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Dynamics System in the SEIR-SI Model of the Spread of Malaria
with Recurrence

Afdhal Ahkrizal1,∗, Jaharuddin2, and Endar H. Nugrahani3

1,2,3 Department of Mathematics, IPB University, Bogor 16680, Indonesia

ABSTRACT. Mathematical model is used to describe the dynamics of the spread of malaria in human and mosquito
populations. The model used is the SEIR-SI model. This study discusses the stability of the equilibrium point, pa-
rameter sensitivity, and numerical simulation of the spread of malaria. The analysis shows that the model has two
equilibrium points, namely the disease-free and endemic equilibrium points, each of which is locally asymptotically
stable. Numerical simulations show that the occurrence of disease cure in exposed humans causes the rate of malaria
spread to decrease. Meanwhile, the presence of disease recurrence causes the spread of malaria to increase.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction
Malaria is an infectious disease caused by Plasmodium

parasites. Plasmodium parasites are transmitted through the
bite of a female Anopheles mosquito infected with the parasite,
blood transfusions, and needle injections that have been used by
malaria sufferers causing damage to red blood cells [1]. Plasmod-
ium parasites consist of five species: Plasmodium falciparum,
Plasmodium malariae, Plasmodium vivax, Plasmodium ovale, and
Plasmodium knowlesi [2]. Among these species, Plasmodium fal-
ciparum is a parasite that has a high mortality rate, and Plasmod-
ium vivax is a parasite that has the highest virulence rate [3].
In Plasmodium vivax and Plasmodium ovale, some liver tropho-
zoites do not immediately develop into schizonts, but some be-
come dormant forms called hypnozoites [4]. Hypnozoites are a
phase of the parasite’s life cycle that can later cause relapse. Plas-
modium vivax can relapse, even up to 3-4 years. Plasmodium
ovale can relapse for years if the treatment is not done correctly
[5]. Symptoms that appear in sufferers of malaria include fever,
headache, chills, and retching. In humans who do not have immu-
nity, these symptoms will appear at least seven days after being
bitten by an Anopheles mosquito, but these symptoms are very
mild and difficult to distinguish from fever in general [6].

In 2020, WHO reported that there were around 241 million
malaria cases, resulting in around 627 thousand people dying.
It is estimated that 77% of the fatalities are children under the
age of 5 years [7]. In Indonesia, the malaria morbidity rate has
increased compared to 2019, from 0.93 to 0.94 per 1000 popu-
lation. Papua contributes the most malaria cases at the provin-
cial level and has the highest malaria morbidity rate compared
to other provinces at 63.12 per 1000 population [8]. This condi-
tion is exacerbated by the fact that millions of people still do not
have access to proper health so that they can prevent and treat
malaria. Therefore, public awareness is important to carry out
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prevention activities that can reduce the rate of transmission of
malaria [9].

One of the studies to solve the problem of malaria spread
is the study of mathematical modelling and some assumptions
in the spread. Mathematical models are used to determine the
dynamics of the spread of malaria in previous research, namely
research conducted by Ngwa and Shu (2000), which assumed a
relationship between the human population and the mosquito
population in the spread of malaria [10]. Research conducted by
Mojeeb et al. (2017) assumes that cured humans can return to hu-
mans susceptible to disease, mosquitoes will never recover, and
births occur in infected human subpopulations [11]. Research
conducted by Budhwar andDaniel (2017) assumes that the spread
of malaria can also occur if there is immigration from infected hu-
mans. This occurs when a period of 10 days to 4 weeks from the
time of infection to the onset of the actual disease, and humans
travel or immigrate within that period [12]. Research conducted
by Baihaqi and Adi-Kusumo (2020) assumes that the occurrence
of recurrence of malaria in the human population raises new vari-
ables because humans who recover frommalaria infections cause
Plasmodium parasites to remain in the human body [13]. This
study analyzes the malaria disease spread model, a modification
of the model developed by Budhwar and Daniel (2017). The mod-
ification of the model carried out in this study is to assume the
parameters of the recovery rate in exposed humans because par-
asites in the human body experience a dormant condition and the
disease recurrence rate in humans who recover because they still
have parasites in the body after recovering from active malaria
again. Next, stability analysis, sensitivity analysis, and numerical
simulation will be carried out on this modified model.

2. Model Formulation

In this section, the model developed by Budhwar and
Daniel will be modified. the model modification assumes the fol-

Email : afdhalahkrizal97@gmail.com (A. Ahkrizal), jaharuddin@apps.ipb.ac.id (Jaharuddin), and e_nugrahani@apps.ipb.ac.id (E. H. Nugrahani)
Homepage : http://ejurnal.ung.ac.id/index.php/JJBM/index / E-ISSN : 2723-0317
© 2023 by the Author(s).

https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.34312/jjbm.v4i1.18754
https://doi.org/10.34312/jjbm.v4i1.18754
mailto:afdhalahkrizal97@gmail.com
mailto:jaharuddin@apps.ipb.ac.id
mailto:e_nugrahani@apps.ipb.ac.id
http://ejurnal.ung.ac.id/index.php/JJBM/index
http://u.lipi.go.id/1593403037


A. Ahkrizal, Jaharuddin, and E. H. Nugrahani – Dynamics System in the SEIR-SI Model of the Spread… 32

Sh Eh Ih Rh

Sm Im

(1− ψ − α)ηh βh

βm

νh γh

ηm

µh µh

µm + δm µm + δm

αηh τh ψηh
ξh

µh + δh µh

Figure 1. Compartmental Diagram of Malaria Disease Spread

Table 1. Description of Parameters Used in the Model

Parameter Description Dimension
ηh Human birth and migration rates humans × time−1

ψ Fraction of infected human migration n/a
α Fraction of human migration exposed n/a
ηm Mosquito growth rate mosquito × time−1

βh
Contact rate of disease transmission between susceptible humans and
infected mosquitoes mosquito−1 × time−1

βm
Contact rate of disease transmission between susceptible mosquitoes and
infected humans humans−1 × time−1

µh The natural mortality rate of human time−1

µm The natural mortality rate of mosquitoe time−1

δh The human mortality rate due to disease time−1

δm Mosquito mortality rate due to control time−1

νh Transmission rate from exposed human to infected human time−1

γh The recovery rate in infected humans time−1

τh The recovery rate in exposed humans time−1

ξh Disease recurrence rate time−1

lowing:

1. (Eh) to (Rh), exposed humans can recover from the disease
because Plasmodium parasites are in a dormant state in the
human body. this occurs as a result of the parasite in which
some liver trophozoites do not develop into schizonts, but
become dormant forms called hypnozoites [4]. Hypnozoite
is a phase of the parasite life cycle that can cause relapse [5].

2. (Rh) to (Ih), recovered humans move to infected humans
because Plasmodium parasites which are in a dormant con-
dition reactivate after some time [5].

The populations used in this model are human and mosquito
populations with susceptible human (Sh), exposed human
(Eh), infected human (Ih), recovered human (Rh), susceptible
mosquitoe (Sm) and infected mosquitoe subpopulations (Im).
Parameters added to this model are the rate of recurrence of
malaria (ξh) and the rate of recovery of disease in exposed hu-
mans (τh). Based on assumptions, the systematic spread of
malaria can be depicted in Figure 1.

Based on Figure 1, a mathematical model is obtained that
describes the spread of malaria in the form of a system of non-

linear differential equations as follows:

dSh
dt

= (1− ψ − α)ηh − µhSh − βhShIm,

dEh
dt

= αηh + βhShIm − (νh + µh + τh)Eh,

dIh
dt

= ψηh + νhEh + ξhRh − (µh + δh + γh)Ih,

dRh
dt

= γhIh + τhEh − (µh + ξh)Rh,

dSm
dt

= ηm − βmSmIh − (µm + δm)Sm,

dIm
dt

= βmSmIh − (µm + δm)Im,

(1)

with the total human population Nh = Sh +Eh + Ih +Rh and
total mosquito populationNm = Sm+Im. The parameters used
in the system of eq. (1) are given in Table 1.

3. Results and Discussion
3.1. Equilibrium Point

The dynamic system of malaria disease spread expressed
in the system of eq. (1) has two equilibrium points. They are
the disease-free equilibrium point and the endemic equilibrium
point. The disease-free equilibrium point is obtained when Sh =
0, Sm = 0, and the others are not equal to zero, so the ob-
tained is T 0(Sh, Eh, Ih, Rh, Sm, Im) =

(
ηh
µh
, 0, 0, 0, ηm

µm+δm
, 0
)
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and the endemic equilibrium point is obtained when all
subpopulations are not equal to zero, so the obtained is
T ∗(Sh, Eh, Ih, Rh, Sm, Im) = (S∗

h, E
∗
h, I

∗
h, R

∗
h, S

∗
m, I

∗
m) with

S∗
h = (1−ψ−α)ηh

βhI∗m+µh
, E∗

h =
βhShI

∗
m+αηh

µh+νh+τh
,

I∗h =
νhE

∗
h+ξhR

∗
h+ψηh

γh+δh+µh
, R∗

h =
γhI

∗
h+τhE

∗
h

µh+ξh
,

S∗
m = ηm

βmI∗h+δm+µm
, I∗m =

βmS
∗
mI

∗
h

δm+µm
.

3.2. Basic Reproduction Number
The basic reproduction number uses the next generation

matrix method. The basic reproduction number is the dominant
eigenvalue of the FV −1 matrix where F is the transmission ma-
trix of new infection in the population and V is the transition
matrix of individual movements between subpopulations (Eh),
(Ih), (Rh), and (Im), so the basic reproduction number is ob-
tained as follows:

F =

0 0 0 F14

0 0 0 0
0 0 0 0
0 F42 0 0

 , V =

 V11 0 0 0
−V21 V22 −V23 0
−V31 −V32 V33 0
0 0 0 V44

 ,

with

F14 = βhηh
µh

, F42 = βmηm
µm+δm

, V11 = νh + µh + τh,

V21 = νh, V22 = µh + δh + γh, V23 = ξh, V31 = τh,

V32 = γh, V33 = µh + ξh, V44 = µm + δm.

The dominant eigenvalue of the matrix FV −1, i.e., the basic re-
production number is:

R0 =
√

βhβmηhηm(ξhτh+νh(µh+ξh))
µh(νh+µh+τh)(µm+δm)2((µh+δh+γh)(µh+ξh)−ξhγh) . (2)

3.3. Disease-Free Equilibrium Point Stability
In this section, to prove the stability of the disease-

free equilibrium point, we will use the following theo-
rem:

Theorem 1. The disease-free equilibrium point T 0 in the system
of eq. (1) is locally asymptotic if R0 < 1.

Proof. The stability properties of the disease-free equilibrium
point T 0 can be known by linearizing the system of eq. (1) around
T 0. The Jacobian matrix for the disease-free equilibrium point is
obtained T 0 is as follows:

JT 0 =


−P11 0 0 0 0 −P16

0 −P22 0 0 0 P26

0 P32 −P33 P34 0 0
0 P42 P43 −P44 0 0
0 0 −P53 0 −P55 0
0 0 P63 0 0 −P66

 ,

with

P11 =µh, P16 = P26 =
βhηh
µh

,

P22 = νh + µh + τh, P32 = νh,

P33 = µh + δh + γh, P34 = ξh, (3)

P42 = τh, P43 = γh,

P44 = µh + ξh, P53 = P63 =
βmηm
µm + δm

,

P66 = µm + δm.

The eigenvalues of the Jacobian matrix JT 0 can be obtained by
solving |λI − JT 0 | = 0 and produces negative eigenvalues, and
the characteristic equation of the Jacobian matrix is as follows:

λ1 = −P11, λ2 = −P55, and (4)

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0 (5)

with

a1 = P22 + P33 + P44 + P66,

a2 = P22P + P22P44 + P22P66 + P33P44 + P33P66

+ P44P66 − P34P43,

a3 = P22P33P44 + P22P33P66 + P22P44P66 + P33P44P66

− P22P34P43 − P34P43P66 − P26P32P63,

a4 = P22P33P44P66 − P26P34P42P63 − P26P32P44P63

− P22P34P43P66.

Then substitute eq. (3) into eq. (2) to obtain the following:

R0 =

√
P26P63(P34P42 + P32P44)

P22P66(P33P44 − P34P43)
. (6)

Because R0 < 1 then

P22P33P44P66 > P26P34P42P63 + P26P32P44P63

+ P22P34P43P66

P22P33P44P66 > P26P34P42P63

P22P33P66 > P26P32P63

P33P44 > P34P43.

So it can be concluded that a1, a2, a3, a4, a1a2 − a3 and
a1a2a3 − a23 − a21a4 according to the Routh-Hurwitz criterion
[14], the disease-free equilibrium point T 0 is locally asymptoti-
cally stable.

3.4. Endemic Equilibrium Point Stability

In this section, to prove the stability of the disease-
free equilibrium point, we will use the following theo-
rem:

Theorem 2. The endemic equilibrium point T ∗ in the system of
eq. (1) is locally asymptotic if R0 > 1.

Proof. To prove Theorem 2, the Castillo-Chaves, and Song Theo-
rem [15] will be used. Suppose φ = βh are the bifurcation pa-
rameters and Sh = x1, Eh = x2, Ih = x3, Rh = x4, Sm = x5,
and Im = x6. Equation (3) is substituted to the system of eq. (1)
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by supposing as follows:

g1(x1, x2, x3, x4, x5, x6) = (1− ψ − α)ηh − P11x1 − φx1x6,

g2(x1, x2, x3, x4, x5, x6) = αηh + φx1x6 − P22x2,

g3(x1, x2, x3, x4, x5, x6) = ψηh + P32x2 + P34x4 − P33x3,

g4(x1, x2, x3, x4, x5, x6) = P43x3 + P42x2 − P44x4,

g5(x1, x2, x3, x4, x5, x6) = ηm − βmx5x3 − P66x5,

g6(x1, x2, x3, x4, x5, x6) = βmx5x3 − P66x6,

(7)

when the conditions R0 = 1 and φ = βh then five eigenvalues
are negative and one eigenvalue is zero. It is a4 = 0. The zero
eigenvalue has a right eigenvector (u1, u2, u3, u4, u5, u6) and left
eigenvector (v1, v2, v3, v4, v5, v6) as follows:
Suppose u4 > 0 and v4 > 0 then

u1 = −P16

P11

(
P22P33P44−P22P43P34

P26P42P33+P26P43P32

)
u4,

u2 = P33P44−P34P43

P33P42+P32P43
u4,

u3 = P34P33P42+P34P32P43+P32P33P44−P32P34P43

P 2
33P42+P33P32P43

u4,

u5 = −P53

P55

P34P33P42+P34P32P43+P32P33P44−P32P34P43

P 2
33P42+P33P32P43

u4,

u6 = P22P33P44−P22P34P43

P26P33P42+P26P32P43
u4,

v1 = v5 = 0, v2 = P32P44+P34P42

P22P34
v4,

v3 = P44

P34
v4, v6 = P26P32P44+P26P34P42

P22P34P66
v4.

It is obtained that u1 < 0, u2 > 0, u3 > 0, u4 > 0, u5 < 0, v1 =
v5 = 0, v2 > 0, v3 > 0, v4 > 0, and v6 > 0. Using the Castillo-
Chavez and Song Theorem is defined as follows:

6∑
k,i,j=1

vkuiuj
∂2fk
∂xi∂xj

(T 0, φ);

6∑
k,i=1

vkui
∂2fk
∂xi∂φ

(T 0, φ). (8)

Based on the system of eq. (7), the following is obtained:

∂2f1
∂x1∂x6

(T 0, φ) =
∂2f1
∂x6∂x1

(T 0, φ∗) = −φ,

∂2f2
∂x1∂x6

(T 0, φ) =
∂2f2
∂x6∂x1

(T 0, φ∗) = φ,

∂2f5
∂x3∂x5

(T 0, φ) =
∂2f5
∂x5∂x3

(T 0, φ) = −βm,

∂2f6
∂x3∂x5

(T 0, φ) =
∂2f6
∂x5∂x3

(T 0, φ) = βm,

∂2f2
∂x6∂φ

(T 0, φ) =
ηh
P11

.

Based on eq. (8), the following is obtained:

a = 2v2u1u6φ+ 2v6u3u5βm; b = v2u6
ηh
P11

(9)

because u1, u5 < 0, P33P44 − P34P43 > 0, all parameters are
positive, then the values of a < 0 and b > 0. This result is con-
sistent with the criteria of case 4 in the Castillo-Chaves and Song
Theorems. Consequently, when φ changes from φ < φ(R0 < 1)
to φ > φ(R0 > 1) then the endemic equilibrium point T ∗

changes from negative to positive and is locally asymptotically
stable. So, it is proven that if R0 > 1 then the endemic equilib-
rium point T ∗ is locally asymptotically stable.

3.5. Sensitivity Analysis
Sensitivity analysis is carried out on the endemic equilib-

rium point, which aims to determine the parameters that affect
the change in value. R0. The dynamics of the spread of malaria
are influenced by the parameter values in Table 2 below.

Table 2. Parameter Values Used in the Model

Parameter Value Source
ηh 154 [8]
ψ 0.00032 Assumed
α 0.00065 Assumed
ηm 3500 [11]
βh 0.000002024 [11]
βm 0.00003214 [11]
µh 0.0416 [8]
µm 0.05 [11]
δh 0.000032 [8]
δm 0.01 [16]
νh 0.05 [11]
γh 0.035 [11]
τh 0.055 [17]
ξh 0.01 [18]

Sensitivity analysis uses the sensitivity index value with the
following formula:

YR0
p = ∂R0

∂p × p
R0

(10)

with p is parameter in the model. Sensitivity analysis is carried
out by inputting the values of the parameters to obtain the sen-
sitivity index value of each parameter using eq. (10). The param-
eters influence the dynamics of the spread of malaria in Table 2,
and then the sensitivity index value is obtained in Table 3 below.

Table 3. Sensitivity Index Values of the Model

Parameter Sensitivity Index
ηh 0.5
ψ 0
α 0
ηm 0.5
βh 0.5
βm 0.5
µh -1.19
µm -0.83
δh -0.00036
δm -0.17
νh 0.24
γh -0.032
τh -0.099
ξh 0.077

Table 3 shows that the parameter of recovery rate in ex-
posed humans (τh) has a negative sensitivity index, meaning that
the parameter is inversely proportional to changes in the value
of R0that is, if the recovery rate in exposed humans is (τh) in-
creases, there will be a decrease in the value ofR0 and vice versa.
While the recurrence rate of (ξh) has a positive sensitivity index,
meaning that the parameter is directly proportional to the change
in the value ofR0 if the recurrence rate of (ξh) is increased, there
will be an increase in the value of R0 and vice versa. Then a nu-
merical simulation will be carried out to show the dynamics of
the human population on the spread of malaria due to recurrence
which is affected by changes in the values of the parameters (τh)
and (ξh).
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Figure 2. Dynamics of Human Population to Changes in τh

3.6. Numerical Simulation
Simulations were conducted on changes in the parame-

ter values of the recovery rate in exposed humans (τh) and
recurrence rate (ξh) with the initial value in each subpopula-
tion is Sh(0) = 686, Eh(0) = 500, Ih(0) = 217, Rh(0) =
2033, Sm(0) = 3000, Im(0) = 2000.

3.6. Human Population Dynamics with Parameter Changes τh
Sensitivity index for the parameter of the recovery rate in

exposed humans (τh) is negative, meaning that there is a de-
crease in the value of the basic reproduction number R0 if this
parameter is increased, and vice versa. Changes in the value of
R0 and the human population can be seen in the simulation re-
sults in Table 4 below.

Table 4. Changes in parameter values τh against R0

τh R0 Fixed Point (S∗
h, E

∗
h, I

∗
h, R

∗
h)

0.055 1.47622 (2214,422,578,489)
0.066 1.44857 (2262,380,539,523)
0.0833 1.41189 (2329,327,488,559)

Based on Table 4, there is a change R0 as the value of τh.
This will also be shown in Figure 2 for each simulation subpopula-
tion. Figure 2 shows that changes in the recovery rate of exposed
humans (τh) can affect the size of the human population. If this
parameter increases, the number of susceptible and recovered
human subpopulations also increases. Meanwhile, the number of
exposed and infected human subpopulations will decrease. This
suggests that recovery from disease caused by Plasmodium par-
asites dormant in the human body can reduce the infected sub-
population. However, caution is still important if the parasite
reactivates and attacks the human body.

3.6. Population Dynamics with Parameter Changes ξh
Sensitivity index for the parameter of the recurrence rate

(ξh) is positive, meaning that there is an increase in the value

of the basic reproduction number R0 when increased, and vice
versa. This can be seen in the simulation results in Table 5 below.
Based on Table 5, there is a change R0 as the value of ξh. This

Table 5. Changes in Parameter Values ξh against R0

ξh R0 Fixed Point (S∗
h, E

∗
h, I

∗
h, R

∗
h)

0.0 1.33015 (2500,341,379,483)
0.0055 1.41944 (2315,394,498,496)
0.01 1.47622 (2214,422,578,489)

will also be shown in Figure 3 for each simulation subpopulation.
Figure 3 shows that changes in the recurrence rate can affect the
size of the human population. If this parameter increases, the
number of exposed and infected human subpopulations will also
increase. Meanwhile, the number of susceptible human subpop-
ulations will decrease. However, in recovered humans, there are
different population changes. It can be seen in the endemic fixed
point in Table 5. This shows that the spread of malaria will in-
crease if there is a recurrence of the disease at a certain time, so
one of the efforts made is to immediately treat recovered human
but still have parasites in the body to emphasize the recurrence
of malaria.

4. Conclusion
In this study, the SEIR-SI model is used to show the dy-

namics of the spread of malaria in human and mosquito popu-
lations. In this model, only the dynamics of the human popu-
lation are studied because the human population considers the
existence of disease recovery from exposed humans and disease
recurrence due to dormant parasites that become active again at
a certain time. The analysis shows that this model has two equi-
librium points, namely the disease-free equilibrium point and the
endemic equilibrium point. The disease-free equilibrium point is
locally asymptotically stable when the basic reproduction num-
ber is less than one, meaning the disease will run out within a
certain time. The endemic equilibrium point is locally asymptot-
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Figure 3. Dynamics of Human Population to Changes in ξh

ically stable when the basic reproduction number is more than
one, meaning that malaria will persist as the number of infected
humans increases. The results of further analysis show that in-
creasing disease recovery from exposed humans can reduce the
spread of malaria and increasing malaria recurrence can increase
the spread of malaria. Therefore, efforts that can be made to
reduce the spread of malaria are to reduce the rate of malaria
recurrence.
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