
RESEARCH ARTICLE • OPEN ACCESS

Qualitative analysis of a mathematical model of COVID-19 with
intervention strategies in the Philippines

Rolly N. Apdo and Rolando N. Paluga

Volume 4, Issue 1, Pages 46–54, June 2023
Received 27 February 2023, Revised 20 April 2023, Accepted 10 May 2023, Published Online 26 June 2023

To Cite this Article : R. N. Apdo and R. N. Paluga,“Qualitative analysis of a mathematical
model of COVID-19 with intervention strategies in the Philippines”, Jambura J. Biomath, vol.
4, no. 1, pp. 46–54, 2023, https://doi.org/10.34312/jjbm.v4i1.18990

© 2023 by author(s)

JOURNAL INFO • JAMBURA JOURNAL OF BIOMATHEMATICS

Homepage : http://ejurnal.ung.ac.id/index.php/JJBM/index
Journal Abbreviation : Jambura J. Biomath.
Frequency : Biannual (June and December)
Publication Language : English (preferable), Indonesia

 DOI : https://doi.org/10.34312/jjbm
Online ISSN : 2723-0317
Editor-in-Chief : Hasan S. Panigoro
Publisher : Department of Mathematics, Universitas Negeri Gorontalo
Country : Indonesia
OAI Address : http://ejurnal.ung.ac.id/index.php/jjbm/oai

 Google Scholar ID : XzYgeKQAAAAJ
Email : editorial.jjbm@ung.ac.id

JAMBURA JOURNAL • FIND OUR OTHER JOURNALS

Jambura Journal of
Mathematics

Jambura Journal of
Mathematics Education

Jambura Journal of
Probability and Statistics

EULER : Jurnal Ilmiah
Matematika, Sains, dan

Teknologi

https://doi.org/10.34312/jjbm.v4i1.18990
http://ejurnal.ung.ac.id/index.php/JJBM/index
http://u.lipi.go.id/1593403037
https://ejurnal.ung.ac.id/index.php/JJBM/about/editorialTeamBio/3898
http://ejurnal.ung.ac.id/index.php/jjbm/oai
https://scholar.google.co.id/citations?user=XzYgeKQAAAAJ&hl=id&authuser=5
mailto:editorial.jjbm@ung.ac.id
http://ejurnal.ung.ac.id/index.php/jjom/index
http://ejurnal.ung.ac.id/index.php/jmathedu/index
http://ejurnal.ung.ac.id/index.php/jps/index
http://ejurnal.ung.ac.id/index.php/euler/index


Qualitative analysis of a mathematical model of COVID-19 with
intervention strategies in the Philippines

Rolly N. Apdo1,∗ and Rolando N. Paluga2

1,2 Department of Mathematics, Caraga State University, Butuan City, Philippines

ABSTRACT. This paper focuses on the development of a mathematical model to analyze the transmission dynamics
of COVID-19 in the Philippines, where the pandemic has significantly impacted the population despite several quar-
antine measures, testing, contact tracing, and vaccinations. The model considers the impact of contact tracing and
vaccination campaigns on disease transmission. The model is analyzed qualitatively and numerically, and the results
show that increasing the contact tracing rate and vaccination rate can effectively reduce the reproduction number of
the virus. The disease-free equilibrium is found to be locally asymptotically stable when the basic reproduction num-
ber is less than one, and the disease-endemic equilibrium is locally asymptotically stable when the basic reproduction
number is greater than one. The study suggests that a contact tracing rate greater than 0.08847694 is required to
effectively manage the transmission of COVID-19 in the target population. These findings provide insights for policy-
makers and public health officials in developing effective strategies to mitigate the impact of the pandemic.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction
Until now, Coronavirus disease 2019 (COVID-19), caused

by a novel coronavirus called Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2), has remained a public health threat
to all human beings since its emergence in late 2019. SARS-CoV-
2 is continuously evolving, and to date, different variants of the
virus have been identified and classified, which may pose an ad-
ditional risk to the lives of millions of people. In fact, the World
Health Organization (WHO) [1] reported that as of February 22,
2023, there had been 757, 264, 511 confirmed cases, including
6, 850, 594 deaths globally. Philippines is one of the countries
that has been dramatically affected by COVID-19. To stop the
virus’ spread, the Philippines has been enforced with a number
of quarantine measures, including heightened community quar-
antine. The government has also implemented measures such
as testing and contact tracing, as well as vaccinations. How-
ever, the situation remains challenging, with rising cases nowa-
days. The Department of Health (DOH) reported 4, 076, 237 con-
firmed cases and 66, 108 people died due to COVID-19, whereas
166, 485, 680 doses of vaccine have been administered up to
February 27, 2023 [2]. Therefore, research on the dynamics of
COVID-19 after the vaccination campaigns is a significant con-
cern in the Philippines.

Mathematical modeling plays a vital role in understanding,
forecasting, and managing infectious disease transmission dy-
namics. Since the beginning of the COVID-19 pandemic, several
models have been developed to study the transmission dynam-
ics of the disease. In the context of the Philippines, there are
several models related to the spread of COVID-19. Torres et al.
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[3] studied COVID-19 infection cases to forecast daily cases us-
ing numerous mathematical models, including the Susceptible-
Exposed-Infected-Recovered (SEIR) model. Arcede et al. [4] also
considered an SEIR-type model of COVID-19, emphasizing that
the infected can be either symptomatic or not. Data on con-
firmed cases and deaths from numerous countries, including the
Philippines, were used to calibrate the model. Results revealed
that testing and isolation are required to stop the disease. An-
other study by Arcede et al. [5] utilized optimal control for the
model proposed in [4]. Results indicate that the more capable
the government is, the more it should undertake transmission
reduction, testing, and improving patients’ medical care without
adding more hospital beds if all controls are implemented. Buhat
et al. [6] developed an extended SEIR compartment model with
twomutually exclusive populations: the general public and front-
liners. They performed simulations and found that front liners
and the general public should be protected against the disease.
To simulate the first wave of the COVID-19 outbreak in the Philip-
pines, Caldwell et al. [7] used an age-structured compartmental
model that included time-varying mobility, testing, and personal
preventive behaviors through aMinimumHealth Standards (MHS)
policy. They found that following MHS decreased the likelihood
of transmission per encounter by 13-27%. These researchers, to
our knowledge, did not consider vaccination in their model for-
mulation. However, recently, researchers already included vacci-
nation class in their models. For instance, in [8], they formulated
six compartments differential equation model for the transmis-
sion of COVID-19 and analyzed the global stability of the equi-
librium points. They found out that the disease-free equilibrium
and endemic equilibrium are globally asymptotically stable when

Email : rollyapdo92@gmail.com (R. N. Apdo)
Homepage : http://ejurnal.ung.ac.id/index.php/JJBM/index / E-ISSN : 2723-0317
© 2023 by the Author(s).

https://orcid.org/0000-0003-4715-5168
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.34312/jjbm.v4i1.18990
https://doi.org/10.34312/jjbm.v4i1.18990
mailto:rollyapdo92@gmail.com
http://ejurnal.ung.ac.id/index.php/JJBM/index
http://u.lipi.go.id/1593403037


R. N. Apdo and R. N. Paluga – Qualitative analysis of a mathematical model of COVID-19… 47

R0 < 1 and R0 > 1 respectively. In addition, Caga-anan et al.
[9] developed a COVID-19 model with a delay-term for the vacci-
nated compartment. Their simulations provided compelling ev-
idence that vaccination against COVID-19 has a significant and
positive impact on reducing the number of future infections.
Moreover, Campos et al. [10] also studied vaccination strate-
gies considering the different COVID-19 variants. Their results
have highlighted the importance of administering booster shots
to increase vaccine-induced immunity duration against COVID-
19. The studies mentioned did not consider the potential im-
pact of contact tracing and vaccination campaigns on the spread
of COVID-19, particularly regarding the severity of the infected
individuals. To fulfill the gaps, we are inspired to conduct this
research.

The rest of the paper is organized as follows. Section 2 dis-
cusses the construction of themodel and is analyzed in Sections 3
and 4. The model is then subjected to numerical simulation in
Section 5. Finally, Section 6 outlines the conclusion.

2. Methods
2.1. Mathematical Model

In this research work, we formulated a model that is an ex-
tension of the Susceptible-Exposed-Infection-Recovered (SEIR)
COVID-19 model to study the transmission dynamics of the dis-
ease. In this model, we stressed the importance of contact trac-
ing and vaccination campaigns. We considered nine compart-
ments: susceptible individuals (S), exposed individuals (E), ex-
posed and tested individuals (Ed), exposed and contact traced
individuals (Ec), critical and severe infected individuals (Ic),
moderate and mild infected individuals (Im), asymptomatic in-
fected individuals (Ia), recovered individuals (R), and vaccinated
individuals (V ). For any time t, the total population (assumed
constant), N(t) is given by

N(t) = S(t) + E(t) + Ed(t) + Ec(t) + Ic(t) + Im(t)

+ Ia(t) +R(t) + V (t).

We made the following assumptions:
1. All dead individuals are considered as newborns and re-

placed in the susceptible compartment to keep the popu-
lation size constant.

2. A natural death case is included in all compartments.
3. The critical and severe infected population die at a disease-

induced death rate.
4. The individuals who do not contact traced remained in the

exposed compartment.
5. Having recovered from the disease guaranteed lifelong im-

munity.
6. The susceptible compartment contained healthy individuals

only never infected with the disease.
7. Vaccinated compartment contained at least partially vacci-

nated individuals. However, the vaccination campaign is not
perfect that is vaccinated individuals may be reinfected with
the disease.

Based on the above-mentioned assumptions, we developed the
model, (SE(EdEc)I(IcImIa)RV ) as follows: The susceptible
population is replenished by a birth rate θ. The natural death
rate in each compartment is represented by µ. The suscepti-
ble individuals contract the virus after coming into contact with

exposed individuals at the rate αs. The susceptible individuals
move to the vaccination compartment at a vaccination rate ν.
The vaccinated individuals may also contract the virus after com-
ing into contact with exposed individuals at the rateαv. Individu-
als who have been exposed are tracked down and tested if neces-
sary. Some exposed individuals undergo direct testing at a rate
of βd. While some exposed individuals are contact traced at a
rate of βc. The contact-traced individuals who exhibit symptoms
will be tested at a rate of γ. The exposed and tested individuals
are infected by the virus and move to the severe or critical com-
partment, mild or moderate compartment, and asymptomatic
compartment at the incubation rates σc, σm, and σa respectively.
The moderately and mildly infected individuals develop more se-
rious symptoms and move to severe or critical compartment at
the rate ϕ. The induced death rate due to COVID-19 to critically
and severely infected individuals is represented by δ. Individuals
who are critically and severely infected, moderately andmildly in-
fected, and asymptomatic infected are recovered and moved to
the recovery compartment at the rate ρc, ρm, and ρa respectively.
The descriptions of the parameters are summarized in Table 1.

Table 1. Description of the parameters

Parameter Description
θ Birth rate
ν Vaccination rate of S
αs Transmission rate from S to E from contact with E
αv Transmission rate from V to E from contact with E
βd Testing rate of E
βc Contact tracing rate of E
γ Testing rate of Ec

σc Incubation rate of Ed to Ic
σm Incubation rate of Ed to Im
σa Incubation rate of Ed to Ia
ϕ Transfer rate from Im to Ic
ρc Recovery rate of Ec

ρm Recovery rate of Em

ρa Recovery rate of Ea

δ Induced death rate by COVID-19
µ Natural death rate

Adhering to the flow chart in Figure 1, the dynamics of the
model are governed by the following system of ordinary differ-
ential equations:

dS

dt
= θN − (αsE + ν + µ)S,

dE

dt
= (αsS + αvV )E − (βd + βc + µ)E,

dEd

dt
= βdE + γEc − (σc + σm + σa + µ)Ed,

dEc

dt
= βcE − (γ + µ)Ec,

dIc
dt

= σcEd + ϕIm − (ρc + δ + µ) Ic,

dIm
dt

= σmEd − (ρm + ϕ+ µ) Im,

dIa
dt

= σaEd − (ρa + µ) Ia,

dR

dt
= ρcIc + ρmIm + ρaIa − µR,

dV

dt
= νS − (αvE + µ)V,

(1)
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Figure 1. Schematic diagram of the COVID-19 model

with the positive initial conditions:

S(0) = S0 ≥ 0, E(0) = E0 ≥ 0,
Ed(0) = Ed0 ≥ 0, Ec(0) = Ec0 ≥ 0,
Ic(0) = Ic0 ≥ 0, Im(0) = Im0 ≥ 0,
Ia(0) = Ia0 ≥ 0, R(0) = R0 ≥ 0,
V (0) = V0 ≥ 0.

(2)

3. Qualitative Analysis
3.1. Well-posedness

In this subsection, we will prove that the system (1) is well-
posed that is, positive and bounded since the system is dealing
with human populations which cannot be negative and grow in-
finitely large.

Theorem 1. Under the initial conditions (2), the solution
(S(t), E(t), Ed(t), Ec(t), Ic(t), Im(t), Ia(t), R(t), V (t)) of
the system (1) remains nonnegative for t ≥ 0.

Proof. Assume that S(0) ≥ 0, E(0) ≥ 0, Ed(0) ≥ 0, Ec(0) ≥ 0,
Ic(0) ≥ 0, Im(0) ≥ 0, Ia(0) ≥ 0, R(0) ≥ 0, V (0) ≥ 0. Consider
the first equation of model (1).

dS(t)

dt
= θN − (αSE + ν + µ)S ⇒ dS(t)

dt
+ τS = θN,

where τ = αSE+ν+µ. Using Leibniz’ formula [11], the solution
to this linear first-order equation in S is given by

S(t) = exp
(
−

∫ t

0
τ(u)du

)(
θN

∫ t

0
exp

(∫ r

0
τ(v)dv

)
dr + S(0)

)
= S(0) exp

(
−

∫ t

0
τ(u)du

)
+ (θN) exp

(
−

∫ t

0
τ(u)du

)∫ t

0

(
exp

(∫ r

0
τ(v)dv

))
dr.

By assumption, S(0) ≥ 0. Further, all of the integrals in the
equation are positive since the integrands are positive. Hence,
S(t) ≥ 0.

From the second equation of model (1), we get

dE(t)

dt
= (αsS + αvV )E − (βd + βc + µ)E

= (αsS + αvV − (βd + βc + µ))E.

Solving the above equation, we have

E(t) = E(0) exp
(∫ t

0

(αsS + αvV − (βd + βc + µ)) du

)
.

By assumption, E(0) ≥ 0. Further, the integral in the equation
is positive since the integrand is positive. Hence, E(t) ≥ 0.

From the last equation of model (1), we have

dV (t)

dt
= νS − (αvE + µ)V

≥ − (αvE + µ)V (since S ≥ 0).

Solving the equation, we get the following solution

V (t) ≥ V (0) exp
(
−
∫ t

0

(αvE + µ) du

)
> 0,

which shows that V (t) is nonnegative for all t. Similar reasoning
is used regarding the nonnegativity of the remaining variables.
We have

Ed(t) ≥ Ed(0) exp
(
−
∫ t

0

(σc + σm + σa + µ) du

)
> 0,

Ec(t) ≥ Ec(0) exp
(
−
∫ t

0

(γ + µ) du

)
> 0,

Ic(t) ≥ Ic(0) exp
(
−
∫ t

0

(ρc + α+ µ) du

)
> 0,

Im(t) ≥ Im(0) exp
(
−
∫ t

0

(ρm + ϕ+ µ) du

)
> 0,

Ia(t) ≥ Ia(0) exp
(
−
∫ t

0

(ρa + µ) du

)
> 0,

R(t) ≥ R(0) exp
(
−
∫ t

0

µdu

)
> 0.

The boundedness of the system’s solutions is guaranteed
by the following theorem.

Theorem 2. Under the initial conditions (2), the solution
(S(t), E(t), Ed(t), Ec(t), Ic(t), Im(t), Ia(t), R(t), V (t)) of
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the system (1) remains bounded for t ≥ 0.

Proof. Assume that S(0) ≥ 0, E(0) ≥ 0, Ed(0) ≥ 0, Ec(0) ≥
0, Ic(0) ≥ 0, Im(0) ≥ 0, Ia(0) ≥ 0, R(0) ≥ 0, V (0) ≥ 0. Adding
all the equations of the model (1), we have

dN

dt
=

dS

dt
+

dE

dt
+

dEd

dt
+

dEc

dt
+

dIc
dt

+
dIm
dt

+
dIa
dt

+
dR

dt
+

dV

dt
= θN − µN − δIc

⇒ dN

dt
= 0 since θN = µN + δIc by the first assumption.

Integrating both sides of the equation, we get

N(t) = Constant

which means the constant size of the population. Therefore, the
solution (S(t), E(t), Ed(t), Ec(t), Ic(t), Im(t), Ia(t), R(t), V (t))
of the system (1) remains bounded for t ≥ 0.

Combining Theorem 1 and Theorem 2 together with the
trivial existence and uniqueness of a local solution for the sys-
tem (1) which can be shown using the basic theory of dynamical
systems as indicated in [12], and [13], the biologically feasible
region for the system (1) is given by

Ω =
{
(S,E,Ed, Ec, Ic, Im, Ia, R, V ) ∈ R9

+ :

S + E + Ed + Ec + Ic + Im + Ia +R+ V = N} .

3.2. Disease-Free Equilibrium Point
The disease-free equilibrium point of the system (1) is a

point where the disease is not present in the population. It is
obtained by setting the derivatives to zero and putting the dis-
ease compartments to zero.

Theorem 3. The model (1) admits a disease-free equilibrium (DFE)

given by E0 =
(
S0, 0, 0, 0, 0, 0, 0, 0, V 0

)
where S0 =

θN

µ+ ν

and V 0 =
νθN

(µ+ ν)µ
.

Proof. Let E0 =
(
S0, E0, E0

d , E
0
c , I

0
c , I

0
m, I0a , R

0, V 0
)
be an equi-

librium point of the model (1), that is

θN −
(
αsE

0 + ν + µ
)
S0 = 0,(

αsS
0 + αvV

0
)
E0 − (βd + βc + µ)E0 = 0,

βdE
0 + γE0

c − (σc + σm + σa + µ)E0
d = 0,

βcE
0 − (γ + µ)E0

c = 0,

σcE
0
d + ϕI0m − (ρc + δ + µ) I0c = 0,

σmE0
d − (ρm + ϕ+ µ) I0m = 0,

σaE
0
d − (ρa + µ) I0a = 0,

ρcI
0
c + ρmI0m + ρaI

0
a − µR0 = 0,

νS0 −
(
αvE

0 + µ
)
V 0 = 0.

Suppose that the disease compartments are zero which means
that the environment is COVID-19-free. If E = Ed = Ec = Ic =
Im = Ia = 0, we obtain

S0 =
θN

µ+ ν
,R0 = 0, V 0 =

νθN

(µ+ ν)µ
.

This completes the proof.

3.3. Basic Reproduction Number
Next, we will calculate the basic reproduction number of

the model (1) using the next generation matrix method [14, 15].
The basic reproduction number denoted by R0 is defined as the
average number of secondary infections that occurs when one
infective is introduced into a completely susceptible population
[14, 15]. The disease compartments are ExposedE, Exposed and
tested Ed, Exposed and contact traced Ec, Critical and severe
infected Ic, Moderate and mild infected Im, and Asymptomatic
infected Ia compartments.

Then, the rate of appearance of new infections F and the
rate of transfer of individuals by all other means V are given by
the following matrices:

F =


(αsS + αvV )E

0
0
0
0
0

 and

V =


(βd + βc + µ)E

(σc + σm + σa + µ)Ed − βdE − γEc

(γ + µ)Ec − βcE
(ρc + δ + µ) Ic − σcEd − ϕIm
(ρm + ϕ+ µ) Im − σmEd

(ρa + µ) Ia − σaEd

 .

The Jacobian of F and V at E0 are F and V , respectively.

F =



θN (µαs + ναv)

(µ+ ν)µ
0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


and

V =


v1,1 0 0 0 0 0
−βd v2,2 −γ 0 0 0
−βc 0 v3,3 0 0 0
0 −σc 0 v4,4 −ϕ 0
0 −σm 0 0 v5,5 0
0 −σa 0 0 0

 ,

where v1,1 = βd+βc+µ, v2,2 = σc+σm+σa+µ, v3,3 = γ+µ,
v4,4 = ρc + δ + µ, v5,5 = ρm + ϕ+ µ, and v6,6 = ρa + µ. Then
we get

FV −1 =



θN (µαs + ναv)

µ (µ+ ν) (βd + βc + µ)
0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.
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The basic reproduction number is the dominant eigenvalue of
FV −1 which is R0 = ρ

(
FV −1

)
. Thus,

R0 =
θN (µαs + ναv)

µ (µ+ ν) (βd + βc + µ)
.

3.4. Disease-Endemic Equilibrium Point
The disease-endemic equilibrium point of the system (1)

is a point where the disease is present in the population. It is
obtained by making the system (1) equal to zero and then solving
the values of the variables.

Theorem 4. The model (1) admits a disease-endemic equilibrium
(DEE) given by E∗ = (S∗, E∗, E∗

d , E
∗
c , I

∗
c , I

∗
m, I∗a , R

∗, V ∗)

with R0 > 1 and N ≥ max
{

6(αs+1)
αsθ

, 12(αs+αv)
αsθ

, 3
µ

}
.

Proof. Let E∗ = (S∗, E∗, E∗
d , E

∗
c , I

∗
c , I

∗
m, I∗a , R

∗, V ∗) be an en-
demic equilibrium point of the model (1), that is

θN − (αsE
∗ + ν + µ)S∗ = 0,

(αsS
∗ + αvV

∗)E∗ − (βd + βc + µ)E∗ = 0,

βdE
∗ + γE∗

c − (σc + σm + σa + µ)E∗
d = 0,

βcE
∗ − (γ + µ)E∗

c = 0,

σcE
∗
d + ϕI∗m − (ρc + δ + µ) I∗c = 0,

σmE∗
d − (ρm + ϕ+ µ) I∗m = 0,

σaE
∗
d − (ρa + µ) I∗a = 0,

ρcI
∗
c + ρmI∗m + ρaI

∗
a − µR∗ = 0,

νS∗ − (αvE
∗ + µ)V ∗ = 0.

(3)

Suppose that E∗ = (S∗, E∗, E∗
d , E

∗
c , I

∗
c , I

∗
m, I∗a , R

∗, V ∗) are
nonzero whichmeans that the environment is not COVID-19-free.
We express each compartment in terms of E∗. We solve for S∗

from the first equation in (3).

θN − (αsE
∗ + ν + µ)S∗ = 0

S∗ =
θN

αsE∗ + ν + µ

We solve for E∗
c from the fourth equation.

βcE
∗ − (γ + µ)E∗

c = 0

E∗
c =

βcE
∗

γ + µ
.

We substitute E∗
c to the third equation and solve for E∗

d .

βdE
∗ + γE∗

c − (σc + σm + σa + µ)E∗
d = 0

βdE
∗ +

γβcE
∗

γ + µ
− (σc + σm + σa + µ)E∗

d = 0

⇒ E∗
d =

(βcγ + βdγ + βdµ)E
∗

(γ + µ) (σc + σm + σa + µ)
.

We substitute E∗
d to the sixth equation and solve for I∗m.

σmE∗
d − (ρm + ϕ+ µ) I∗m = 0

σm(βcγ+βdγ+βdµ)E
∗

(γ+µ)(σc+σm+σa+µ) − (ρm + ϕ+ µ) I∗m = 0

⇒ I∗m = σm(βcγ+βdγ+βdµ)E
∗

(γ+µ)(σc+σm+σa+µ)(ρm+ϕ+µ) .

We substitute E∗
d to the seventh equation and solve for I∗a .

σaE
∗
d − (ρa + µ) I∗a = 0

σa(βcγ+βdγ+βdµ)E
∗

(γ+µ)(σc+σm+σa+µ) − (ρa + µ) I∗a = 0

⇒ I∗a = σm(βcγ+βdγ+βdµ)E
∗

(γ+µ)(σc+σm+σa+µ)(ρa+µ) .

We substitute E∗
d and I∗m to the fifth equation and solve for I∗c .

σcE
∗
d + ϕI∗m − (ρc + δ + µ) I∗c = 0.

After the substitution and quick algebraic manipulation, we get

I∗c = (βcγ+βdγ+βdµ)(µσc+ϕσc+ϕσm+ρmσc)E
∗

(γ+µ)(σc+σm+σa+µ)(ρm+ϕ+µ)(ρc+δ+µ) .

We substitute I∗c , I
∗
m, and I∗a to the eighth equation and solve

for R∗.

ρcI
∗
c + ρmI∗m + ρaI

∗
a − µR∗ = 0.

After the substitution and quick algebraic manipulation, we get

R∗ = (βcγ+βdγ+βdµ)(e+f+g+h)E∗

µ(γ+µ)(σc+σm+σa+µ)(ρa+µ)(ρm+ϕ+µ)(ρc+δ+µ) ,

where

e = ρaσa (ρm + ϕ+ µ) (µ+ δ) ,

f = ρaρc (σa + σc + σm) (ϕ+ ρm) ,

g = µρc (µσc + ϕσc + ϕσm + ρaσa + ρaσc + ρmσc) ,

h = ρmσm

(
δµ+ δρa + µ2 + µρa + µρc

)
.

We substitute S∗ to the ninth equation and solve for V ∗.

νS∗ − (αvE
∗ + µ)V ∗ = 0

νθN
αsE∗+ν+µ − (αvE

∗ + µ)V ∗ = 0

⇒ V ∗ = νθN
(E∗αs+µ+ν)(E∗αv+µ) .

We substitute S∗ and V ∗ to the equation and solve for E∗.

(αsS
∗ + αvV

∗)E∗ − (βd + βc + µ)E∗ = 0

After the substitution and lengthy algebraic manipulation, we get

E∗ =
µ(µ+ν)(θNαsαv−ab+

√
2θNαsαvac+a2d2)(R0−1)

2αsαv(θN(µαs+ναv)−µ(µ+ν)a) ,

where

a = βd + βc + µ,

b = µαs + µαv + ναv,

c = µαs − µαv − ναv + 2αv,

d = µαs − µαv − ναv.

Note that E∗ exists when the basic reproduction number R0 >

1 and N ≥ max
{

6(αs+1)
αsθ

, 12(αs+αv)
αsθ

, 3
µ

}
. This completes the

proof.

4. Stability Analysis
In this section, we will show the local stability of the equi-

librium points. Stability analysis sheds light on a system’s long-
term behavior when it is close to equilibrium.
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Theorem 5. The disease-free equilibrium, E0 =(
S0, 0, 0, 0, 0, 0, 0, 0, V 0

)
is locally asymptotically stable

if R0 < 1 and unstable if R0 > 1.

Proof. The Jacobian of the system (1) is given by

J =



a1,1 −αsS 0 0 0 0 0 0 0
Eαs a2,2 0 0 0 0 0 0 αvE
0 βd a3,3 γ 0 0 0 0 0
0 βc 0 a4,4 0 0 0 0 0
0 0 σc 0 a5,5 ϕ 0 0 0
0 0 σm 0 0 a6,6 0 0 0
0 0 σa 0 0 0 a7,7 0 0
0 0 0 0 ρc ρm ρa −µ 0
ν −V αv 0 0 0 0 0 0 a9,9


,

(4)

where a1,1 = −Eαs − µ− ν, a2,2 = αsS + V αv − βc − βd − µ,
a3,3 = −σc − σm − σa −µ, a4,4 = −γ−µ, a5,5 = −ρc − δ−µ,
a6,6 = −ρm − ϕ− µ, a7,7 = −ρa − µ, and a9,9 = −αvE − µ.

The Jacobian matrix (4) evaluated at the disease-free equi-
librium is of the form

J(E0) =

a1,1 −αsS0 0 0 0 0 0 0 0
0 a2,2 0 0 0 0 0 0 0
0 βd a3,3 γ 0 0 0 0 0
0 βc 0 a4,4 0 0 0 0 0
0 0 σc 0 a5,5 ϕ 0 0 0
0 0 σm 0 0 a6,6 0 0 0
0 0 σa 0 0 0 a7,7 0 0
0 0 0 0 ρc ρm ρa −µ 0
ν −αvV 0 0 0 0 0 0 0 −µ


,

where a1,1 = −µ − ν, a2,2 = αsS
0 + αvV

0 − βc − βd − µ,
a3,3 = −σc − σm − σa −µ, a4,4 = −γ−µ, a5,5 = −ρc − δ−µ,
a6,6 = −ρm − ϕ− µ, and a7,7 = −ρa − µ.

To show that all the eigenvalues of J(E0) are negative, we
can first note that the eighth and ninth columns of J(E0) contain
only the diagonal element −µ, indicating that −µ is a negative
eigenvalue. The remaining eigenvalues can be determined from
the sub-matrix J1(E0), which can be obtained by eliminating the
eighth and ninth rows, and eight and ninth columns of J(E0).
This gives us the following matrix:

J1(E0) =


a1,1 −αsS0 0 0 0 0 0
0 a2,2 0 0 0 0 0
0 βd a3,3 γ 0 0 0
0 βc 0 a4,4 0 0 0
0 0 σc 0 a5,5 ϕ 0
0 0 σm 0 0 a6,6 0
0 0 σa 0 0 0 a7,7

 ,

where a1,1 − µ− ν, a2,2 = αsS
0 + αvV

0 − βc − βd − µ, a3,3 =
−σc − σm − σa − µ, a4,4 = −γ − µ, a5,5 = −ρc − δ − µ,
a6,6 = −ρm − ϕ− µ, and a7,7 = −ρa − µ.

The first, fifth, and seventh columns of the matrix J1(E0)
only contain diagonal elements that form the negative eigenval-
ues−(µ+v),−(ρc+ δ+µ), and−(ρa+µ) respectively. To find
the remaining eigenvalues, we can create a reduced sub-matrix,
J2(E0), by removing the first, fifth, and seventh rows and corre-
sponding columns from J1(E0).

J2(E0) =


b1,1 0 0 0
βd b2,2 γ 0
βc 0 b3,3 0
0 σm 0 b4,4

 ,

where b1,1 = αsS
0 + αvV

0 − βc − βd − µ, b2,2 = −σc − σm −
σa − µ, b3,3 = −γ − µ, and b4,4 = −ρm − ϕ− µ.

In a similar manner, the fourth column of the matrix J2(E0)
contains only the diagonal element−(ρm+ϕ+µ), which means
that−(ρm+ϕ+µ) is a negative eigenvalue. The remaining eigen-
values can be determined using the sub-matrix J3(E0) which can
be obtained by removing the fourth row and fourth column of
the matrix J2(E0).

J3(E0) =

c1,1 0 0
βd c2,2 γ
βc 0 −γ − µ

 ,

where c1,1 = αsS
0 + αvV

0 − βc − βd − µ and c2,2 = −σc −
σm − σa − µ.

Looking at J3(E0), we can see that the second column con-
tains only the diagonal element that forms the negative eigen-
value −(σc + σm + σa + µ). We can form J4(E0) by removing
the second row and second column of the matrix J3(E0) to find
the remaining eigenvalues.

J4(E0) =

[
αsS

0 + αvV
0 − βc − βd − µ 0
βc −γ − µ

]
In a similar way, the second column of J4(E0) contains only the
diagonal element which form the negative eigenvalue −(γ + µ).
The remaining eigenvalue is αsS

0 + αvV
0 − βc − βd. We need

to show that this is a negative eigenvalue. Now,

αsS
0 + αvV

0 − βc − βd − µ

= αsθN
µ+ν + αvνθN

(µ+ν)µ − βc − βd − µ

= (βc + βd + µ)
(

θN(αsµ+αvν)
µ(µ+ν)(βc+βd+µ) − 1

)
= (βc + βd + µ)(R0 − 1) < 0 for any values of R0 < 1.

Hence, the disease-free equilibrium E0 is locally asymptotically
stable if R0 < 1 and unstable if R0 > 1.

Theorem 6. The disease-endemic equilibrium, E∗ =
(S∗, E∗, E∗

d , E
∗
c , I

∗
c , I

∗
m, I∗a , R

∗, V ∗) is locally asymptoti-
cally stable if R0 > 1.

Proof. At the disease-endemic equilibrium, the Jacobian matrix
(4) of the system (1) can be expressed as

J(E∗) =

a1,1 −αsS∗ 0 0 0 0 0 0 0
0 a2,2 0 0 0 0 0 0 0
0 βd a3,3 γ 0 0 0 0 0
0 βc 0 a4,4 0 0 0 0 0
0 0 σc 0 a5,5 ϕ 0 0 0
0 0 σm 0 0 a6,6 0 0 0
0 0 σa 0 0 0 a7,7 0 0
0 0 0 0 ρc ρm ρa −µ 0
ν −αvV ∗ 0 0 0 0 0 0 −µ


where a1,1 = −(µ+ν), a2,2 = αsS

∗+αvV
∗−βc−βd−µ, a3,3 =

−(σc + σm + σa + µ), a4,4 = −(γ + µ), a6,6 = −(ρm + ϕ+ µ),
a7,7 = −(ρa + µ) and a5,5 = −(ρc + δ + µ).
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To demonstrate that all the eigenvalues of J(E∗) are neg-
ative, we can see that the eighth and ninth columns of J(E∗)
only include the diagonal element −µ, proving that −µ is a neg-
ative eigenvalue. The sub-matrix J1(E∗), which can be created
by removing the eighth and ninth rows, as well as the eighth and
ninth columns of J(E∗), can be used to calculate the remaining
eigenvalues. This results in the following matrix

J1(E∗) =


a1,1 −αsS∗ 0 0 0 0 0
0 a2,2 0 0 0 0 0
0 βd a3,3 γ 0 0 0
0 βc 0 a4,4 0 0 0
0 0 σc 0 a5,5 ϕ 0
0 0 σm 0 0 a6,6 0
0 0 σa 0 0 0 a7,7

 ,

where a1,1 = −µ−ν, a2,2 = αsS
∗+αvV

∗−βc−βd−µ, a3,3 =
−σc − σm − σa −µ, a4,4 = −γ−µ, a5,5 = −ρc − δ−µ, a6,6 =
−ρm − ϕ− µ, and a7,7 = −ρa − µ. Likewise, the first, fifth, and
seventh columns of the matrix J1(E∗) comprise only the diagonal
terms −(µ + ν), −(ρc + δ + µ), and −(ρa + µ), respectively,
which make up the negative eigenvalues. By deleting the first,
fifth, and seventh rows and associated columns from J1(E∗), we
may create a smaller sub-matrix, J2(E∗), in order to locate the
remaining eigenvalues.

J2(E∗) =

b1,1 0 0 0
βd b2,2 γ 0
βc 0 −γ − µ 0
0 σm 0 b3,3

 ,

where b1,1 = αsS
∗ + αvV

∗ − βc − βd − µ. b2,2 = −σc −
σm − σa − µ, and b3,3 = −ρm − ϕ − µ. Similar to this, only
the diagonal element −(ρm + ϕ + µ) is present in the fourth
column of the matrix J2(E∗), indicating that −(ρm + ϕ + µ) is
a negative eigenvalue. The sub-matrix J3(E∗), which is created
by eliminating the fourth row and fourth column of the matrix
J2(E∗), can be used to calculate the remaining eigenvalues.

J3(E∗) =

[
c1,1 0 0
βd c2,2 γ
βc 0 −γ − µ

]
,

where c1,1 = αsS
∗ + αvV

∗ − βc − βd − µ and c2,2 = −σc −
σm − σa − µ. As we can see from J3(E∗), the second column
only contains the diagonal element that makes up the negative
eigenvalue−(σc+σm+σa+µ). By eliminating the second row
and second column of the matrix J3(E∗), we may create J4(E∗)
and identify the remaining eigenvalues.

J4(E∗) =

[
αsS

∗ + αvV
∗ − βc − βd − µ 0
βc −γ − µ

]
.

In a similar way, the 2nd column of J4(E∗) contains only the di-
agonal element which form the negative eigenvalue −(γ + µ).
The remaining eigenvalue is αsS

∗ + αvV
∗ − βc − βd − µ. Now,

αsS
∗ + αvV

∗ − βc − βd − µ = αsθN
αsE∗+µ+ν

+ αvνθN
(αsE∗+µ+ν)(αvE∗+µ)

− βc − βd − µ.

When θ = 2.93 × 10−5, ν = 9.97 × 10−4, αs = 2.02 × 10−9,
αv = 4.05 × 10−10, βd = 4.78 × 10−4, βc = 4.32 × 10−2,
µ = 1.56× 10−5, E∗ = 7× 107 and N = 110.5× 106, we get

αsS
∗ + αvV

∗ − βc − βd − µ = −0.0436910971278318

Hence, the disease-endemic equilibrium E∗ is locally asymptoti-
cally stable if R0 > 1.

5. Numerical Simulations
In this section, we performed numerical simulations on the

COVID-19 model (1) using the parameter values in Table 1 using
Python 3.9 to determine the behavior of the infected population
over time and evaluate the effects of various control measures
that we took into account when developing the model. Particu-
larly to assess the impact of the vaccination rate ν and contact
tracing rate βc to the basic reproduction number R0.

Table 2. Parameter values for the model simulation

Parameter Value Source
δ 1.80× 10−3 [16]
αs 2.02× 10−9 [4]
αv 4.05× 10−10 Estimated
ρc 1.23× 10−1 [4]
ρm 1.23× 10−1 [4]
ρa 1.23× 10−1 [4]
θ 2.93× 10−5 [17]
µ 1.56× 10−5 [17]
ν 9.97× 10−4 Estimated
ϕ 5.00× 10−2 Assumed
σc 1.60× 10−3 Estimated
σm 1.29× 10−1 Estimated
σa 4.33× 10−3 Estimated
γ 2.00× 10−1 Assumed
βd 4.78× 10−4 Assumed
βc 4.32× 10−2 Assumed

5.1. Behavior of Infected Population
Figure 2 provides a visual representation of the temporal

behavior of the infected population, categorizing individuals into
three distinct groups based on the severity of their symptoms
- Critical and severe infected individuals Ic, Moderate and mild
infected individuals Im and Asymptomatic infected individuals
Ia. The figure showcases how the number of individuals in each
group changes over time. After approximately 800 days, the in-
fected population will converge to a certain value. Plugging in
the values in Table 1 into the basic reproduction number, we have
R0 = 2.03 > 1 which means the disease will spread in the pop-
ulation even after the vaccination.

Figure 2. Behavior of Infected Population over Time

5.2. Impact of ν to R0

Figure 3 illustrates the impact of the vaccination rate ν on
the basic reproduction number R0. According to Figure 3, as
the vaccination rate ν increases, the basic reproduction number
R0 decreases. Therefore, the government should aim to increase
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Figure 3. Impact of vaccination rate on R0

the vaccination rate to control the spread of the pandemic to the
community. This result is supported by the following theorems.

Theorem 7. The function R0(ν) =
θN (µαs + ναv)

µ (µ+ ν) (βd + βc + µ)
is decreasing for all ν ∈ [0, 1].

Proof. The function R0(ν) is a rational function which is not de-
fined when ν = −µ < 0. It follows that this function is continu-
ous and differentiable for all ν ∈ [0, 1].

Observe that R′
0(ν) =

θNµ (αv − αs)

µ (βd + βc + µ)
< 0 since αs < αv.

Hence, R0(ν) is decreasing for all ν ∈ [0, 1].

Theorem 8. The disease will eventually die out as long as the

vaccination rate ν >
θNµαs − µ2 (βd + βc + µ)

µ (βd + βc + µ)− θNαv
> 0. Oth-

erwise, the spread of the disease will persist.

Proof. Let ν > ν0 where ν0 =
θNµαs − µ2 (βd + βc + µ)

µ (βd + βc + µ)− θNαv
> 0.

By Theorem 7, R0(ν) is decreasing for all ν ∈ [0, 1]. It follows
that

R0(ν) < R0(ν0)

=
θN

(
µαs+

(
θNµαs−µ2(βd+βc+µ)
µ(βd+βc+µ)−θNαv

)
αv

)

µ

(
µ+

(
θNµαs−µ2(βd+βc+µ)
µ(βd+βc+µ)−θNαv

))
(βd+βc+µ)

= 1

The disease will eventually die out as long as the vaccination rate

ν >
θNµαs − µ2 (βd + βc + µ)

µ (βd + βc + µ)− θNαv
. The spread of the disease will

persist if ν <
θNµαs − µ2 (βd + βc + µ)

µ (βd + βc + µ)− θNαv
.

The disease is likely to persist in the population based on
the given parameter values. However, if the parameter ν is in-
creased, which reflects the effectiveness of measures that reduce
disease transmission, the value of R0 is expected to decrease.

5.3. Impact of βc to R0

Figure 4 shows the impact of the contact tracing rate βc to
the basic reproduction number R0.

Figure 4. Impact of contact tracing rate on R0

Based on Figure 4, as the contact tracing rate βc increases,
the basic reproduction numberR0 decreases. Therefore, the gov-
ernment should aim to increase the contact tracing rate to con-
trol the spread of the pandemic to the community. This result is
supported by the following theorems.

Theorem 9. The function R0(βc) =
θN (µαs + ναv)

µ (µ+ ν) (βd + βc + µ)
is decreasing for all βc ∈ [0, 1].

Proof. The functionR0(βc) is a rational function which is not de-
fined when ν = − (βd + µ) < 0. It follows that this function is
continuous and differentiable for all βc ∈ [0, 1].

Observe thatR′
0(βc) = − θN (µαs + ναv)

µ (µ+ ν) (βd + βc + µ)
2 < 0. Hence,

R0(βc) is decreasing for all βc ∈ [0, 1].

Theorem 10. The disease will eventually die out as long as the

contact tracing rate βc >
θN (µαs + ναv)

µ (µ+ ν)
− (βd + µ) > 0.

Otherwise, the spread of the disease will persist.

Proof. Let βc > β0
c where β0

c =
θN (µαs + ναv)

µ (µ+ ν)
− (βd + µ).

By Theorem 9, R0(βc) is decreasing for all βc ∈ [0, 1]. It follows
that

R0(βc) < R0(β
0
c )

= θN(µαs+ναv)

µ(µ+ν)

(
βd+

(
θN(µαs+ναv)

µ(µ+ν) −(βd+µ)

)
+µ

)
= 1.

This means that the disease will eventually die out as long as

βc >
θN (µαs + ναv)

µ (µ+ ν)
− (βd + µ). The spread of the disease

will persist if βc <
θN (µαs + ναv)

µ (µ+ ν)
− (βd + µ).
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If the contact tracing rate βc is greater than 0.08847694,
the disease outbreak is likely to be controlled and eventually
eliminated. On the other hand, if βc is less than this threshold
value, the disease outbreak is likely to persist and continue to
spread.

6. Conclusion
We have developed amodel to better understand the trans-

mission dynamics of COVID-19. We focused on the importance
of contact tracing and vaccination campaigns in controlling the
spread of the disease. The qualitative analysis showed that the
solutions are positive and bounded, with the disease-free equi-
librium being locally asymptotically stable when the basic repro-
duction number is less than one, and the disease-endemic equi-
librium being locally asymptotically stable when the basic repro-
duction number is greater than one. From the numerical re-
sult, we get the value of the basic reproduction number which
is R0 = 2.31. The numerical simulations also demonstrated that
the reproduction number decreases with an increase in both the
vaccination rate and contact tracing rate. It is worthy to note that
when the contact tracing rate βc > 0.08847694, R0 < 1. Hence,
to stop and manage COVID-19 transmission in the target pop-
ulation, public health authorities should focus on increasing the
value of the contact tracing rate to more than 0.08847694. These
findings highlight the effectiveness of contact tracing and vacci-
nation in reducing the spread of COVID-19. Overall, this study
provides useful insights for policymakers and public health offi-
cials in developing strategies to mitigate the impact of the pan-
demic.
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