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Sensitivity analysis and optimal control of COVID-19 Model

Firmansyah1,∗ and Yulita Molliq Rangkuti2

1Department of Mathematical Education, Universitas Muslim Nusantara Al-Washliyah, 20147, North Sumatera, Indonesia
2Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Medan, 20221, North Sumatera, Indonesia

ABSTRACT. Coronavirus infection is a disease that causes death and threatens human life; for prevention, it is
necessary to quarantine susceptible, exposed, and infected populations and vaccinate the entire population. This
kind of quarantine and vaccination is intended to reduce the spread of coronavirus. Epidemiological models are a
strategy used by public health practitioners to prevent and fight diseases. However, to be used in decision making,
mathematical models must be carefully parameterized and validated using epidemiological and entomological data.
Epidemiological models: susceptible, symptomatic, contagious, and recovering. In this study, sensitivity analysis and
optimal control were performed to determine the relative importance of the model parameters and to minimize the
number of infected populations and control measures against the spread of the disease. Sensitivity analysis was carried
out using a sensitivity index to measure the relative change in the basic reproduction number for each parameter, and
this control function was applied to the dynamic modeling of the spread of COVID-19 using the Pontryagin Minimum
Principle. We will describe the formulation of a dynamic system for the spread of COVID-19 with optimal control and
then use Pontryagin’s Minimum Principle to find optimal control solutions. In this article, COVID-19 cases in the USA
and India serve as examples of the efficiency of control measures. The results obtained revealed that the parameters
that became the basis for reducing the number of infected with COVID-19 for the two countries, the USA and India,
are effective transmission rates from S to E, (β), transmission rates from E to I, (α), and transmission rates from
S to R, (ps), which are the main parameters to watch for growth with respect to Basic Reproduction rates (R0).
Finally, three controls were simulated in cases I (in the USA) and II (in India) in the interval t ∈ [0, 15]. For all controls,
the effectiveness was close to 50% in India and 100% in the USA to reduce the spread of COVID-19. According to the
findings, if these three controls were implemented ideally from the start of the pandemic, the number of sufferers.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction
The COVID-19 outbreak has caused numerous health and

economic issues for health officials and governments worldwide.
Preventive strategies for other coronaviruses (SARS and MERS)
are being applied to reduce the rate of COVID-19 transmission.
Other new measures are also being employed, such as travel lim-
itations, stay-at-home orders, and lockdowns [1].

To study the dynamics of COVID-19, mathematical models
and optimal controls are required to predict and emphasize dis-
ease transmission, recovery, death, and other significant param-
eters individually for disparate countries, that is, the reported
range of high too low for specific regions of the COVID-19 cases.
Several modeling approaches have been used in numerous re-
search studies [2–7]. Kamrujjaman et al. (2022) [2] proposed a de-
terministic mathematical model for the COVID-19 outbreak and
validated the model using real data from Italy from 15th Feb 2020
to 14th July 2020. Zaitri et al. (2022) [3] proposed and analyzed
a delayed SEIQRP model for COVID-19 with vaccination. Al-Qadi
et al. [4] extended the standard susceptible-infected-recovered
(SIR) model by incorporating the global dynamics of the COVID-
19 pandemic. Sinha et al. [5] found infected cases, infected death
rates, and COVID-19 recovery rates, and validated the model us-
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ing the rough set method. The accuracy for infected cases was
90.19%, COVID-19 infection-fatality was 94%, and recovery was
85.57%, approximately the same as the actual situation reported
by the WHO.

The World Health Organization (WHO) has recommended
the following precautions to lower the general risk of acute res-
piratory infections while traveling or migrating from impacted
areas: (i) Avoiding close contact with people who have acute res-
piratory illnesses, (ii) frequent hand washing, (iii) avoiding farms
and wild animals, (iv) wearing masks, (v) avoiding crowded areas,
(vi) keeping at home except to meet needs, and (vii) self-isolation,
even if symptoms are moderate, and so on (NSW (2022) [8].

The rate of COVID-19 dissemination has been slowed by
preventive measures that have been employed for previous coro-
naviruses, including SARS and MERS. Other recent measures are
also being deployed, including lockdowns, stay-at-home orders,
and travel limitations [9]. The WHO has suggested the follow-
ing precautions to lessen the risk of acute respiratory infections
in general while traveling or relocating from afflicted areas: (i)
preventing close contact with individuals who have severe respi-
ratory illnesses, (ii) cleansing hands frequently, (iii) keeping away
from farms and wildlife, (iv) donning masks, (v) preventing con-
gested areas, (vi) remaining at home, excluding meeting necessi-
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ties, (vii) isolation despite only mild symptoms, and so forth [10].

Efforts to prevent the spread of COVID have also been car-
ried out by several researchers by determining optimal controls.
The use of facemasks, hand sanitizers, and social distancing as
control variables, as mentioned in Refs. [11–24]. Care of COVID-
19 patients, active screens, and testing as control variables, as
mentioned in Refs. [9, 14–18]. Relapse and reinfection in hu-
mans who have recovered from COVID-19 as a control variable,
as mentioned in Refs. [9, 15]. Vaccination of the exposed popula-
tion per unit time at t is a control variable, as mentioned in Refs.
[18, 20, 25–27]. The recovery rate of asymptomatic infected indi-
viduals in treatment per unit time at time t is the control variable,
as mentioned in Refs. [18, 19, 21, 22, 24]. The recovery rate of
symptomatic infected individuals in treatment per unit time at
time t is the control variable, as mentioned in Refs. [18, 21, 27].
Rapid testing of individuals in the exposed stage and identifica-
tion of asymptomatic and asymptomatic individuals is a control
variable, as mentioned in Refs. [22]. The individuals that were
not tested yet but identified the patients of COVID- 19, either
asymptomatic or asymptomatic, can be treated and should be re-
stricted to their places or hospitals and quarantines as control
variables, as mentioned in Refs. [22]. The isolation level of an in-
fectious individual who was not hospitalized at time t was used
as a control variable, as mentioned in Refs. [23], and the recov-
ery rate of symptomatic infected individuals in treatment per unit
time at time t is the control variable, as mentioned in Refs. [27].

Based on the description of several types of control strate-
gies as previously studied, the motivation for choosing a con-
trol is often considered, and the three controls chosen to stop
the spread of the epidemic in this article are controlled through
public education about health problems, as u1. The next control
involves the use of personal defenses, such as seclusion, increas-
ing immunity, and reducing contact with other people, which is
symbolized by u2 The last control is the care given to COVID-19
patients in a hospital or isolation facility to reduce their suffering
from the disorder, which is presented by u3.

To achieve this goal, we examined the impact of control
measures on the spread of COVID-19 from the time of symptoms
and infection. To the best of our knowledge, this study assessed
the impact of the control measures used. The most severe cases
of COVID-19 after China are in the USA and India, so we selected
the parameters recorded from the US and India. From the study
[26], the model in Wintachi & Prathom (2021) [28] corresponds
to cases in the USA and India. This model considers the adminis-
tration of a vaccine to every human who is susceptible to, symp-
tomatic of, and infected with COVID-19. This is in accordance
with the opinion of Khan et al. (2019) that vaccine administra-
tion is an effective method for preventing and reducing viral in-
fections. Therefore, for the first time, we decided to use a model
[28] as an experiment. In addition, we applied the parameters
recorded in [28] and predicted the potential for COVID-19 given
controls in both countries when the vaccine was out. In addition,
this article will also examine the effect of vaccines on the selected
control variables and sensitivity analysis to identify some of the
characteristics that contribute to the spread and persistence of
this disease in the community.

2. Model Structure
A 4-compartment model called SEIR from [28] where

S(t), E(t), I(t), and R(t) are the fractions of the susceptible,
exposed, infectious, and recovered populations, respectively, at
time t. The trivial solutions S = 0, E = 0, I = 0, and R = 0
are not of interest. S is the fraction of susceptible cases, E is
the fraction of exposed cases, I is the fraction of infectious cases,
R is the fraction of recovered cases, β is the effective transmis-
sion rate of COVID-19, α is the change rate from E to I, γ is the
changing rate from I to R, ν is the vaccination rate of the popu-
lation, ps is the potency of vaccination in S, pe is the potency of
vaccination in E, pi is the potency of vaccination in I, b0 is the
birth rate of the population, d0 is the death rate of the population
without COVID-19, d1 is the death rate of the exposed population
plus d0, and d2 is the death rate of the infectious population plus
d0. The model is motivated by the fact that the vaccination rate
per day (ν) cannot stop the system’s flow instantaneously, be-
cause the entire population cannot be immunized at once. Once
a person is susceptible, exposed, or contagious, they can receive
a vaccination. In the first equation of the SEIR model, the rate
of change in susceptibility is dependent on the number of peo-
ple who have received vaccinations, νpsS, and non-vaccinated
humans,(1− νps)S. The system of differential equations related
to the equation in [28] as

dS

dt
= b0 − (νps + d0)S − β ∗ (1− νps)SI,

dE

dt
= β(1− νps)SI − (d1 + α+ (1− α)νpe)E,

dI

dt
= αE − (d2 + γ + (1− γ)νpi)I,

dR

dt
= νpsS + νpe(1− α)E + (γ + (1− γ)νpiI − d0R.

under the conditions that 0 ≤ S(0), E(0), I(0), R(0) ≤ 1.

3. Analysis of The Model
3.1. Positively Invariant Set

Note that the nonlinear system in [28] has a unique solu-
tion set (S(t), E(t), I(t), R(t)), according to the basic existence-
uniqueness theorem for nonlinear systems. Making sure the den-
sities S(t), E(t), I(t), and R(t) in the model are non-negative at
any time t > 0, If SEIR is the continuous solution of the model
with initial condition, the (S(t), E(t), I(t), R(t)) ∈ [0,∞)4 for
any positive time t > 0.

3.2. Equilibrium Points and Basic Reproduction Number
The model in [28] has two types of equilibrium points,

first one is disease free, E0, and second is endemic equilib-
rium, E∗. We can write very easily our E0, by setting the dis-
ease classes and derivatives to zero, it would have the form
E0 = ( b0

νps+d0
, 0, 0, b0

d0
). Meanwhile, endemic equilibrium points

were employed to show the potential for disease propagation.
Due to endemic circumstances and the spread of the disease, the
populations S ̸= 0, E ̸= 0, I ̸= 0, and R ̸= 0. The endemic
equilibrium points and basic reproduction number as

R0 =
√

αβ(1−νpS)b0
[d1+α+(1−α)νpe][d2+γ+(1−γ)νpi][νps+d0.]

.
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Table 1. Parameter values and initial populations of the USA (Case I) and India (Case II)

Initial Parameter Case I (USA) Case II (India)
S(0) 0.97286 0.994

E(0) + I(0) 0.00905 3.813× 10−4

R(0) 0.01809 5.569× 10−3

β 0.462 0.32
α 1

11.5
per day 1

11.5
per day

γ 0.0686 per day 0.0686 per day
b0 3.178× 10−5 per day 4.893× 10−5 per day
d0 2.377× 10−5per day 1.992× 10−5 per day
d1 2.585× 10−5 per day 2.021× 10−5 per day
d2 2.585× 10−5 per day 2.021× 10−5 per day

Table 2. Sensitivity indices of R0 corresponding to all parameters (case I in United State) for ps = 0.7, pe = 0.6 and pi = 0.6 [30] in
various values of vaccination (ν)

Parameter ν = 0 ν = 0.1 ν = 0.5 ν = 0.8 ν = 1.0
α 1.4859× 10−4 0.2117 0.4157 0.4570 0.4726
β 0.5 0.5 0.5 0.5 0.5
γ -0.4998 -0.2590 −6.8985× 10−2 −3.4586× 10−2 −2.1866× 10−2

b0 0.5 0.5 0.5 0.5 0.5
d0 -0.5 −1.6972× 10−4 −3.3955× 10−5 −2.1222× 10−5 −1.6978× 10−5

d1 −1.4859× 10−4 −9.1172× 10−5 −3.5814× 10−5 −2.4608× 10−5 −2.0360× 10−5

d2 −1.8834× 10−4 −1.0381× 10−4 −3.7136× 10−5 −2.5063× 10−5 −2.0599× 10−5

ps 0 -0.5375 -0.7692 -1.1363 -1.6667
pe 0 -0.1932 -0.3795 -0.4172 -0.4315
pi 0 -0.2244 -0.4014 -0.4335 -0.4453

3.3. Sensitivity analysis

The most optimal approach for reducing the number of in-
fected individuals is to identify several factors that contribute to
the transmission of the virus and its prevalence. It is necessary to
calculate the sensitivity index for each parameter of the model,
which is correlated with the basic reproduction number,R0. This
index provides information on the importance of each parame-
ter in the model that represents the transmission of COVID-19.
The index is used to identify the parameters that have the most
significant influence on R0, which will later be used as interven-
tion targets. Parameters with a high impact at R0 indicate that
they have a dominant influence on the COVID-19 pandemic. This
statement is supported by the opinion of experts in [10, 29–31].

Sensitivity analysis of the basic reproduction number can
also be used to design mitigation strategies to slow the spread
of the pandemic by reducing R0. Sensitivity analysis [32] for ba-
sic reproduction numbers mainly helps to find parameters that
have a high impact on the R0 value, and should therefore be tar-
geted for designing intervention strategies. In addition, sensitiv-
ity analysis helps to determine the level of change required for
the input parameters to determine the desired predictor param-
eter value. For this analysis we apply the definition given in [33]
as given below:

ΓR0
p =

∂R0

∂p

p

R0
.

By definition in [21], the sensitivity indices of R0 analytical for-
mulas can be determined by the parameter values and initial pop-
ulations of the United States (Case I) and India (Case II) in Table 1
from Wintachai and Prathom [28].

Furthermore, the sensitivity indices for the two countries
are obtained as provided in Table 2 for the United State (case I)
and Table 3 for India (case II), respectively.

Table 2 lists the values of the sensitivity index for R0.
Here, ν is defined as the vaccination rate of the population in
the USA. ν = 0 represents the population without vaccination,
whereas ν = 0.1, 0.5, 0.8 and 1.0 represent vaccination rates of
10%, 50%, 80% and 100%, respectively. Based on the sensitivity in-
dex, parameters with a positive index have a high impact on the
burden of disease in society if their value increases. Likewise,
parameters for which the sensitivity index is negative have the
effect of minimizing the burden of disease in society because its
value increases, while others are constant. In other words, as the
value increases, the number of reproductions decreases, which
minimizes the endemicity of the disease in the community. Ta-
ble 2 shows the sensitivity index of the parameter for Case I (USA)
for different v values. From Table 2, parameters pe and α, which
are the effectiveness of vaccination in S and transmission rates
from E to I , have negative sensitivity indices. It has been shown
that the parameter has the effect of minimizing the burden of
disease in society. Similarly, parameter β, which is the effective
transmission rate of COVID-19, has a positive sensitivity index.
This means that if its value increases, it has a high impact on the
burden of disease in society. This condition also occurred in case
II (India), see Table 3. Table 3 shows that parameter β has a posi-
tive sensitivity index, whereas ps has a negative sensitivity index.
It can be concluded that, as the value increases, the number of
reproductions decreases, which minimizes the endemicity of the
disease in the community.

3.4. Optimal Control Analysis

In this section, we present a successful prevention plan for
stopping this pandemic. The transmission of illnesses, particu-
larly COVID-19, can be partially reduced using control methods.
In this study, three control strategies to stop the epidemic from
spreading, time-dependent control factors such as u1 provide a
method of controlling COVID-19 by educating the public about

JJBM | Jambura J. Biomath Volume 4 | Issue 1 | June 2023
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Table 3. Sensitivity indices of R0 according to each parameter (case 2 in India) for ps = 0.7, pe = 0.6 and pi = 0.6 (Wintachai and
Prathom [28]) in various values of vaccination (ν)

Parameter ν = 0 ν = 0.1 ν = 0.5 ν = 0.8 ν = 1.0
α 1.1618× 10−4 0.2117 0.4157 0.4570 0.4726
β 0.5 0.5 0.5 0.5 0.5
γ -0.4998 -0.2590 −6.8986× 10−2 −3.4586× 10−2 −2.1866× 10−2

b0 0.5 0.5 0.5 0.5 0.5
d0 -0.5 −1.4224× 10−4 −2.8456× 10−5 −1.7785× 10−5 −1.4228× 10−5

d1 −1.1618× 10−4 −7.1283× 10−5 −2.8000× 10−5 −1.9239× 10−5 −1.5919× 10−5

d2 −1.4726× 10−4 −8.1162× 10−5 −2.9034× 10−5 −1.9595× 10−5 −1.6105× 10−5

ps 0 -0.5375 -0.7692 -1.1363 -1.6667
pe 0 -0.1932 -0.3795 -0.4172 -0.4315
pi 0 -0.2244 -0.4014 -0.4335 -0.4453

health issues, u2 indicates a control method that involves using
personal defenses, such as seclusion, and u3 depicts the care pro-
vided to COVID-19 patients in hospitals or isolation facilities to
reduce their suffering from the disorders. By focusing on the
dominant parameters, we modified the model to investigate the
impact of preventative actions on future situations. After substi-
tution of three controls, the model in [28] presents the following
form:

dS

dt
= b0 − (νps + d0)S − β ∗ (1− νps)SI − u1S, (1)

dE

dt
= β(1− νps)SI − (d1 + α+ (1− α)νpe)E − u2E, (2)

dI

dt
= αE − (d2 + γ + (1− γ)νpi)I − (u2 + u3)I, (3)

dR

dt
= νpsS + u1S + νpe(1− α)E + u2E

+ (γ + (1− γ)νpiI + u3I − d0R. (4)

The goal is to develop an optimal control for each of the three
control schemes while minimizing their relative cost. Pontrya-
gin’s maximal principle [34] was used to determine the necessary
and sufficient conditions for optimal control. In the time interval
[0, T ], the objective function is defined as follows

J(u1, u2, u3) =

∫ T

0

(
A1E +A2I +

b1
2
u2
1 +

b2
2
u2
2 +

b3
2
u2
3

)
dt,

(5)
where A1 and A1 represent the positive weights and b1, b2 and
b3 determines the relative cost of the intervention strategies
being considered. The aim is to find the optimal value u∗ =
(u∗

1, u
∗
2, u

∗
3) that minimizes the equation of the objective func-

tion (5) in the interval [0, T ]. Consequently, the corresponding
solution paths (S∗, E∗, I∗, R∗) that depend on u∗ are the opti-
mal solutions of the state system of eqs. (1) to (4).

Optimal control problem
Find optimal control (u∗

1, u
∗
2, u

∗
3) such that

J(u∗
1, u

∗
2, u

∗
3) = min{J(u1, u2, u3), (u1, u2, u3) ∈ U}. (6)

The control setU is assumed to be Lebesguemeasurable function
defined by

U = {(u1, u2, u3) | ui(t) is Lebsgue Measurable

on [0, T ], 0 ≤ ui(t) ≤ 1, i = 1, 2} .

According Pontryagin’s Maximum Principle, if the controls
(u∗

1, u
∗
2, u

∗
3) and the corresponding state (S∗, E∗, I∗, R∗) are an

optimal pair, respectively, necessarily there exist a costate vari-
able or adjoint variable λ(t) such that the function reaches its
minimum on the set U point u∗ = (u∗

1, u
∗
2, u

∗
3). Here, a Hamil-

tonian (H((S,E, I,R), t, U, λ)) with respect to ui(t), where
H((S,E, I,R), t, U, λ) is defined as

H((S,E, I,R), t, U, λ) = A1E +A2I +

4∑
i=1

hiλi(t) +

3∑
i=1

bi
2
u2
i . (7)

where

h1 = b0 − (νps + d0)S − β(1− vps)SI − u1S,

h2 = β(1− νps)SI − (d1 + α+ (1− α)νpe)E − u2E,

h3 = αE − (d2 + γ + (1− γ)νpi)I − (u2 + u3)I,

h4 = νpsS + u1S + νpe(1− α)E + u2E

+ (γ + (1− γ)νpi)I + u3I − d0R.

Theorem 1. Given an optimal control u∗ = (u∗
1, u

∗
2, u

∗
3)

and a solution to the corresponding state eqs. (1) to (4),
(S∗, E∗, I∗, R∗), then there exists a non-trivial vector function
λ(t) = (λ1, λ2, λ3, λ4) satisfying the following costate equa-
tions

dλ1

dt
= d0λ1 − u1λ4 + u1λ1 − βIλ2 + βλ1I − λ4psν

+ λ1νps + βνIλ2ps − Iλ1psβν,

dλ2

dt
= A1 + d1λ2 + λ2u2 − λ4u2 + λ2α− λ3α

+ λ2peν − λ4peν − λ2peαν + λ4peαν,

dλ3

dt
= −A2 + d2λ3 + γλ3 − γλ4 + λ3u2 + λ3u3

− λ4u3 − λ2Sβ + λ1Sβ + λ3piν − γλ3piν

− λ4piν + γλ4piν + λ2psSβν − λ1psSβν,

dλ4

dt
= d0λ4.

(8)

where λ1, λ2, λ3, and λ4 are the adjoint variables and y =
(S,E, I,R). The minimization condition

H((S,E, I,R), t, u∗, λ) =

min {H((S,E, I,R), t, U, λ) | (u1, u2, u3) ∈ U} ,
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Figure 1. Display the dynamics of fraction of fraction of Exposed and Infected populations as well reservoirs with and without controls
for both countries, respectively

holds almost everywhere on [0, T ]. Furthermore, the optimal con-
trols u∗

1, u
∗
2, u

∗
3 are represented as

u∗
1 = max

{
min

{
(λ1 − λ4)S

b1
, 1

}
, 0

}
, (9)

u∗
2 = max

{
min

{
(λ2 − λ4)E + λ3I

b2
, 1

}
, 0

}
, (10)

u∗
3 = max

{
min

{
(λ3 − λ4)I

b3
, 1

}
, 0

}
, (11)

Proof. The co-state equations can be found by

dλ1

dt
=

∂H

∂S
, λ1(T ) = 0,

dλ2

dt
=

∂H

∂E
, λ2(T ) = 0,

dλ3

dt
=

∂H

∂I
, λ3(T ) = 0,

dλ4

dt
=

∂H

∂R
, λ4(T ) = 0.

where H = H((S,E, I,R), t, U, λ). Evaluated at the optimal
controls and the corresponding states. For the transversally con-
ditions to hold, we assume that the final states S(T ), E(T ),

I(T ), andR(T ) are free so that dλ(t)
dt = −∂H(y,t,U,λ)

∂y = 0 where
y = (S,E, I,R). This results in λ(T ) = 0. To characterize
the controls, we use the minimality condition of the Pontryagin’s
Minimum Principle. The minimality condition in the interior of
U and t ∈ [0, T ] is ∂H

∂u1
= λ4S − λ1S + u1b1 = 0, ∂H

∂u2
=

−Eλ2−Iλ3+Eλ4+u2b2 = 0 and ∂H
∂u3

= −Iλ3+Iλ4+u3b3 = 0.
At u∗

1, u
∗
2, u

∗
3 on this set

u1 =
(λ1 − λ4)S

b1
,

u2 =
(λ2 − λ4)E + λ3I

b2
,

u3 =
(λ3 − λ4)I

b3
,

Since the bound on u1, u2, u3 are 0 ≤ u1, u2, u3 ≤ 1, the optimal
controls u∗

1, u
∗
2, u

∗
3 are represented as

u∗
1 = max

{
min

{
(λ1 − λ4)S

b0
, 0

}
, 1

}
, (12)

u∗
2 = max

{
min

{
(λ2 − λ4)E + λ3I

b2
, 0

}
, 1

}
, (13)

u∗
3 = max

{
min

{
(λ3 − λ4)I

b3
, 0

}
, 1

}
. (14)
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(c) Case I (USA)
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(d) Case II (India)
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Figure 2. Display the dynamics of infected populations as well reservoirs with and without controls for both countries

Based on the Theorem 1, To solve the optimal control prob-
lem, we apply both the initial and boundary conditions with
the characterization of the optimal controls u∗ = (u∗

1, u
∗
2, u

∗
3).

In addition, the Hessian matrix of the Hamiltonian with re-
spect to (u1, u2, u3) is positive definite, which shows that the
optimal control problem is minimum at the controls u∗ =
(u∗

1, u
∗
2, u

∗
3).

4. Numerical Illustration and Discussion

In this section, the optimal control and parameter sensitiv-
ity to reproduction number are analyzed. We used the forward-
backward sweep method [35] in MATLAB 2015a to find the solu-
tion. The procedure starts by guessing the control variables, and
then the system in eqs. (1) to (4) are solved simultaneously for-
ward in time, and the estimated control variables and the yielding
of a solution are substituted into the adjoining system, which is
solved backwards in time using the transverse condition. The
control is then updated using a convex combination of previous
control and characterization values [36]. The parameters used
for the simulations were described in [28].

The results of the optimal control of COVID-19 transmis-
sion in two countries, the USA and India, were numerically cal-
culated. In accordance with Omede et al. [37], a control vari-
able was assumed. In this study, we chose to determine the vari-
able control ’s parameters ν = 0, A1 = 30%, A1 = 70%, b1 =

60%, b2 = 20%, and b3 = 20%, as shown in Figure 1. The Fig-
ure 1 demonstrates the impact of implementing various control
strategies in both countries (USA and India) over 15 days. Fig-
ure 1 shows the exposed population for both countries, the USA
in Figure 1(a) and India in Figure 1(b). The infected populations
are shown in Figure 1(c) and 1(d). From Figure 1(a,c, we observe
that the number of Exposed and Infected humans decreases dra-
matically when controls are applied. In India, Figure 1(b,d) show
that the persons with Corona-virus decreases by applying when
controls are applied. There was no considerable adoption by vac-
cinated individuals. From Figure 1, there is a significant effect of
the use of control strategies in the USA compared to India.

Next, Figure 2 shows that the number of infected people
will be reduced by implementing control and vaccination (ν).
Here, vaccination is given to 50% and 100% of the USA and In-
dia, respectively. From Figure 2, by giving the vaccine to 50%
of the population in India, the number of infected people can
be reduced and the infected population can be approached with
controls. Thus, the infected population will decrease if the Indian
government distributes vaccines to only 50% of the population.
Instead, the United States government must distribute 100% of
vaccinations to the population in the USA. Figure 2(c) shows that
up to 15 days, the population without control was the same as
the population with control.

Finally, we present the profiles of three controls for 15 days
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Figure 3. Optimal Function for (a) case I (USA), (b) case II (India)

for two cases: Case I for the spread of COVID-19 in the USA and
Case II for the spread of COVID-19 in India for ν = 0, A1 =
70%, A2 = 30%, b1 = 60%, b2 = 20%, and b3 = 20% in the interval
t ∈ [0, 15], as shown in Figure 3.

From Figure 3, self-control, such as always using a mask,
washing hands every day, isolating, increasing immunity, and re-
ducing contact with other people, is in a higher position in the
control profile than the care given to COVID-19 patients in hos-
pitals. or isolation facilities to reduce the suffering of COVID-19
and public education on health issues. This situation occurs in
both the USA and India. According to the findings, if the three
control techniques are implemented ideally since the start of
the pandemic, the number of cases in the compartment will be
greatly reduced as long as there are no infected cases or hospi-
talizations.

5. Conclusion

This paper focuses on sensitivity analysis and optimal con-
trol with examples from the United States and India. One of
the researchers’ efforts was to provide alternative solutions to
reduce the number of COVID-19 patients. Mathematical mod-
els are required to estimate disease transmission, recovery, and
mortality. It is necessary to determine the parameters that are
most sensitive to the transmission rate of a mathematical model
by considering the sensitivity index. The results obtained reveal
that the parameters that are the basis for reducing the number
of COVID-19 infections for the two countries, the USA and India,
are effective transmission rates from S to E, (β), transmission
rate from E to I, (α), and transmission rate from S to R, (ps)
are the main parameters to watch for growth for Basic Repro-
duction rates (R0). In addition, we implemented optimal con-
trol measures to reduce the number of people who have been
infected individuals. To demonstrate the effect of the three con-
trol strategies on the selected model, a numerical simulation
was performed. From the simulation results using the Forward-
Backward Sweep method, by adopting the control variable in the
SEIR model as previously described, with the control variable be-
ing the number of sufferers in both countries, The US and India
are expected to be reduced. Using this control, the spread rate
can be suppressed. From the results obtained, only implement-

ing three types of controls and giving 50% of the vaccine to the
people of India, the population decreased in seven days. In the
USA, with the implementation of three types of control and ad-
ministration of vaccines to 100% of the population, transmission
can be overcome for 15 days. This control can be an alternative
to reduce the spread of other similar diseases.
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