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Dynamics of a predator-prey model incorporating infectious
disease and quarantine on prey

Anatasya Lahay1, Muhammad Rezky Friesta Payu1, Sri Lestari Mahmud2,∗,
Hasan S.Panigoro2, and Perry Zakaria1

1Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Gorontalo, Bone Bolango 96554, Indonesia
2Biomathematics Research Group, Department of Mathematics, Universitas Negeri Gorontalo, Bone Bolango 96554, Indonesia

ABSTRACT. In this article, the dynamics of a predator-prey model incorporating infectious disease and quarantine
on prey population is discussed. We first analyze the existence conditions of all positive equilibrium points. Next, we
investigate the local stability properties of the proposed model using the linearization method. We also determine the
basic reproduction number using the next generation matrix. Finally, some numerical simulations are performed to
validate the stability of each equilibrium point.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction
All living things must interact with each other in order to

survive. This interaction produces a relationship between ev-
ery living thing, both as consumers, decomposers, or producers.
Ecology is the study of living things and their interactions with
the environment as well as interactions with other living things
[1]. In ecological systems, the interaction between an organism
and its predator is called as predator-prey interaction. Prey is liv-
ing creature that is preyed upon and a predator as a living crea-
ture that preys on. The relationship between prey and predators
is very close. This could happen since the predator cannot sur-
vive without prey. Vice versa, without predator, an explosion in
prey population cannot be avoided and disrupt ecosystem stabil-
ity [2].

Predator-prey model is a mathematical model that has long
been studied because it is directly related to nature and the ex-
istence of the creatures in it [3, 4]. Many researchers had study,
develop and modify the classical predator-prey model with the
aim of conforming to the actual conditions in nature [5].

There aremany factors in the ecosystem that affect the pop-
ulation. The spread of disease is one of the noteworthy issues
that affect the interactions between one creature and another.
The study that focuses on the spread of disease at the popula-
tion level is called epidemiology [6]. Mathematical modeling in
epidemiology provides an understanding of the underlyingmech-
anisms that influence the spread of disease. As in ecological mod-
eling, modifications to epidemiology modelings are usually made
between simple models, which omit some detail and design to
model general qualitative behavior, and complex models, usually
designed for specific situations [7]. If there is an interaction be-
tween two populations and there is a spread of disease in one

∗Corresponding Author.

Check for updatesResearch Article

Jambura Journal of Biomathematics, Volume 3, Issue 2, Pages 75–81, December 2022 https://doi.org/10.34312/jjbm.v3i1.17162

ARTICLE HISTORY
Received 29 November 2022
Accepted 31 December 2022
Published 31 December 2022

KEYWORDS
Dynamics

Eco-epidemiology
Predator-prey

Infectious diseases
Harvesting

or both of these population, then it refers to eco-epidemiology
modeling.

Research on the eco-epidemiology model has been carried
out by many previous researchers. Wuhaib and Hasan [8] investi-
gated a predator-prey model by harvesting the infected prey. The
infected prey population can recover and becomes susceptible
population that can be reinfected. Purnomo, et al [9] also study
an eco-epidemiology model by considering predators only kill
the infected prey and harvesting susceptible prey. Panigoro, et
al. [10] examine an eco-epidemiological model by assuming that
prey grows logistically while predator grows exponentially due to
disease infection in prey. Furthermore, the eco-epidemiological
model developed by Maisaroh, et al. [11] assume that the prey
infected with the disease cannot return to being vulnerable prey
and then considers harvesting of predators. Ibrahim, et al [12] ex-
amine a Gause-type predator-prey model with disease outbreaks
in prey by considering no harvesting in both populations.

Predation imbalance against high prey population or low
prey population is one of the causes of the extinction of a popu-
lation. Therefore, this study will discuss the stability analysis of
the eco-epidemiological mathematical model with assume that
the infected prey population will be given a treatment to reduce
the number of infectious populations. This treatment in a quaran-
tine form, so that the infected prey population cannot be eaten
by predator. The prey populations that have been successfully
treated can be released back into the environment.

We present this article in the following structure. The
model formulation is given in Section 2. The existence and stabil-
ity condition of all equilibrium points are discussed in Section 3.
We also confirm the analytical results through some numerical
simulations in Section 4. In Section 5, we end of our works with
conclusion.
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Figure 1. eco-epidemiological model food chain diagram with quarantine in prey population

2. Model Formulation
We first develop the mathematical model for the prey pop-

ulation which formulated based on McKendrick model [13] as fol-
lows.

dS

dT
=Π− βSI − µ1S,

dI

dT
=βSI − µ2I,

(1)

where S(t) and I(t) are the susceptible and infected prey at time
t. The parameters Π, β, µ1, and µ2 denote the constant growth
rate of prey, the infection rate of prey,the natural death rate of
susceptible prey, and the natural death rate of infected prey, re-
spectively. In this case, we assume to protect the exixtence of
the population, the infected prey will be quarantined with linear
rate ω to receive treatment from human which aims to reduce
the death rate due to the infectious disease. Following the linear
form, we have the modified model as follows.

dS

dT
=Π− βSI + δQ−mSP − µ1S,

dI

dT
=βSI − ωI − µ2I,

dQ

dT
=ωI − δQ− µ3Q,

(2)

where δ movement rate of quarantine prey to susceptible prey
due to its recovery from disease, and µ3 is the natural death rate
of quarantine prey. Now, by integrating the existence of predator
due to the food chain in wild life, the final model of our works is
obtained

dS

dt
=Π− βSI + δQ−mSP − µ1S,

dI

dt
=βSI − ωI − nIP − µ2I,

dQ

dt
=ωI − δQ− µ3Q,

dP

dt
=amSP + bnIP − µ4P

(3)

wherem, n, a, b and µ4 are respectively the predation rate of sus-
ceptible prey and the predation rate of infected prey. It is clear
that when the prey is quarantined, the predator cannot reach
them so that the predation does not exists for the compatment.
For more details, see food chain diagram given by Figure 1.

3. Analytical Results

Some definitions are given to investigate the existence of
biological equilibrium point of model (3)

Definition 1. [14] Suppose there is a system of differential
equations

ẋ = f(x), x(0) = x0, x ∈ Rn. (4)

The system of differential equations has an equilibrium point
x̃ ∈ R⋉ if it satisfies f(x̃) = 0.

Definition 2. x̃ is the biological equilibrium point of eq. (4)
if it satisfies Definition 1 and x̃ ∈ R⋉

+ with R⋉
+ := {xi :

xi ≥ 0, i = 1, 2, . . . , n}.

Based on Definition 2, the equilibrium point of model (3) is ob-

tained by solving
dS

dt
=

dI

dt
=

dQ

dt
=

dP

dt
= 0. Four equilib-

rium points are obtained including their local dynamical behav-
iors given by the next subsections.

3.1. The Predator-Disease-Free Point and Basic Reproduction Number

The Predator-Disease-Free Point (PDFP) biologically show
the extinction of predator along with the disappearance of the
disease in the population of prey. The PDFP is given by

E1 =

(
Π

µ1
, 0, 0, 0

)
(5)
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which always exists. This condition explains that only suscepti-
ble prey populations can survive in the ecosystem, while predator
populations, sick prey, and quarantined prey populations are ex-
tinct. Its population density is the ratio of the constant growth
rate and natural mortality of the susceptible prey population.
Now, to determine the basic reproduction numberR0, we follow
the next generation matrix as given in [15, 16]. We first investi-
gate the transmission and transition matrix denoted by F and V
of the following infection subsystem.

dI

dt
=βSI − ωI − nIP − µ2I,

dQ

dt
=ωI − δQ− µ3Q.

We obtain

F =

(
βS 0
0 0

)
,

and

V −1 =


1

ω + nP + µ2
0

ω

(ω + nP + µ2)(δ + µ3)

1

δ + µ3

 .

Therefore, the next generation matrix is acquired as follows

K = FV −1


βS

ω + nP + µ2
0

βSω

(ω + nP + µ2)(δ + µ3)
0

 .

Computing the dominant eigenvalue, we obtain the following ba-
sic reproduction number R0.

R0 =
βS0

ω + nP + µ2

R1
0 =

βπ

µ1(ω + µ2)

(6)

The following theorem shows the dynamics of PDFP based on its
basic reproduction number.

Theorem 1. The PDFP E1 =

(
Π

µ1
, 0, 0, 0

)
is locally asymptot-

ically stable if R1
0 < min {1, R̄} where R̄ =

βµ4

am(ω + µ2)
.

Proof. Simple computation show that the Jacobian matrix at

E1 =

(
Π

µ1
, 0, 0, 0

)
is

JE1 =


−µ1 −βπ

µ1
δ −mΠ

µ1

0 (R1
0 − 1)(ω + µ2) 0 0

0 ω −δ − µ3 0

0 0 0
µ4

R̄
(R1

0 − R̄)

 ,

which gives four eigenvalues: λ1 = −µ1, λ2 = (R1
0 - 1)(ω + µ2),

λ3 = - (δ + µ3), λ4 =
µ4

R̄
(R1

0 − R̄). Obviously, λi < 0, i = 1,3,

and hence the stability of PDFP depends on the sign of λj , j =
2,4. By arranging R1

0 < min {1, R̄}, the sign of λj = 2,4 will be
negative and PDFP is locally asymptotically stable.

3.2. The Predator-Free Point
The predator-free point (PFP) is presented by the extinction

of predators and the existence of susceptible, infected, and quar-
antine preys. This equilibrium point is given byE2 = (S̄, Ī, Q̄, 0)
where

S̄ =
ω + µ2

β
=

µ4

amR̄
, Ī =

(δ + µ3)Q̄

ω
, Q̄ =

βµ1S̄

δ
(R̂−R1

0)

This condition explains that only predator populations are extinct
in addition to surviving in the ecosystem, namely populations of
healthy prey, sick prey, and quarantined prey. The population
density is the ratio of the rate of movement of infected prey to
quarantined prey, the natural death rate of infected prey, and the
rate of movement of susceptible prey to infected prey. The exis-
tence of PFP and its local dynamics of PFP is given by the following
theorem.

Theorem 2. E2 = (S̄, Ī, Q̄, 0) exists if R̂ > R1
0.

Proof. it is clear that S̄ > 0, Ī > 0, and ā. Moreover, Q̄ > 0
only if R̂ > R1

0. Consequently, according to Definition 2 E3 is
the point of biological equilibrium.

Theorem 3. Suppose that µ4 >
µ̄

R1
0

where µ̄ =
amΠ

µ1
+(

bnΠβ(δ + µ3)(R̂−R1
0)

ωδ

)
. The PFP E2 = (S̄, Ī, Q̄, 0) is

locally asymptotically stable if R1
0 > R̂.

Proof. The Jacobian matrix at E2 is

JE2 =


−(βĪ + µ1) −βS̄ δ −mS̄

βĪ 0 0 −nĪ
0 ω −(δ + µ3) 0

0 0 0
µ̄

R1
0

− µ4

 ,

which gives λ1 = R1
0 >

µ̄

µ4
and polynomial characteristic

P (λ) = λ3 + ζ̄1λ
2 + ζ̄2λ+ ζ̄3, (7)

where ζ̄1 = βĪ+δ+µ1+µ3, ζ̄2 = β(ω+µ2+δ+µ3)Ī+µ1(δ+

µ3), and ζ̄3 = (δµ2 + µ2µ3 + µ3ω)βĪ . Since µ4 >
µ̄

R1
0

, we have

λ1 < 0 and hence the local stability of PFP depends on eq. (7).
We examine that ζ̄1 > 0, ζ̄2 > 0, and ζ̄3 > 0. Thus, according to
Routh-Hurwitz criterion, we have to proof that ζ̄1ζ̄2 > ζ̄3, which
is true for R1

0 > R̂.

3.3. The Disease-Free Point
The Disease-Free Point (DFP) is a condition when all pop-

ulations exist except the populations of infected and quarantine
class. This condition explains that two populations survive in
the ecosystem, namely the susceptible prey population and the
predator population. While the other two populations became
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extinct, namely the sick prey population and the quarantined
prey population. The population density is the ratio of the natu-
ral death rate of the predator population and the conversion of
the predation rate of susceptible prey to the birth rate of preda-
tors and the predation rate of susceptible prey to predators. The
equilibrium point is given by

E2 =

(
µ4

am
, 0, 0,

aΠ

µ4
− µ1

m

)
,

The existence of the equilibrium point E2 is given by Theo-
rem 4

Theorem 4. E3 =

(
µ4

am
, 0, 0,

aΠ

µ4
− µ1

m

)
exists if a >

µ1µ4

mΠ
.

Proof. This condition can be confirmed by identify the positivity
of E3.

Theorem 5. The DFP E2 is locally asymptotically stable if β <

β∗ where β∗ =
(

an2

µ1
+ nµ1

m + ω + µ2

)
am
µ4

.

Proof. When E3 =

(
µ4

am
, 0, 0,

(Π− Π̄)a

µ4

)
, the jacobian matrix

becomes:

JE2
=


c11 c12 δ −µ4

a
0 c21 0 0
0 ω −(δ + µ3) 0
c41 c42 0 0

 ,

where

c11 = −
(
(Π− Π̄)am

µ4
+ µ1

)
,

c12 = − βµ4

am
,

c21 =
(anµ1 + βµ4)Π̄

µ1µ4
−
(
anµ1R

2
0 + βµ4

µ1µ4R2
0

)
Π,

c41 =
(amΠ− µ1µ4)a

µ4

c42 =
(amΠ− µ1µ4)bn

mµ4
.

This jacobian matrix has eigenvalues ⋋1 = −(δ + µ3),⋋2 =
(anµ1 + βµ4)Π̄

µ1µ4
−
(
anµ1R

2
0 + βµ4

µ1µ4R2
0

)
Π and quadratic equation

P (λ) = λ2 + ζ̄1λ+ ζ̄2, (8)

where ζ1 = µ1 +
amΠ− Π̄

µ4
and ζ2 = amΠ − µ1µ4. Since

β < β∗ we have λ2 < 0 and hence the local stability of PDFP
depends Equation (8). Obeying Routh-Hurwitz criterion, PDFP is
locally asymptotically stable if ζ1 > 0 dan ζ2 > 0. It is easy to
compute that those criterions are satisfied by eq. (8).

3.4. The Co-exixtence Point
The point of existence of all populations E4 =(

µ4 − bnĪ

am
, Ī,

ωĪ

δ + µ3
, β

(µ4 − bnĪ)− am(ω − µ2)

amn

)
where Ī is a quadratic equation, so we get:

d1Ī
2 + d2Ī + d3 = 0, (9)

with

d1 =

(
1− b

a

)
bnβ

d2 =
δωam

δ + µ3
+

2µ4βb

a
+ µ1bn− µ2

4β − b(ω + µ2)

d3 = amn+
µ4m(ω + µ2)

n
− µ2

4β

an
− µ1µ4

The existence of the equilibrium point E4 is given by Theo-
rem 6

Theorem 6. Suppose d1d2 < 0, d1d3 > 0, and

Ī < min
{
µ4

bn
,
µ4 − am(ω − µ2)

bn

}
the equilibrium point E4

exists if one of the following conditions is satisfied.
1. If d22 < 4d1d3 then there is no equilibrium point E4 in the

interior
2. If d22 = 4d1d3 then there is one equilibrium point E4 in the

interior
3. If d22 > 4d1d3 then there are two equilibrium points E4 in

the interior

Proof. When d22 < 4d1d3, the roots of eq. (9) are a pair of complex

conjugate numbers. When d22 = 4d1d3, only Ī = − d2
2d1

is the

root of eq. (9). Since d1d2 < 0, this root is positive. When d22 >
4d1d3, we have a pair of real numbers of eq. (9) which clearly
positive numbers when d1d3 > 0 and d1d2 < 0.

Theorem 7. Equilibrium point E4 is locally asymptotically stable

if m <
n
(
µ1an+ βĪan+ β(µ4 − bnĪ)

)
an(ω − µ2)

.

Proof. For E4, the Jacobian matrix is

JE4
=


d11 d12 δ −µ4+bnĪ

a
βĪ 0 0 −nĪ
0 ω −δ − µ3 0
d41 d42 0 0

 ,

where

d11 = − βĪ − β(µ4 − bnĪ) + am(ω − µ2)

an
− µ1,

d12 = − β

(
µ4 − bnĪ

am

)
,

d41 =
β(µ4 − bnĪ)− am(ω − µ2)

n
,
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Figure 2. equilibrium point simulation E1
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Figure 3. equilibrium point simulation E2

d42 = b

(
β(µ4 − bnĪ)− am(ω − µ2)

am

)
,

It is easy to confirm that all real parts of eigenval-
ues are negative when the necessary condition m <
n
(
µ1an+ βĪan+ β(µ4 − bnĪ)

)
an(ω − µ2)

is satisfied.

4. Numerical Simulation

In this section, a numerical simulation will be carried out
to see the dynamics of the Equation around the equilibrium
points E1, E2, E3, danE4 which have been analyzed previously.
This numerical simulation was carried out using the Runge-Kutta
method of order 4 with the help of Python 3.8 software

4.1. Dynamics around the equilibrium point E1

The parameter values used are Π = 1, β = 0.4, δ =
0.1, ω = 0.2, µ1 = 0.2, µ2 = 0.4, µ3 = 0.1, µ4 = 0.1, a =
0.1, b = 0.1,m = 0.1, n = 0.1, then get the eigenvalues -0.2,
-0.2, -0.4, -0.05 because all of them are negative then the value
is stable. Furthermore, the initial values for each population are
presented in Table 1. From the values given to the parameters

Table 1. Initial value of equilibrium point E1

z0 0.5 0.5 0.5 0.5
z10 0.1 0.5 0.1 0.5
z20 0.5 0.35 0.5 0.45
z30 0.1 0.35 0.1 0.35

and initial values, the simulation shown in Figure 2 which shows
thatE1 = (5, 0, 0, 0) is stable or locally asymptotically stable and
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Figure 4. equilibrium point simulation E4

has only one equilibrium point. Where it is seen that for each
predetermined initial value, the solution goes to the equilibrium
point E1. This condition explains Healthy prey populations will
be maintained and sick prey populations, quarantined prey pop-
ulations, and predator populations will become extinct.

4.2. Dynamics around the equilibrium point E2

The parameter values used are Π = 1, β = 0.8, δ =
0.1, ω = 2, µ1 = 0.2, µ2 = 0.4, µ3 = 0.1, µ4 = 0.1, a = 0.1, b =
0.1,m = 0.4, n = 0.4, then get the eigenvalues -0.341, -0.058,
-0.2, -0.6 because all of them are negative then the value is stable.
Furthermore, the initial values for each population are presented
in Table 2. From the values given to the parameters and initial

Table 2. Initial value of equilibrium point E2

z0 0.5 0.5 0.5 0.5
z10 0.1 0.5 0.1 0.5
z20 0.5 0.35 0.5 0.45
z30 0.1 0.35 0.1 0.35

values, the simulation shown in the Figure 3. Figure 3 shows
that E2 = (2.5, 0, 0, 0.5) has three equilibrium points, namely
E1 and E3 unstable (saddle) , because there is a positive value λ
while E2 is stable or locally asymptotically stable because every
predefined initial value, the solution goes to E2. This condition
explains that when the population of sick prey and quarantined
sick prey becomes extinct, the ecosystem will only be inhabited
by healthy prey and predator populations.

4.3. Dynamics around the equilibrium point E3

The parameter values used are Π = 1, β = 0.8, δ =
0.1, ω = 2, µ1 = 0.2, µ2 = 0.4, µ3 = 0.1, µ4 = 0.1, a = 0.1, b =
0.1,m = 0.1, n = 0.1, then get the eigenvalues -0.258, -0.714,
-0.110, -0.067 because all of them are negative then the value is
stable. Furthermore, the initial values for each population are
presented in Table 3. From the values given to the parameters
and initial values, the simulation shown in the following figure is

Table 3. Initial value of equilibrium point E3

z0 0.5 0.5 0.5 0.5
z10 0.1 0.5 0.1 0.5
z20 0.5 0.35 0.5 0.45
z30 0.1 0.35 0.1 0.35

obtained.

Figure 5 shows thatE3 = (3, 0.285, 2.857, 0) has two equi-
librium points,E1 is unstable (saddle) because there is a positive
value of λ while E3 is stable or locally asymptotically stable be-
cause each initial value has been determined, the solution goes to
the equilibrium pointE3.This condition explains that the ecosys-
tem will only be inhabited by healthy prey populations, sick prey,
and sick prey which are quarantined when the predator popula-
tion becomes extinct.

4.4. Dynamics around the equilibrium point E4

The parameter values used are Π = 3, β = 3, δ = 0.1, ω =
0.1, µ1 = 0.2, µ2 = 0.01, µ3 = 0.1, µ4 = 2, a = 0.1, b =
0.1,m = 0.04, n = 0.7, then get the eigenvalues -85.745, -0.066,
-0.276, -0.221 because all of them are negative then the value is
stable. Furthermore, the initial values for the population z0 are
0.00008, 5, 10.11, 0.5. From the values given to the parameters
and initial values, the simulation shown in Figure 4 which shows
that E4 = (0.051, 28.564, 14.282, 0.063) has three equilibrium
points with E1 and E3 unstable (saddle) , because there is a pos-
itive value of λ. Equilibrium pointE4is stable or locally asymptot-
ically stable because for each predetermined initial value, the so-
lution goes to the equilibrium point E4. This condition explains
that the populations of healthy prey, sick prey, quarantined sick
prey and predators will not become extinct , because the four
populations will depend on each other so that no population will
become extinct and no population will grow excessively.
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Figure 5. equilibrium point simulation E3

5. Conclusion
This study discusses the dynamics of the eco-

epidemiological model with quarantine in prey populations. This
model was modified by adding a quarantined prey population.
Therefore, to prevent an imbalance in an ecosystem, quarantine
is given to a sick prey population, then the prey that has been
successfully treated can be released back into the wild. the only
population that is unlikely to become extinct while the other
equilibrium points have the conditions for existence. Numerical
simulations were carried out to confirm the analysis results. It
can be interpreted that this model guarantees that each popula-
tion will survive with the number of their respective populations
of both prey and predators going to their equilibrium values.
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