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The existence of Neimark-Sacker bifurcation on
a discrete-time SIS-epidemic model incorporating
logistic growth and Allee effect

Amelia Tri Rahma Sidik1, Hasan S. Panigoro2,∗, Resmawan3, and Emli Rahmi4

1,2,3,4Biomathematics Research Group, Universitas Negeri Gorontalo, Bone Bolango 96554, Indonesia

ABSTRACT. This article investigates the dynamical properties of a discrete time SIS-Epidemic model incorporating
logistic growth rate and Allee effect. The forward Euler discretization method is employed to obtain the discrete-time
model. All possible fixed points are identified including their local dynamics. Some numerical simulations by varying
the step size parameter are explored to show the analytical findings, the existence of Neimark-Sacker bifurcation, and
the occurrence of period-10 and 20 orbits.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction
The spread of infectious diseases is still one of the funda-

mental problems in population ecology. Through mathematical
modeling, the rate of change of the population which is divided
into several interacting compartments is given by the epidemic
model. Most of these model are define in a system of differential
equations, for example [1–3]. One of the simple compartment
model is the SIS model which is divided into two compartments:
the susceptible compartment (S) and the infected compartment
(I). In an SIS model, it is assumed that the individual who recov-
ered from infected compartment has no immune to the disease,
and will again transfer to susceptible compartment.

In this work, we assume that the population growth rate
following the logistic population model given by Verhulst (1838)
as follows.

dP

dt
= rP

(
1− P

K

)
, (1)

where P is the population density, r is the intrinsic growth rate,
and K is the carrying capacity of population. Next, we also as-
sume there is a transmission of disease in this population follow-
ing the SIS model. Therefore, model (1) becomes

dS

dt
= rS

(
1− S + I

K

)
− βSI + ωI,

dI

dt
= βSI − (δ + ω)I,

(2)

where S and I denote the numbers of susceptible and infected,
respectively, β is the transmission rate of disease, δ is the death
rate from the disease, and ω is the natural recovery rate.

One of the popular environmental components namely the
Allee effect has gain much researchers attention, see [4, 5], for ex-
ample. The Allee effect refers to a decrease in population growth
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rate when the population density is low [6]. Some mechanisms
potentially create Allee effect in population, such as environmen-
tal conditioning, antipredator strategies, breeding behavior, or
mate finding problem. There is two type of the Allee effect terms
which usually use to describe this phenomenon, i.e. multiplica-
tive Allee effect [7, 8] and additive Allee effect [9, 10]. If we as-
sume there is Allee effect in the susceptible compartment then
we obtain the following system.

dS

dt
= rS

(
1− S + I

K

)
(S −m)− βSI + ωI,

dI

dt
= βSI − (δ + ω)I,

(3)

where m is the Allee threshold and all parameters are positive.
Currently, some studies about the biological system are us-

ing the discrete time model (see for example [11–15]). The main
reason is related to the statistical data of the population which
is collected in discrete time. Existing research exhibits that the
dynamics of the discrete time models are more complex rather
than their continous time models [16, 17].

By following the similar way in [18], we apply the forward
Euler scheme for the discretization eq. (3) and we obtain the
discrete-time SIS model as follows.

Sn+1 = Sn + h

[(
rSn

(
1− Sn + In

K

)
(Sn −m)

)
−βSnIn + ωIn] ,

In+1 = In + h [βSnIn − (δ + ω)In] .

(4)

where h is the step size, S(0) > 0 and I(0) ≥ 0.
The outline of this work is the following. Section 2 presents

the existence and local stability analysis of the fixed point of
eq. (4). In Section 3, some numerical results are performed not
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only to confirm the analytical results but also to investigate the
dynamics of the model numerically such as the Neimark-Sacker
bifurcation. Finally, some conslusions are given in Section 4.

2. Fixed Point and Their Local Stability
In this section, we derive the fixed points of eq. (4) in the

closed first quadrant R2
+ of the (S, I) plane and analyze the sta-

bility behavior around its fixed points.
First, we identify the fixed points by solving the following

equations:

S = S + h

[
rS

(
1− S + I

K

)
(S −m)− βSI + ωI

]
,

I = I + h [βSI − (δ + ω)I]

(5)

In this way, we get three types of fixed points as follows.
• The origin point E0 = (0, 0) always exists.
• The disease free point E1 = (K, 0) or E2 = (m, 0) always

exists.
• The endemic point E∗ = (S∗, I∗) where

S∗ =
δ + ω

β

I∗ =
mrS∗(βm− (δ + ω))(βK − (δ + ω))

mr(δ + ω)(βm− (δ + ω))− β2mK(2ω + δ)

Furthermore, using the next generation matrix the system (4) has
the following basic reproduction numbers.

Rm
0 =

βm

δ + ω
, or

RK
0 =

βK

δ + ω
.

(6)

Applying the basic reproduction numbers, E∗ = (S∗, I∗) can be
reformulate as

S∗ =
K

RK
0

or
m

Rm
0

,

I∗ =
mrS∗(Rm

0 − 1)(RK
0 − 1)

mr(Rm
0 − 1)−Rm

0 RK
0 (2ω + δ)

.

Next, we give the existence condition of the endemic point E∗

in the following lemma.

Lemma 1. (1) If the basic reproduction numbers satisfy Rm
0 <

1 and RK
0 < 1, then the system (4) has no endemic point.

(2) If the basic reproduction numbers satisfy
(i) Rm

0 < 1 and RK
0 > 1, or

(ii) Rm
0 > 1 and
(a) 1 < RK

0 <
mr(Rm

0 −1)
Rm

0 (2ω+δ) or,

(b) mr(Rm
0 −1)

Rm
0 (2ω+δ) < RK

0 < 1,
then the system (4) has an endemic points.

Now, we study the stability of the fixed points of system (4) by
employing Lemma 4.1 in [14].

Theorem 1. The origin point E0 = (0, 0) is
(i) A sink if h < 2min{ 1

mr ,
1

δ+ω},
(ii) A source if h > 2max

{
1

mr ,
1

δ+ω

}
,

(iii) A saddle if 2
mr < h < 2

δ+ω or 2
δ+ω < h < 2

mr ,
(iv) A non-hyperbolic if h = 2

mr or h = 2
δ+ω .

Proof. By evaluating the Jacobian matrix of system (4) at E0 =
(0, 0), we acquire

J(E0) =

[
1− hmr hω

0 1− h(δ + ω)

]
, (7)

The Jacobian matrix (7) gives two eigenvalues as follows.

λ1 = 1− hmr,

λ2 = 1− h(δ + ω).
(8)

If h < 2
mr then |λ1| < 1, if h > 2

mr then |λ1| > 1, if h = 2
mr then

|λ1| = 1, if h < 2
δ+ω then |λ2| < 1, if h > 2

δ+ω then |λ2| > 1,
and if h = 2

δ+ω then |λ2| = 1. By applying Lemma 4.1 in [14],
the results of (i)− (iv) can be proven.

Theorem 2. Let K > m and RK
0 < 1. The disease free point

E1 is
(i) A sink if h < 2min{ 1

r(K−m) ,
1

(1−RK
0 )(δ+ω)

},
(ii) A source if h > 2max{ 1

r(K−m) ,
1

(1−RK
0 )(δ+ω)

},
(iii) A saddle if 2

r(K−m) < h < 2
(1−RK

0 )(δ+ω)
or

2
(1−RK

0 )(δ+ω)
< h < 2

r(K−m) ,

(iv) A non-hyperbolic if h = 2
r(K−m) or h = 2

(1−RK
0 )(δ+ω)

.

Proof. We first compute the Jacobian matrix of system (4) at fixed
point E1 as follows.

J(E1) =

[
1− hr(K −m) −h[r(K −m)− ω +RK

0 (δ + ω)]
0 1− h(1−RK

0 )(δ + ω)

]
, (9)

which gives eigenvalues λ1 = 1 − hr(K − m) and λ2 = 1 −
h(1−RK

0 )(δ+ω). According to Lemma 4.1 in [14] the statement
(i)− (iv) in Theorem 2 can be achieved.

Theorem 3. Let K < m and Rm
0 < 1. The disease free point

E2 is
(i) A sink if h < 2min{ K

mr(m−K) ,
1

(1−Rm
0 )(δ+ω)},

(ii) A source if h > 2max{ K
mr(m−K) ,

1
(1−Rm

0 )(δ+ω)},
(iii) A saddle if 2K

mr(m−K) < h < 2
(1−Rm

0 )(δ+ω) or
2

(1−Rm
0 )(δ+ω) < h < 2K

mr(m−K) ,

(iv) A non-hyperbolic if h = 2K
mr(m−K) or h = 2

(1−Rm
0 )(δ+ω) .

Proof. ForE2 = (m, 0), we obtain the Jacobian matrix as follows.

J(E2) =

[
1− hmr

(
m
K

− 1
)

h[ω −Rm
0 (δ + ω)]

0 1− h[(1−Rm
0 )(δ + ω)]

]
, (10)
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Figure 1. The Neimark-Sacker bifurcation diagram of system (4) corresponding to the bifurcation parameter h and other parameters are
given in (14)

From the Jacobian matrix in 10, we obtain two eigen values which
is λ1 = 1 − hmr

(
m
K − 1

)
and λ2 = 1 − h[(1 − Rm

0 )(δ + ω)].
Since K < m and Rm

0 , 1 we have h < 2K
mr(m−K) , h > 2K

mr(m−K)

and h = 2K
mr(m−K) when |λ1| < 1, |λ1| > 1 and |λ1| = 1,

respectively. Furthermore, we have h < 2
(1−Rm

0 )(δ+ω) , h >
2

(1−Rm
0 )(δ+ω) and h = 2

(1−Rm
0 )(δ+ω) when |λ2| < 1, |λ2| > 1

and |λ2| = 1, respectively. Thus, again by utilizing Lemma 4.1 in
[14], we have the complete dynamics given by Theorem 3.

Theorem 4. Suppose that

Ω =
mr

Rm
0 RK

0

((Rm
0 − 1)(RK

0 − 2) + (1−RK
0 ))

+ I∗
(
β − mr

K

)
∆ = Ω2 − 4βI∗

(
r(Rm

0 − 1)

Rm
0 RK

0

+ δ

)
h1 =

4

Ω +
√
∆
, h2 =

4

Ω−
√
∆
, h3 =

4Ω

Ω2 −∆

Let Rm
0 > 1. The endemic point E∗ is

• A sink if ∆ ≥ 0 and 0 < h < h1, or ∆ < 0 and 0 < h <
h3.

• A source if ∆ ≥ 0 and h > h2, or ∆ < 0 and h > h3.
• A saddle if ∆ ≥ 0 and h1 < h < h2.
• A non-hyperbolic if ∆ ≥ 0 and h = h1 or h2, or ∆ < 0

and h = h3.

Proof. By computing the Jacobian matrix around E∗ = (S∗, I∗),
we achieve

J(E∗) =

[
1− hΩ −h

[
r(Rm

0 −1)

Rm
0 RK

0
+ δ

]
hβI∗ 1

]
, (11)

which gives a quadratic polynomial characteristic
λ2 − Tr(J(E∗))λ+Det(J(E∗)) = 0, where

Tr(J(E∗)) = 2− hΩ

Det(J(E∗)) = 1− hΩ+ h2βI∗
(
r(Rm

0 − 1)

Rm
0 RK

0

+ δ

)
(12)

Therefore, we obtain two eigen values as follows:

λ1,2 = 1− hΩ

2
± h

√
∆

2
(13)

By utilizing Lemma 4.1 in [14], the Theorem 4 is completely
proven.

From the analytical results in Theorem 1 to 4, it is clear that
the step size (h) has greatly influences the stability of each fixed
point.

3. Numerical Simulation
In this part, some numerical simulations of the system (4)

are illustrated. For the sake of simulation needs, we use hypo-
thetical parameter values because of the absence of field data.

JJBM | Jambura J. Biomath Volume 3 | Issue 2 | December 2022
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(a) h = 0.5 (b) h = 0.7 (c) h = 1.0

(d) h = 1.5 (e) h = 2.5 (f) h = 2.6

Figure 2. The phase portraits of system (4) for various h corresponding to Figure 1

We set some parameter values as follows,

β = 0.2, ω = 0.1, δ = 0.1, r = 0.6,m = 0.3, and K = 4. (14)

According to Lemma 1, system (4) has an endemic point E∗ =
(1, 1.536) since it is satisfies Rm

0 = 0.3 < 1 and RK
0 = 4 > 1.

Furthermore, from Theorem 4 we also have a switching condition
from sink to source behavior. The endemic pointE∗ = (1, 1.536)
has a discriminant value, ∆ = −0.2505 < 0.Therefore, it has a
pair of complex conjugate eigen values, i.e. λ1,2 = 1−0.0196h±
0.2502hI . For this reason, we will show numerically the exis-
tence of Neimark-Sacker bifurcation around the endemic point
which corresponds to the step size (h) parameter.

By varying the step-size (h) in range 0.4 ≤ h ≤ 2.7 and us-
ing parameter in (14) with initial conditions (S0, I0) = (1, 1.4),
we portray the occurence of Neimark-Sacker bifurcation around
the endemic point E∗ = (1, 1.536) in Figure 1. From Figure 1,
we see that E∗ is stable when h < h∗ ≈ 0.62, and then loses its
stability with the emergence of an invariant closed curve when
h > h∗ ≈ 0.62. For better visualization of this pehenomenon,
we choose six different values of h(h = 0.5, 0.7, 1, 1.5, 2.5, 2.6)
and illustrate the phase portrait diagram in Figure 2. Moreover,
the radius of the invariant closed curve becomes larger as the
value of h increases as we can see in Figure 2(b–d). We also show
the appearence of periodic-10 and 20 orbits in Figure 2(e–f), re-
spectively.

4. Conclusion
A new discrete time SIS-epidemic model obtained by Eu-

ler method has been studied in this article. From the analyti-
cal results, it has found that the model has three types of fixed
points along with their respective local stability conditions. Each
of fixed points could be a sink, source, saddle, or non-hyperbolic

point depend on the step size of discretization. We also show nu-
merically the emergence of Neimark-Sacker bifurcation, period-
10 and 20 orbits driven by the step size (h) parameter.
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