equation 1 in this section.
Procedure (55-63) is constructing a homotopy for model (1)

dS

dt
= p(β − α(1− x)SI − (1 + z)γS − µS + εV ),

dV

dt
= p((1 + z)γS − (µ+ ε)V ),

dE

dt
= p(α(1− x)SI − (ρ+ µ)E),

dI

dt
= p(ρE − (τ + µ+ δ)I),

dQ

dt
= p(τ(1− π)I − (µ+ δ + k)Q),

dR

dt
= p(τπI + kQ− µR).

(27)

Subject to initial conditions S(0) = s0, E(0) = e0, I(0) = i0,
Q(0) = q0, R(0) = r0. The following system of powers series
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are assumed to be the solution to problem (1)

S(t) = s0(t) + ps1(t) + p2s2(t) + . . .

V (t) = v0(t) + pv1(t) + p2v2(t) + . . .

E(t) = e0(t) + pe1(t) + p2e2(t) + . . .

I(t) = i0(t) + pi1(t) + p2i2(t) + . . .

Q(t) = q0(t) + pq1(t) + p2q2(t) + . . .

R(t) = r0(t) + pr1(t) + p2r2(t) + . . .

(28)

Substituting these values into each compartment of (27) and com-
paring the coefficients of equal powers of p, the following results
were generated for each compartment when the initial values
were applied.

p0 :
ds0(t)

dt
= 0,

dv0(t)

dt
= 0,

di0(t)

dt
= 0,

de0(t)

dt
= 0,

dq0(t)

dt
= 0,

dr0(t)

dt
= 0.

(29)

Solving for each of the classes in (29), the following are obtained
as first iterations.

s0(t) = s0, v0(t) = v0, i0(t) = i0, e0(t) = e0,

q0(t) = i0, r0(t) = r0, (30)

Also, the coefficient of p1is given as

p1 :
ds1
dt

= β − α(1− x)S0(t)I0(t)− (1 + z)γS0(t)

− µS0(t) + εV0(t)

dv1
dt

= (1 + z)γS0(t)− (µ+ ε)V S0(t)

de1
dt

= α(1− x)S0(t)I0(t)− (ρ+ µ)E0(t)

di1
dt

= E0(t)− (τ + µ+ δ)I0(t)

dq1
dt

= τ(1− π)I0(t)− (µ+ δ + k)Q0(t)

dr1
dt

= τπI0(t) + kQ0(t)− µR0(t).

Solving this system of equation yields

s1(t) = (β − α(1− x)S0I0 − (1 + z)γS0 − µS0 + εV0)t

v1(t) = ((1 + z)γS0 − (µ+ ε)V S0)t

e1(t) = (α(1− x)S0I0 − (ρ+ µ)E0)t

i1(t) = ρ(E0 − (τ + µ+ δ)I0)t

q1(t) = (τ(1− π)I0 − (µ+ δ + k)Q0)t

r1(t) = (γi0 − (µ+ δ)r0)t

Similarly comparing the coefficients of p2;

p2 :
ds2
dt

= β − α(1− x)S1(t)I1(t)− (1 + z)γS1(t)

− µS1(t) + εV1(t)

dv2
dt

= (1 + z)γS1(t)− (µ+ ε)V S1(t)

de2
dt

= α(1− x)S0(t)I0(t)− (ρ+ µ)E0(t)

di2
dt

= ρE1(t)− (τ + µ+ δ)I1(t)

dq2
dt

= τ(1− π)I1(t)− (µ+ δ + k)Q1(t)

dr2
dt

= τπI1(t) + kQ1(t)− µR1(t)

Solving this system of differential equation, the results are ob-
tained.

The third iterations are similarly obtained and the solution
for each class is obtained by taking the sum of its approximations.
That is

S(t) =

3∑
n=0

sn(t), v(t) =

3∑
n=0

vn(t), E(t) =

3∑
n=0

en(t),

I(t) =

3∑
n=0

in(t), Q(t) =

3∑
n=0

qn(t), R(t) =

3∑
n=0

rn(t).

Evaluating the obtained results substituting the following values
for their respective parameters,

The following series results embedding the acceptance of
enlightenment to go for vaccination (z) are obtained for each of
the class; such that

S(t) = 50 + (−20.0− 49.26192564z)t

+ (67.44190644 + 8z2 + 50.52954051z)
t2

2

+ (−111.2084361− 3.20z3−32.54172431z2

− 100.5680654z)
t3

6
V (t) = 22 + (14.49294872 + 20.0z)t

− (32.71118051z + 8.00z2 + 23.33265261)
t2

2

+ (55.37685825z + 25.41438031z2

+ 32.81740413 + 3.2z3)
t3

6

E(t) = 12 + 42.98205385t− (17.8183600z − 49.69955324)
t2

2

− (−47.50759391z + 7.12734400z2−84.85376560)
t3

6

I(t) = 14− 0.0659282048t+ 2.809424028
t2

2

− (6.463168788 + 2.316386800)
t3

6

Q(t) = 16− 0.306838205t− 0.01095678148t2

+ 0.07378498873t3

R(t) = 5 + 1.178300333t− 0.01108080588t2

+ 0.004209859285t3

Similarly, the results obtained for the acceptance of en-
lightenment to avoid being exposed (x) for each class
S(t), V (t), . . . , R(t)

S(t) = 50 + (−74.35302564 + 63.63700x)t
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+ (−209.0367384x+ 80.99335540x2

+ 138.7423881)
t2

2
+ (−297.4348082

− 635.7511634x− 449.6422846x2

+ 103.0834832x3)
t3

6
V (t) = 22 + (20.49294872)t− (−33.0912400x

+ 43.79337876)
t2

2
+ (83.10842284

+ 42.11654480x2 − 116.9825201)
t3

6
E(t) = 12 + (2.07315385− 63.63700x)t

− (184.2183084x− 80.99335540x
2

− 103.0211518)
t2

2
− (542.7196750x

− 418.0548761x3+103.0834832x3

− 227.7217222)
t3

6
I(t) = 14− 0.065928205t− (8.100691055

− 8.2728100x)
t2

2
− (−23.94838008x

+ 10.52913620x2 + 13.39497658)
t3

6

Q(t) = 16− 0.3068382048t− 0.01095678145t2

+ (0.6546688194x− 0.6391105783)
t3

6

R(t) = 5 + 1.178300333t− 0.005742708942xt3

−0.01108080587t2+0.005932671968t3

4. Graphical Results
After evaluating series of result using the baseline param-

eter from Table 1. The results are shown graphically. Figures 2
and 3 reveal the impact of acceptance of enlightenment to avoid
being exposed on the susceptible and exposed classes. In Fig-
ure 2, it could be observed that the number of susceptible indi-
viduals tends to increase as they avoid being exposed to COVID-
19 through contact with the infected group. Transitively, the ex-
posed class, as shown in Figure 3, confirmed that the higher the
rate of acceptance to avoid getting exposed increases, the lower
the exposed population reduces with time.

5. Discussion of Results
An elaborate numerical technique is used to support the

analytic results and explore the influence of model parameters
like the rate of enlightenment acceptance to avoid exposure and
the rate of enlightenment acceptance to go for vaccination. We
choose baseline parameter values that are compatible with the
spread of COVID-19 infection and transmission. Under condi-
tions of low basic reproduction numbers, the disease-free equi-
librium is locally asymptotically stable, i.e., R0 < 1. COVID-19
persists in the population if R0 > 1. Figure 4 depicts the in-
crease in the acceptance rate of enlightenment to go for vaccina-
tion in susceptible classes. Figure 5 also depicts the acceptance
rate of enlightenment to vaccination in the vaccinated class. The

Figure 2. Graph illustrating the effect of a change in x on
susceptible class

Figure 3. Graph showing the impact of variation of xon the
exposed class

influence of the acceptance rate of enlightenment to avoid being
exposed is shown in Figures 2 and 3.

Figure 4. Shows the variation of z, that is, the acceptance
of enlightenment to go for vaccination on the sus-
ceptible class. As the rate of acceptance enlighten-
ment to go for vaccination increases the number of
susceptible individual also increases with time

6. Conclusion
This study developed and analyzed a mathematical model

of COVID-19 transmission dynamics with an agreed enlighten-
ment rate. Analyzing the model on a theoretical and numerical
level, it was shown that if the fundamental reproduction num-
ber is less than one, the disease-free equilibrium is asymptoti-
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Figure 5. Graph shows the effect of acceptance of enlight-
enment for vaccination. It reveals that as the rate
increases, the vaccinated individuals also increased

cally stable on both a local and a global scale. If the basic repro-
duction number is greater than one, COVID-19 illness persists in
the community. It has been shown that the transmission rate
has a considerable influence on the spread of COVID-19. This
was determined by doing a sensitivity study. Every effort should
be made to avoid unnecessary transmission among COVID-19 in-
fected individuals. COVID-19 infection rates will be reduced if
the general population is more accepting of information about
the disease. This research also emphasized the need for edu-
cating people about vaccinations in order to avoid and control
the development of COVID-19. The most effective way to reduce
the spread of COVID-19 is to raise awareness among the general
public about the importance of routine immunizations such as
the first, second, and booster doses.
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