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Mathematical Model and Simulation of the Spread of
COVID-19 with Vaccination, Implementation of Health
Protocols, and Treatment

Muhammad Manaqib1,∗, Mahmudi2, and Galuh Prayoga3

1,2,3 Department of Mathematics, Faculty of Sciences and Technology, UIN Syarif Hidayatullah Jakarta, Banten 15412, Indonesia

ABSTRACT. This research develops the SVEIHQR model to simulate the spread of COVID-19 with vaccination,
implementation of health protocols, and treatment. The population is divided into twelve subpopulations, resulting in
a mathematical model of COVID-19 in the form of a system of twelve differential equations with twelve variables. From
the model, we obtain the disease-free equilibrium point, the endemic equilibrium point, and the basic reproduction
number (R0). The disease-free equilibrium point is locally asymptotically stable when R0 < 1 and ∆5 > 0, where
∆5 is the fifth-order Routh-Hurwitz matrix of the characteristic polynomial of the Jacobian matrix. Additionally, an
endemic equilibrium point exists whenR0 > 1. The results of numerical simulations are consistent with the conducted
analysis, and the sensitivity analysis reveals that the significant parameters influencing the spread of COVID-19 are
the proportion of symptomatic infected individuals and the contact rate with asymptomatic infected individuals.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction
Coronavirus Disease 19 (COVID-19) is an infectious disease

caused by a novel type of coronavirus [1]. It originated from
the identification report of a new coronavirus (2019-nCoV) that
caused an outbreak of acute respiratory illness in humans in
Wuhan, China, on December 12, 2019. Subsequently, on Jan-
uary 26, 2020, a total of 2.794 laboratories reported infections,
with 80 deaths [2]. Not limited to Wuhan, China, the first case
of COVID19 outside China was reported on January 13, 2020.
On January 30, 2020, the World Health Organization (WHO) de-
clared it a global health threat. The President of Indonesia, Joko
Widodo, reported the first two cases of COVID-19 in Depok, West
Java, on March 2, 2020. Finally, on March 11, 2020, the WHO de-
clared COVID-19 a pandemic worldwide [3].

The number of confirmed COVID-19 cases in Indonesia
continues to increase, and as of January 24, 2023, there have
been a total of 6,728,184 confirmed positive cases, with a death
toll of 160,788 people [4]. To curb the spread of COVID-19,
the government has implemented a gradual vaccination pro-
gram starting in January 2021. Additionally, the government has
implemented further preventive measures, including the imple-
mentation of health protocols such as the 3M (Wearing Masks,
Keeping Distance, Washing Hands) movement and strengthen-
ing the 3T (Tracing, Testing, Treatment) approach [5]. After two
years, specifically on January 17, 2023, the total number of vac-
cinations administered by the Indonesian government reached
444,303,130 vaccine doses. This includes 203,657,535 individu-
als who received the first dose, 172,693,321 individuals who re-
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ceived the second dose, and 67,952,274 individuals who received
a booster dose [6].

The World Health Organization (WHO) has officially an-
nounced that COVID-19 transmission occurs through droplets.
The transmission of COVID-19 through droplets is supported by
several studies, including those conducted by [7–11]. Droplet
transmission can occur when a person is nearby proximity (ap-
proximately 1 meter) to someone who is symptomatic, such as
coughing or sneezing, resulting in droplets posing a risk of reach-
ing the mucous membranes (mouth and nose) or conjunctiva
(eyes). Additionally, transmission can also occur through ob-
jects/surfaces contaminated with droplets in the vicinity of an in-
fected individual. Therefore, the transmission of the COVID-19
virus can occur through direct contact with an infected person
and indirect contact with objects/surfaces used by the infected
person, such as thermometers or stethoscopes [1]. The solution
to prevent the spread of COVID-19 through droplets is by wearing
masks, both for COVID-19 patients and non-patients. The Min-
istry of Health recommends medical masks for healthcare work-
ers and three-layer cloth masks for the general public [1]. The
use of masks is relatively effective in preventing the transmission
of COVID-19 and can be easily adopted by the public.

Mathematical modeling is widely used in epidemiological
studies to provide an understanding of the characteristics and
spread of disease [12, 13]. Similarly, with COVID-19, mathemati-
cal models have been developed since the beginning of the pan-
demic in early 2020. The basic model for modeling the spread of
COVID19 is the SIR model. The SIR model divides the population
into three subpopulations: susceptible (S), infectious (I), and re-
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Figure 1. The transfer diagram of the mathematical model of COVID-19 transmission with vaccination, implementation of health proto-
cols, and treatment

moved (R) This model was developed by Miroslava I. et al. (2020)
[14], Zhifang L. et al. (2020) [15], and Asish M. (2020) [16]. Fur-
thermore, Maher A. et al. (2021) [17], Matteo C. et al. (2020) [18],
De Kai et al.(2020) [19], Adam J. K. et al. (2020) [20], Chaolong
W. et al. (2020) [21], Joseph T. W. et al. (2020) [22], Zifeng Y. et
al. (2020) [23], and Shi Zhao et al. (2020) [24] developed the
SEIR/SLIR COVID-19 model by incorporating an exposed/latent
(E/L) subpopulation into the SIR model.

The development of mathematical models for COVID-19
continues to progress over time. Idris Ahmed et al. (2021) [25]
conducted research on the SEIQR model, which divides the in-
fected compartments into two parts: symptomatic infections (Is)
and asymptomatic infections (Ia). Additionally, Enahoro A. Aboi
et al. (2020) [26] made further advancements in the SEIR model
by incorporating vaccinated individuals, dividing the E compart-
ment into two parts, distinguishing between symptomatic (Is)
and asymptomatic (Ia) infected individuals, and adding a com-
partment for individuals receiving hospital care (Ih). Further-
more, Salihu S. M. et al. (2021) [27] developed the SEIRD math-
ematical model for COVID-19, dividing the susceptible subpopu-
lation into those who adhere to health protocols and those who
do not. Additionally, Salihu S. M. et al. (2021) [27] included a
treatment class through both mild and severe hospital inpatient
care.

This study develops the SVEIHQR model for the spread of
COVID-19, considering vaccination, the implementation of health
protocols, and treatment. The vaccination process consists of
three stages: the first dose, the second dose, and the booster
dose. Treatment is divided into two categories: hospital care,
including mild and severe inpatient care. The model also consid-
ers COVID-19 cases with symptoms and without symptoms, in-
cluding asymptomatic and symptomatic patients. Based on this
model, an analysis of the equilibrium points is conducted, which
is associated with the basic reproduction number. Subsequently,
model simulations are performed to provide a geometric repre-
sentation of the model’s solutions and to verify the obtained the-
orems. Finally, a sensitivity analysis of the model’s parameters is
conducted to the basic reproduction number to identify the dom-

inant parameters that influence the spread of COVID-19.

2. Model Formulation

The model used in this study is the SVEIHQR model, which
divides the population into twelve sub-populations: susceptible
individuals who adhere to health protocols (Sa), susceptible in-
dividuals who do not adhere to health protocols (Su), individ-
uals who have received the first dose of vaccination (Vp), indi-
viduals who have received the second dose of vaccination (Vf ),
individuals who have received the booster dose of vaccination
(Vb), exposed/latent individuals (E), symptomatic infected indi-
viduals (Is), asymptomatic infected individuals (Ia), mild inpa-
tient individuals at the hospital (Hm), severe inpatient individu-
als at the hospital (Hs), quarantined individuals (Q), and recov-
ered/immune individuals with temporary immunity to COVID-19
(R).

The assumptions for the development of the mathemati-
cal model of COVID-19 transmission with vaccination, implemen-
tation of health protocols, and treatment can be stated as fol-
lows: (1) Latent individuals cannot infect others; (2) The trans-
mission rate for symptomatic and asymptomatic infected indi-
viduals in the vaccinated sub-population is equal; (3) The popu-
lation is assumed to be closed, meaning no individuals enter or
leave; (4) The population is assumed to be homogeneous, where
each individual in the population has an equal chance of contact-
ing others; (5) The natural birth rate and natural death rate are
assumed to be equal, maintaining a constant total population;
(6) Births enter the susceptible sub-population that adheres to
health protocols; (7) Individuals in the susceptible sub-population
that adheres to health protocols can become non-compliant,
thus entering the susceptible sub-population that does not ad-
here to health protocols, and vice versa; (8) Individuals in the
susceptible sub-population that adheres to health protocols re-
ceive the first dose of vaccination (partial vaccinated), second
dose (full vaccinated), and booster dose (booster vaccinated) se-
quentially; (9) Individuals in the susceptible sub-population that
does not adhere to health protocols can be exposed to COVID-
19 and enter the exposed (latent) sub-population; (10) Individ-
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Table 1. The list of parameters for the COVID-19 transmissionmodel with vaccination, implementation of health protocols, and treatment

No. Parameter Definition Requirement Unit
1. µ The rates of natural birth and death 0 < µ ≤ 1 Per day
2. βs The transmission rate by symptomatic infected individuals 0 < βs ≤ 1 Per day
3. βa The transmission rate by asymptomatic infected individuals 0 < βa ≤ 1 Per day
4. δ The incubation rate 0 < δ ≤ 1 Per day
5. k The proportion of symptomatic infected individuals 0 < k ≤ 1 Per day
6. θs The rate of quarantine for symptomatic infected individuals 0 < θs ≤ 1 Per day
7. θa The rate of quarantine for asymptomatic infected individuals 0 < θa ≤ 1 Per day
8. γa The rate of recovery for asymptomatic infected individuals who recover due to natural immunity 0 < γa ≤ 1 Per day
9. γq The rate of recovery for individuals after undergoing quarantine 0 < γq ≤ 1 Per day
10. γh The rate of recovery for individuals after receiving treatment in the hospital 0 < γh ≤ 1 Per day
11. π1 The rate of vaccination for the first dose 0 < π1 ≤ 1 Per day
12. π2 The rate of vaccination for the second dose 0 < π2 ≤ 1 Per day
13. π3 The rate of vaccination for the booster dose 0 < π3 ≤ 1 Per day
14. τ1 The rate of infection among individuals who have received the first dose of the vaccine 0 < τ1 ≤ 1 Per day
15. τ2 The rate of infection among individuals who have received the second dose of the vaccine 0 < τ2 ≤ 1 Per day
16. τ3 The rate of infection among individuals who have received the booster dose of the vaccin e 0 < τ3 ≤ 1 Per day
17. ε The rate of immune response among individuals who have received the booster dose of the vaccine 0 < ε ≤ 1 Per day
18. u1 The rate of non-compliance with health protocols 0 < u1 ≤ 1 Per day
19. u2 The rate of compliance with health protocols 0 < u2 ≤ 1 Per day
20. σs The rate of treatment for symptomatic infected individuals in severe hospitalization 0 < σs ≤ 1 Per day
21. σm The rate of treatment for symptomatic infected individuals in mild hospitalization 0 < σm ≤ 1 Per day
22. α The rate of transition from severe hospitalization to mild hospitalization 0 < α ≤ 1 Per day
23. φ The rate of reinfection from individuals who have recovered and/or have temporary immunity to the disease 0 < φ ≤ 1 Per day

uals who receive 1 dose of vaccine (partial vaccinated), 2 doses
of vaccine (full vaccinated), and booster vaccine (booster vacci-
nated) can be exposed to COVID-19 and enter the exposed (la-
tent) sub-population; (11) Individuals in the exposed (latent) sub-
population can be infected with COVID-19 with two possibilities,
either symptomatic or asymptomatic; (12) Asymptomatic individ-
uals in the infected sub-population can undergo quarantine or
recover/immune with temporary immunity; (13) Symptomatic in-
dividuals in the infected sub-population can undergo quarantine,
mild hospitalization, or severe hospitalization; (14) Individuals in
the severe hospitalization sub-population can transition to mild
hospitalization; (15) Individuals in the mild hospitalization sub-
population can recover/immune with temporary immunity; and
(16) Individuals in the recovered/immune with temporary immu-
nity sub-population can become susceptible again and enter the
susceptible sub-population that does not adhere to health proto-
cols. The parameters used in the model of COVID-19 transmis-
sion with vaccination, implementation of health protocols, and
treatment are presented in Table 1.

Schematically, the mathematical model of COVID-19 trans-
mission with vaccination, implementation of health protocols,
and treatment can be represented in the transfer diagram shown
in Figure 1. Based on the transfer diagram in Figure 1, the math-
ematical model can be formulated as the system of nonlinear or-
dinary differential equations eq. (1).

dSa

dt
= µN + u2Su − µSa − u1Sa − π1Sa,

dSu

dt
= u1Sa + φR− µSu − u2Su − (βsIs + βaIa)Su

N
,

dVp

dt
= π1Sa − µVp − π2Vp −

τ1 (Is + Ia)Vp

N
,

dVf

dt
= π2Vp − µVf − π3Vf − τ2 (Is + Ia)Vf

N
,

dVb

dt
= π3Vf − µVb − εVb −

τ3 (Is + Ia)Vb

N
,

dE

dt
=

(βsIs + βaIa)Su

N
+

τ1 (Is + Ia)Vp

N

+
τ2 (Is + Ia)Vf

N
+

τ3 (Is + Ia)Vb

N
− µE − δkE − δ(1− k)E, (1)

dIs
dt

= δkE − µIs − θsIs − σsIs − σmIs,

dIa
dt

= δ(1− k)E − µIa − θaIa − γaIa,

dHm

dt
= σmIs + αHs − µHm − γhHm,

dHs

dt
= σsIs − µHs − αHs,

dQ

dt
= θaIa + θsIs − µQ− γqQ,

dR

dt
= εVb + γaIa + γhHm + γqQ− µR− φR,

with the valueN = Sa+Su+Vp+Vf +Vb+E+Is+Ia+Hm+
Hs + Q + R. It is obtained dN

dt = 0, thus N(t) = c where c is
a positive integer. Since N(t) is constant, system eq. (1) can be
transformed into a non-dimensional model to simplify themodel.
The proportions of individuals in each compartment can be ex-
pressed as eq. (2).

sa =
1

N
Sa, su =

1

N
Su, vp =

1

N
Vp, vf =

1

N
Vf ,

vb =
1

N
Vb, e =

1

N
E, is =

1

N
Is, ia =

1

N
Ia, (2)

hm =
1

N
Hm, hs =

1

N
Hs, q =

1

N
Q, r =

1

N
R.

Therefore, from eq. (1) and eq. (2), the non-dimensional equation
can be formed as system eq. (3).

dsa
dt

= µ+ u2su − ξ1sa,
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dsu
dt

= u1sa + φr − ξ2su − (βsis + βaia) su,

dvp
dt

= π1sa − ξ3vp − τ1 (is + ia) vp,

dvf
dt

= π2vp − ξ4vf − τ2 (is + ia) vf ,

dvb
dt

= π3vf − ξ5vb − τ3 (is + ia) vb,

de

dt
= (βsis + βaia) su + τ1 (is + ia) vp

+ τ2 (is + ia) vf + τ3 (is + ia) vb − ξ6e, (3)
dis
dt

= δke− ξ7is,

dia
dt

= δ(1− k)e− ξ8ia,

dhm

dt
= σmis + αhs − ξ9hm,

dhs

dt
= σsis − ξ10hs′,

dq

dt
= θaia + θsis − ξ11q,

dr

dt
= εvb + γaia + γhhm + γqq − ξ12r,

with ξ1 = µ+u1+π1, ξ2 = µ+u2, ξ3 = µ+π2, ξ4 = µ+π3, ξ5 =
µ + ε, ξ6 = µ + δk + δ(1 − k), ξ7 = µ + θs+ σs + σm, ξ8 =
µ + θa + γa, ξ9 = µ + γh′ξ10 = µ + α, ξ11 = µ + γq, and
ξ12 = µ+ φ.

Since system eq. (3) describes the interaction of sub-
populations, the solutions of the system must be non-negative
and bounded [28, 29]. The following theorem ensures that the
solutions of system eq. (3) are non-negative and bounded.

Theorem 1. All solutions of system eq. (1) depend on non-negative
initial values sa(0) = sa0, su(0) = su0, vp(0) = vp0,
vf (0) = vf0, vb(0) = vb0, e = (0)e0, is(0) = is0, ia(0) =
ia0, hm(0) = hm0, hs(0) = hs0, q(0) = q0, r(0) = r0 is
non-negative and bounded.

Proof. First, prove that the solutions of system eq. (3) are non-
negative by showing that sa is non-negative, assuming the con-
trary for contradiction. Based on the Intermediate Value Theo-
rem [30] the existence of τ > 0 is guaranteed such that sa(τ−) ≥
0, sa(τ) = 0, and sa(τ+) < 0. From the first equation of system
eq. (3), we have

dsa
dt

∣∣
t=τ

= µ > 0.

Thismeans that sa > 0 in (τ, τ+ε) for any small positive constant
ε. This leads to a contradiction. Therefore, sa ≥ 0 for all t > 0.
The non-negativity of su, vp, vf , vb, e, is, ia, hm, hs, q, and r can
be proven analogously. Hence, all solutions of system eq. (3) are
non-negative.

Next, prove that the solutions of system eq. (3) are
bounded. It is known that 1 = sa(t) + su(t) + vp(t) + vf (t)+
vb(t) + e(t) + is(t) + ia(t) + hm(t) + hs(t) + q(t) + r(t). By
summing all the equations in system eq. (3), we obtainN(t) = c,
where c is a positive integer. Therefore, we can define a positive

invariant set of system eq. (3) as follows:

Γ =
{
(sa, su, vp, vf , vb, e, is, ia, hm, hs, q, r) ∈ R12

+

| sa + su + vp + vf + vb + e+ is + ia + hm

+ hs + q + r = 1} .
(4)

3. Model Analysis
3.1. Equilibrium Point and Basic Reproduction Number

The model of COVID-19 transmission with vaccination, im-
plementation of health protocols, and treatment is represented
by a system of nonlinear differential equations. This system
has two equilibrium points, namely the disease-free equilibrium
point and the endemic equilibrium point. According to [31], the
equilibrium points for system eq. (3) are obtained if

dsa
dt

=
dsu
dt

=
dvp
dt

=
dvf
dt

=
dvb
dt

=
de

dt

=
dis
dt

=
dia
dt

=
dhm

dt
=

dhs

dt
=

dq

dt
=

dr

dt
= 0. (5)

Theorem 2. The disease-free equilibrium point of system eq. (3)
is

E0 =
(
sa,

(
u1ξ3ξ4ξ5ξ12+φεπ1π2π3

ξ2ξ3ξ4ξ5ξ12

)
sa,

π1

ξ3
sa,

π1π2

ξ3ξ4
sa,

π1π2π3

ξ3ξ4ξ5
sa, 0, 0, 0, 0, 0, 0,

επ1π2π3

ξ3ξ4ξ5ξ12
sa

)
,

with sa = µξ2ξ3ξ4ξ5ξ12
ξ1ξ2ξ3ξ4ξ5ξ12−u1u2ξ3ξ4ξ5ξ12−φεu2π1π2π3

.

Proof. The disease-free equilibrium point is the equilibrium point
when there is no disease in the population. The condition
for a disease-free equilibrium is that no individual is infected,
meaning is = ia = 0. By substituting is = ia = 0
into system eq. (3), obtain the disease-free equilibrium point
E0 (sa, su, vp, vf , vb, e, is, ia, hm, hs, q, r) which is given by

E0

(
sa,

(
u1ξ3ξ4ξ5ξ12+φεπ1π2π3

ξ2ξ3ξ4ξ5ξ12

)
sa,

π1

ξ3
sa,

π1π2

ξ3ξ4
sa,

π1π2π3

ξ3ξ4ξ5
sa, 0, 0, 0, 0, 0, 0,

επ1π2π3

ξ3ξ4ξ5ξ12
sa

)
.

Note that the condition for the existence of an equilibrium point
is that each of its elements is positive, so need to show sa > 0
by demonstrating that its denominator is positive. It is ob-
served that the denominator of sa is given by ξ1ξ2ξ3ξ4ξ5ξ12 −
u1u2ξ3ξ4ξ5ξ12 − φεu2π1π2π3 =(

µ2 + µu1 + µπ1 + µu2

) (
µ4 + µ3φ+ µ3ε+ µ3π2 + µ3π3

+ µ2φε+ µ2φπ2 + µ2φπ3 + µ2επ2 + µ2επ3 + µ2π2π3

+µφεπ2 + µφεπ3 + µεπ2π3 + µφπ2π3 + φεπ2π3)

+ u2π1

(
µ4 + µ3φ+ µ3ε+ µ3π2 + µ3π3 + µ2φε+ µ2φπ2

+ µ2φπ3 + µ2επ2 + µ2επ3 + µ2π2π3 + µφεπ2 + µφεπ3

+µεπ2π3 + µφπ2π3) > 0, thus sa > 0.
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Theorem 3. For system eq. (3) under the assumptions of the ful-
filled model, we obtain the basic reproduction number (R0),

R0 =




 βsu1ξ3ξ4ξ5ξ12 + β5φεπ1π2π3

+τ1π1ξ2ξ4ξ5ξ12 + τ2π1π2ξ2ξ5ξ12
+τ3π1π2π3ξ2ξ12


ξ1ξ2ξ3ξ4ξ5ξ12−u1u2ξ3ξ4ξ5ξ12−φεu2π1π2π3

 δk
ξ7
+


 βau1ξ3ξ4ξ5ξ12 + βaφεπ1π2π3

+τ1π1ξ2ξ4ξ5ξ12 + τ2π1π2ξ2ξ5ξ12
+τ3π1π2π3ξ2ξ12


ξ1ξ2ξ3ξ4ξ5ξ12−u1u2ξ3ξ4ξ5ξ12−φεu2π1π2π3

 δ(1−k)
ξ8

 µ
ξ6
.

Proof. The calculation of the basic reproduction number is deter-
mined using the next generation matrices. To simplify the nota-
tion, express the derivative as df

dt = ḟ . The determination of the
basic reproduction number is done as follows:
1. Linearization with respect to the infected subsystem at the

disease-free equilibrium point yields the Jacobian matrix of
the equations ė, is, ia, ḣm, ḣs, q̇, and ṙ,

J =



−ξ6 v12 v13 0 0 0 0
δk −ξ7 0 0 0 0 0

δ(1− k) 0 −ξ8 0 0 0 0
0 σm 0 −ξ9 α 0 0
0 σs 0 0 −ξ10 0 0
0 θs θa 0 0 −ξ11 0
0 0 γa γh 0 γq −ξ12


,

with

v12 =
(

βsu1ξ3ξ4ξ5ξ12+βsφεφεπ1π2π3

ξ2ξ3ξ4ξ5ξ12
+ τ1π1

ξ3

+ τ2π1π2

ξ3ξ4
+ τ3π1π2π3

ξ3ξ4ξ5

)
sa

v13 =
(

βau1ξ3ξ4ξ5ξ12+βaφεφεπ1π2π3

ξ2ξ3ξ4ξ5ξ12
+ τ1π1

ξ3

+ τ2π1π2

ξ3ξ4
+ τ3π1π2π3

ξ3ξ4ξ5

)
sa

2. The decomposition of the Jacobian matrix J = F − V
into the transmission matrix F and the transition matrix V,
obtained

F =



0 v12 v13 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, and

V =



ξ6 0 0 0 0 0 0
−δk ξ7 0 0 0 0 0

−δ(1− k) 0 ξ8 0 0 0 0
0 −σm 0 ξ9 −α 0 0
0 −σs 0 0 ξ10 0 0
0 −θs −θa 0 0 ξ11 0
0 0 −γa −γh 0 −γq ξ12


.

3. Calculating R0 = ρ
(
FV −1) or R0 obtained from the spec-

tral radius of FV −1,

R0 =




 βsu1ξ3ξ4ξ5ξ12 + βsφεπ1π2π3

+τ1π1ξ2ξ4ξ5ξ12 + τ2π1π2ξ2ξ5ξ12
+τ3π1π2π3ξ2ξ12


ξ1ξ2ξ3ξ4ξ5ξ12−u1u2ξ3ξ4ξ5ξ12−φεu2π1π2π3

 δk
ξ7
+


 βau1ξ3ξ4ξ5ξ12 + βaφεπ1π2π3

+τ1π1ξ2ξ4ξ5ξ12 + τ2π1π2ξ2ξ5ξ12
+τ3π1π2π3ξ2ξ12


ξ1ξ2ξ3ξ4ξ5ξ12−u1u2ξ3ξ4ξ5ξ12−φεu2π1π2π3

 δ(1−k)
ξ8

 µ
ξ6
.

Theorem 4. If R0 > 1, then there exists an endemic equilibrium
point E1 = E1

(
s∗a, s

∗
u, v

∗
p , v

∗
f , v

∗
b , e

∗, i∗s, i
∗
a, h

∗
m, h∗

s, q
∗, r∗

)
of system eq. (3), with

s∗a = JWY v∗b + (AJXY +AJWZ +AKWY )v∗b e
∗

+
(
A2JXZ +A2KXY +A2KWZ

)
v∗b e

∗2

+A3KXZv∗b e
∗3,

s∗u = JLWY v∗b + (AJLXY +AJLWZ +AKLWY )v∗b e
∗

+
(
A2JLXZ +A2KLXY +A2KLWZ

)
v∗b e

∗2

+A3KLXZv∗b e
∗3 − µ

u2
,

v∗p = WY v∗b + (AXY +AWZ)v∗b e
∗ +A2XZv∗b e

∗2,

v∗f = Wv∗b +AXv∗b e
∗,

v∗b =
ξ6+

Bµ
u2

A3BLn1e∗3 +
(
A3XZτ1 +A2BLn2

)
e∗2

+
(
A2m1 +ABLn3

)
e∗ + (Am2 +BLn4)

i∗s = δk
ξ7
e∗,

i∗a = δ(1−k)
ξ8

e∗,

h∗
m =

(
δkσmξ10+ασsδk

ξ7ξ9ξ10

)
e∗,

h∗
s = σsδk

ξ7ξ10
e∗,

q∗ =
(

δθa(1−k)ξ7+δθskξ8
ξ7ξ8ξ11

)
e∗,

r∗ = ε
ξ12

v∗b +
(

γaδ(1−k)
ξ8ξ12

+ γhδkσmξ10+γhασsδk
ξ7ξ9ξ10ξ12

+
γqδθa(1−k)ξ7+γqδθskξ8

ξ7ξ8ξ11ξ12

)
e∗,

where e∗ is the solution of

a0e
∗4 + a1e

∗3 + a2e
∗2

+ a3e
∗ + a4 = 0 (6)

with

a0 = A3BCLn1 −A3BFLn1,

a1 = A3Cn1m3 +A2BCLn2 −A3BDLn1

−A3FXZτ1 −A2BFLn2,

a2 = A2Cn2m3 +ABCLn3 −A3DXZτ1
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−A2BDLn2 −A2Fm1 −ABFLn3,

a3 = BCLn4 +ACn3m3 −A2Dm1 −ABDLn3

−AFm2 −BFLn4,

a4 = ξ6(ξ1ξ2ξ3ξ4ξ5ξ12−u1u2ξ3ξ4ξ5ξ12−εφu2π1π2π3)
u2π1π2π3ξ12

(1−R0) ,

n1 = KXZ, n2 = JXZ +KXY +KWZ,

n3 = JXY + JWZ +KWY, n4 = JWY,

m1 = Xτ2 +XY τ1 +WZτ1, m2 = τ3 +Wτ2 +WY τ1,

m3 = Lξ2 − u1, m4 = εφ
ξ12

, J = ξ3
π1
, K = τ1

π1
, L = ξ1

u2
,

W = ξ5
π3
, X = τ3

π3
, Y = ξ4

π2
, Z = τ2

π2
, A = δkξ8+δ(1−k)ξ7

ξ7ξ8
,

B = βsξ8δk+βaξ7δ(1−k)
ξ7ξ8

, C = ξ6 +
Bµ
u2

, D = µξ2
u2

, and

F = µB
u2

+
(

φγaδ(1−k)
ξ8ξ12

+ φγhδkσmξ10+φγhασsδk
ξ7ξ9ξ10ξ12

+
φγqδθa(1−k)ξ7+φγqδθskξ8

ξ7ξ8ξ11ξ12

)
.

Proof. The endemic equilibrium point is a equilibrium point when
there is a disease present and it causes an epidemic in a popula-
tion, thus i∗s > 0 and i∗a > 0. It is clear that each element of E1

is positive if e∗ > 0. The polynomial eq. (6) has one positive root
if there is a change in sign among its coefficients according to
Descartes’ Rule of Signs. Considering the coefficients in polyno-
mial eq. (6), since A,B,L, n1 > 0, so a0 > 0. Obtained a4 < 0
if R0 > 1. Therefore, e∗ > 0 if R0 > 1.

3.2. Stability of the Equilibrium Point

Theorem 5. IfR0 < 1 and∆5 are positive, then the equilibrium
point E0 is locally asymptotically stable.

Proof. The stability analysis of the equilibrium point can be deter-
mined by finding the eigenvalues of the Jacobian matrix obtained
from linearizing the system around the equilibrium points of sys-
tem eq. (3). The eigenvalues of the matrix J(E0) are obtained
by solving det

(
J(E0) − λI

)
= 0, resulting in the characteristic

eq. (7).
(ξ9 + λ) (ξ10 + λ) (ξ11 + λ)PQ = 0. (7)

with

P = − δk
((

βsu1ξ3ξ4ξ5ξ12+βsφεπ1π2π3

ξ2ξ3ξ4ξ5ξ12

)
sa +

τ1π1

ξ3
sa

+ τ2π1π2

ξ3ξ4
sa +

τ3π1π2π3

ξ3ξ4ξ5
sa

)
(ξ8 + λ) + (ξ6 + λ) (ξ7 + λ)

(ξ8 + λ)− δ(1− k)
((

βau1ξ3ξ4ξ5ξ12+βaφεπ1π2π3

ξ2ξ3ξ4ξ5ξ12

)
sa

+ τ1π1

ξ3
sa +

τ2π1π2

ξ3ξ4
sa +

τ3π1π2π3

ξ3ξ4ξ5
sa

)
(ξ7 + λ) ,

Q = − εφu2π1π2π3 + (ξ4 + λ) (ξ5 + λ) (ξ12 + λ) (ξ3 + λ)

((ξ1 + λ) (ξ2 + λ)− u1u2) .

Based on the characteristic eq. (7), obtain λ1 = −ξ9, λ2 = −ξ10,
and λ3 = −ξ11. Since ξ9, ξ10, ξ11 ≥ 0, all three eigenvalues
are negative. From equation eq. (7), observe the characteristic
equation for the remaining nine eigenvalues as follows.

First, considering P, which is a polynomial of degree three,

a0λ
3 + a1λ

2 + a2λ+ a3 = 0, (8)

with

a0 = 1,

a1 = ξ6 + ξ7 + ξ8,

a2 = ξ6ξ7 + ξ6ξ8 + ξ7ξ8

− δk
((

βsu1ξ3ξ4ξ5ξ12+βsφεπ1π2π3

ξ2ξ3ξ4ξ5ξ12

)
sa +

τ1π1

ξ3
sa

+ τ2π1π2

ξ3ξ4
sa +

τ3π1π2π3

ξ3ξ4ξ5
sa

)
− δ(1− k)((

βau1ξ3ξ4ξ5ξ12+βaφεπ1π2π3

ξ2ξ3ξ4ξ5ξ12

)
sa +

τ1π1

ξ3
sa +

τ2π1π2

ξ3ξ4
sa

+ τ3π1π2π3

ξ3ξ4ξ5
sa

)
,

a3 = ξ6ξ7ξ8 (1−R0) .

According to the Lienard-Chipart Criteria [32], all eigenvalues for
a cubic polynomial will be negative if and only if a1, a3 > 0 and
∆2 > 0. It is clear that a1 > 0 and a3 > 0 if R0 < 1. The
value of∆2 can be obtained based on the Routh-Hurwitz matrix,
resulting in,

∆2 =

∣∣∣∣ a1 a0
a3 a2

∣∣∣∣
= 2ξ6ξ7ξ8 + ξ27ξ8 + ξ7ξ

2
8 + ξ6ξ7 (ξ6 + ξ7) [1−R0

+ δ(1−k)
ξ6ξ8




βau1ξ3ξ4ξ5ξ12 + βaφεπ1π2π3

+τ1π1ξ2ξ4ξ5ξ12 + τ2π1π2ξ2ξ5ξ12
+τ3π1π2π3ξ2ξ12

ξ2ξ3ξ4ξ5ξ12

 sa




+ ξ6ξ8 (ξ6 + ξ8) [1−R0

+ δk
ξ6ξ7




βsu1ξ3ξ4ξ5ξ12 + βsφεπ1π2π3

+τ1π1ξ2ξ4ξ5ξ12 + τ2π1π2ξ2ξ5ξ12
+τ3π1π2π3ξ2ξ12

ξ2ξ3ξ4ξ5ξ12

 sa


 .

Therefore, obtained ∆2 > 0 if R0 < 1. Considering Q, which is
a sixth-degree polynomial,

a0λ
6 + a1λ

5 + a2λ
4 + a3λ

3 + a4λ
2 + a5λ+ a6 = 0 (9)

with

a0 = 1,

a1 = ξ1 + ξ2 + ξ3 + ξ4 + ξ5 + ξ12,

a2 = ξ1ξ2 + ξ1ξ3 + ξ1ξ4 + ξ1ξ5 + ξ1ξ12 + ξ2ξ3 + ξ2ξ4

+ ξ2ξ5 + ξ2ξ12 + ξ3ξ4 + ξ3ξ5 + ξ3ξ12 + ξ4ξ5

+ ξ4ξ12 + ξ5ξ12 − u1u2,

a3 =
(
µ2 + µu1 + µπ1 + µu2 + π1u2

)
(ξ3 + ξ4 + ξ5 + ξ12)

+ ξ1ξ3ξ4 + ξ1ξ3ξ5 + ξ1ξ3ξ12 + ξ1ξ4ξ5 + ξ1ξ4ξ12

+ ξ1ξ5ξ12 + ξ2ξ3ξ4 + ξ2ξ3ξ5 + ξ2ξ3ξ12 + ξ2ξ4ξ5

+ ξ2ξ4ξ12 + ξ2ξ5ξ12 + ξ3ξ4ξ5 + ξ3ξ4ξ12 + ξ3ξ5ξ12

+ ξ4ξ5ξ12,

a4 = ξ1ξ2ξ3ξ4 + ξ1ξ2ξ3ξ5 + ξ1ξ2ξ3ξ12 + ξ1ξ2ξ4ξ5
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Table 2. The list of parameters values for the simulation of COVID-19 transmission model

Parameter Value Unit Reference Parameter Value Unit Reference
µ 0.01250 Per day [33] π3 0.01667 Per day [34]
βs 0.2 Per day [35] τ1 0.01111 Per day Assumption
βa 0.5 Per day [35] τ2 0.00833 Per day [36][37]
δ 0.87959 Per day [27] τ3 0.00556 Per day Assumption
k 0.58 [35] ε 0.14286 Per day [36]
θs 0.084 Per day [37] u1 0.1 Per day [38]
θa 0.084 Per day [37] u2 0.1 Per day [38]
γa 0.03671 Per day [27] σs 0.13266 Per day [27]
γq 0.155 Per day [37] σm 0.12590 Per day [27]
γh 0.11624 Per day [27] α 0.16906 Per day [27]
π1 0.04 Per day [38] φ 0.00185 Per day [39]
π2 0.03571 Per day [40]

+ ξ1ξ2ξ4ξ12 + ξ1ξ2ξ5ξ12 + ξ1ξ3ξ4ξ5 + ξ1ξ3ξ4ξ12

+ ξ1ξ3ξ5ξ12 + ξ1ξ4ξ5ξ12 + ξ2ξ3ξ4ξ5 + ξ2ξ3ξ4ξ12

+ ξ2ξ3ξ5ξ12 + ξ2ξ4ξ5ξ12 + ξ3ξ4ξ5ξ12 − u1u2ξ3ξ4

− u1u2ξ3ξ5 − u1u2ξ3ξ12 − u1u2ξ4ξ5 − u1u2ξ4ξ12

− u1u2ξ5ξ12,

a5 =
(
µ2 + µu1 + µπ1 + µu2 + π1u2

)
(ξ3ξ4ξ5 + ξ3ξ4ξ12

+ξ3ξ5ξ12 + ξ4ξ5ξ12) + ξ1ξ3ξ4ξ5ξ12 + ξ2ξ3ξ4ξ5ξ12,

a6 =
(
µ2 + µu1 + µπ1 + µu2

)
(µ+ π2) (µ+ π3) (µ+ ε)

(µ+ φ) + π1u2

(
µ4 + µ3ε+ µ3φ+ µ3π2 + µ3π3

+µ2εφ+ µ2επ2 + µ2επ3 + µ2φπ2 + µ2φπ3

+µ2π2π3 + µεφπ2 + µεφπ3 + µεπ2π3 + µφπ2π3

)
.

According to the Lienard-Chipart Criteria [32], all eigenvalues
for a sixth-degree polynomial will be negative if and only if
a1, a3, a5, a6 > 0 and∆3,∆5 > 0. It is clear that a1, a3, a5, a6 >
0 since each parameter has a positive value. The value of∆3 can
be obtained using the Routh-Hurwitz matrix, resulting in,

∆3 =

∣∣∣∣∣∣
a1 a0 0
a3 a2 a1
a5 a4 a3

∣∣∣∣∣∣ = a1a2a3 + a1a5 − a21a4 − a23 (10)

Equation (10) can be expanded into the sum of the following pos-
itive terms

∆3 = 10π3
3φµu2 + 128µ2φ2u2ε+ 7u1π

2
2π1u2ε

+ 7u1π
2
2π1u2π3 + 46u1π

2
2µεφ+ 44u1π

2
2µu2ε

+ 44u1π
2
2µu2π3 + 8u1π

2
2u2εφ+ 8u1π

2
2u2π3φ

+ 8u1π
2
2u2π3ε+ 8u1π

2
2π1εφ+ 8u1π

2
2π1π3φ

+ 8u1π
2
2π1π3ε+ 44u1π

2
2µπ1ε+ 4π1π

2
2π

2
3u1

+ 46µu2
2π2π3φ+ 2u1π

2
1ε

2u2 + 30π2
1µu1εφ

+ · · ·+ 128π2
1π3µ

2φ+ 128π2
1π3µ

2ε+ 3π2
1π

2
3u1ε

+ 12π2
1π

2
3µu1 + 2π3

1π3π2ε+ 22π2
1π

2
3µφ+ 22π2

1π
2
3µε

+ 22π2
1π

2
3µπ2 + 10π3

1π3µπ2 + 22π2
1π

2
3µu2 + 10π3

1π3µφ

+ 4π2
1π

2
3εφ+ 3π2

1π
2
3u1π2 + 4π2

1π
2
3π2φ+ 4π2

1π
2
3π2ε

+ 4π2
1π

2
3u2φ+ 4π2

1π
2
3u2ε

thus ∆3 > 0. The value of ∆5 can be obtained using the Routh-

Hurwitz matrix, resulting in,

∆5 =

∣∣∣∣∣∣∣∣∣∣
a1 a0 0 0 0
a3 a2 a1 a0 0
a5 a4 a3 a2 a1
0 a6 a5 a4 a3
0 0 0 a6 a5

∣∣∣∣∣∣∣∣∣∣
= (a4a5 − a3a6)∆3 − a1a

2
2a

2
5 − a31a

2
6 + 2a21a2a5a6

− a36 + a2a3a
2
6 + a1a4a

2
5 − 2a1a3a5a6.

Therefore, the disease-free equilibrium pointE0 is locally asymp-
totically stable if R0 < 1 and ∆5 in the equation Q is posi-
tive.

3.3. Numerical Simulation
Numerical simulations aim to visualize the geometric be-

havior of the model solutions and support the analysis results.
The simulations are performed using the 4th-order Runge-Kutta
method with parameters obtained from previous research on
the mathematical model of COVID-19 and relevant assumptions
about COVID-19. Systematically, the parameter values can be
presented in Table 2.

The simulation results with initial values of sa(0) =
0.095, su(0) = 0.08, vp(0) = 0.07, vf (0) = 0.05, vb(0) =
0.03, e(0) = 0.24, is(0) = 0.105, ia(0) = 0.085, hm(0) =
0.06, hs(0) = 0.05, q(0) = 0.065, and r(0) = 0.07 yield
R0 = 0.1217644522 and ∆5 = 9.322298383 × 10−14 as shown
in Figure 2.

Based on Figure 2, after 300 days, the model solution con-
verges towards the disease-free equilibrium point

(0.2021774, 0.1833206, 0.1677473, 0.2053568,

0.0220346, 0, 0, 0, 0, 0, 0, 0.2193634).

Therefore, from this first simulation, it can be concluded that the
disease will disappear from the population if R0 < 1. This result
is in line with Theorem 5.

Next, a numerical simulation of the endemic equilibrium
point E1 is performed for R0 > 1. The parameter values used
are the same as in the E0 simulation, except for some parame-
ters, the transmission rate by symptomatic infected individuals
(βs) is increased to 0.7, the transmission rate by asymptomatic
infected individuals (βa) is increased to 1, the non-compliance
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Table 3. Parameter sensitivity index

Parameter Sensitivity Index Parameter Sensitivity Index
k −0.9527342987 σm −0.06377320949
βa +0.7883528697 θs −0.04254924221
u1 +0.7532901376 φ +0.04145143835
u2 −0.6830316557 τ1 +0.02433377353
π1 −0.5511127089 τ2 +0.02233540471
θa −0.5171718800 δ +0.01401203835
µ +0.3309083152 π3 +0.008313074252
γa −0.2260164252 ε +0.002357780373
βs +0.1633783203 τ3 +0.001599631703
σs −0.06719741039 π2 +0.0005197482695

Figure 2. Simulation of system eq. (3) towards the disease-
free equilibrium

rate with health protocols (u1) is increased to 0.95, the compli-
ance rate with health protocols (u2) is decreased to 0.05, and
the vaccination rate for the first dose (π1) is decreased to 0.005.
This yields a basic reproduction number of R0 = 3.884347307.
The same initial values as E0 are used in the simulation, and the
results are shown in Figure 3.

Based on Figure 3, after 300 days, the solution converges
to the endemic equilibrium point of the disease

(0.02511621137, 0.2359986899, 0.002576206498,

0.003110900074, 0.0003332211430, 0.01147003065,

0.01648052744, 0.03180953523, 0.03193011371,

0.01204178657, 0.02421710606, 0.5846590408)

From this second simulation, it can be observed that when the
parameters related to the virus transmission are increased and
those related to virus control are decreased, resulting in R0 >
1, an endemic occurrence arises, and the disease persists in the
population.

Next, determine the sensitivity indices with the aim of iden-
tifying parameters that significantly influence the value of R0.
Parameters with a high influence on R0 indicate that they have
the most dominant effect on the spread of COVID-19. According
to [41], the sensitivity index of parameter p with respect to the

Figure 3. Simulation of system eq. (3) towards the endemic
equilibrium

value of R0 is defined as eq. (11)

CR0
p = ∂R0

∂p × p
R0

. (11)

Furthermore, a numerical simulation was carried out to see
the influence of several parameters that describe the spread of
the COVID-19 disease using different values.
1. Effect of Vaccination

By changing the value of parameter π1 (dose 1 vaccination
rate), the effectiveness of dose 1 vaccination can be seen as
shown in the Table 4, Figure 4, and Figure 5. It show that the
influence of the parameter ”rate of vaccination dose 1” on
the spread of COVID-19. The larger the rate of vaccination
dose 1, the faster the disease disappears. This is consistent
with the sensitivity index of the parameter ”rate of vaccina-
tion dose 1 ” which is −0.5511127089.

2. Effect of Implementing the Health Protocols
By changing the value of parameter u2 (awareness rate of
complying with health protocols), the effectiveness of im-
plementing health protocols can be seen as shown in Ta-
ble 5, Figure 6, and Figure 7. It show that the influence of
the parameter ”rate of compliance with health protocols”
on the spread of COVID-19. The larger the rate of com-
pliance with health protocols, the faster the disease disap-
pears. This is consistent with the sensitivity index of the pa-
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Table 4. The effect of vaccination rates

π1 R0 Condition of is Condition of ia
0.00005 0.8813532337 Disappeared on day 50 Disappeared on day 70
0.005 0.7410541885 Disappeared on day 48 Disappeared on day 69
0.05 0.3183129039 Disappeared on day 40 Disappeared on day 59
0.5 0.07892297717 Disappeared on day 27 Disappeared on day 50

Table 5. The effect of implementing health protocols

u2 R0 Condition of is Condition of ia
0.00001 1.261933158 Be endemic and stable on day 555 Be endemic and stable on day 563
0.001 1.230241002 Be endemic and stable on day 440 Be endemic and stable on day 633
0.1 0.3614470162 Disappeared on day 44 Disappeared on day 62
1 0.06650617276 Disappeared on day 26 Disappeared on day 50

Table 6. The effect of treatment

σm σs R0 Condition of is Condition of ia
0.0005 0.00005 0.5353772778 Disappeared on day 95 Disappeared on day 83
0.005 0.005 0.5131662250 Disappeared on day 85 Disappeared on day 76
0.05 0.05 0.4139023940 Disappeared on day 53 Disappeared on day 62
0, 5 0.5 0.3174901915 Disappeared on day 29 Disappeared on day 57

Figure 4. Simulation is of the effect of vaccination

rameter ”rate of compliance with health protocols” which is
−0.6830316557.

3. Effect of Treatment
By simultaneously changing the values of the parameters
σm (the rate of treatment for symptomatic infected individ-
uals in mild hospitalization) and σs (the rate of treatment
for symptomatic infected individuals in severe hospitaliza-
tion), the effectiveness of the treatment can be determined,
as shown in Table 6, Figure 8, and Figure 9. It show that
the impact of treatment represented by the parameters σm

(the rate of treatment for symptomatic infected individuals
in mild hospitalization) and σs (the rate of treatment for
symptomatic infected individuals in severe hospitalization)
on the spread of COVID-19. The higher the treatment rate,
the faster the disease disappears. This is consistent with
the sensitivity indices of the parameters σm and σs which
are −0.06377320949 and −0.06719741039, respectively.

Figure 5. Simulation ia of the effect of vaccination

4. Conclusion
The mathematical model for the spread of COVID-19, SVEI-

HQR, incorporates the following compartments: Susceptible,
Vaccination, Exposed, Infected, Hospitalized, Quarantined, and
Removed. It includes the implementation of health protocols, di-
vides the vaccination compartment into three (first dose, second
dose, and booster dose), divides the infected compartment into
symptomatic and asymptomatic, and introduces the treatment
compartment, which consists of mild and severe hospitalization.

The mathematical model formulated has two
equilibrium points: the disease-free equilibrium
point E0 (sa, su, vp, vf , vb, e, is, ia, hm, hs, q, r) which
is locally asymptotically stable when R0 < 1
and ∆5 > 0, and the endemic equilibrium point
E1

(
s∗a, s

∗
u, v

∗
p , v

∗
f , v

∗
b , e

∗, i∗s, i
∗
a, h

∗
m, h∗

s, q
∗, r∗

)
which exists

when R0 > 1.
Based on the stability analysis of the equilibrium points and
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Figure 6. Simulation is of the effect of implementing health
protocols

Figure 7. Simulation ia of the effect of implementing health
protocols

numerical simulations, it can be concluded that the disease will
disappear from the population if R0 < 1 and the endemic equi-
librium point exists if R0 > 1. The sensitivity analysis reveals
that the proportion of symptomatic individuals has the most sig-
nificant impact on R0. Furthermore, based on numerical simula-
tions and sensitivity analysis, the implementation of vaccination,
health protocols, and treatment have a positive impact on con-
trolling the COVID-19 outbreak, resulting in a faster disappear-
ance of the disease.

Author Contributions. M. Manaqib: Conceptualization, methodol-
ogy, and formal analysis. Mahmudi: writing—review and editing. G.
Prayoga: writing—original draft preparation. All authors have read and
agreed to the published version of the manuscript.

Acknowledgement. We would like to express our gratitude to the

Figure 8. Simulation is of the effect of treatment

Figure 9. Simulation ia of the effect of treatment

Research and Publishing Center (Puslitpen) of UIN Syarif Hidayatullah
Jakarta for their support in this research.

Funding. This research received no external funding.

Conflict of interest. The authors declare no conflict of interest.

Data availability. Several parameter values are cited from some refer-
ences. See Table 2.

References
[1] A. Riadi, Pedoman Pencegahan dan Pengendalian Coronavirus Disease (COVID-

19), revisi ke- ed., L. Aziza, A. Aqmarina, and M. Ihsan, Eds. Kementerian
Kesehatan RI, 2019, vol. 4, 2019. DOI: 10.33654/math.v4i0.299

[2] P. Zhou et al., “A pneumonia outbreak associated with a new coronavirus
of probable bat origin,” Nature, vol. 579, no. 7798, pp. 270–273, mar 2020.
DOI: 10.1038/s41586-020-2012-7

[3] S. Olivia, J. Gibson, and R. Nasrudin, “Indonesia in the Time of Covid-19,”
Bulletin of Indonesian Economic Studies, vol. 56, no. 2, pp. 143–174, 2020. DOI:
10.1080/00074918.2020.1798581

JJBM | Jambura J. Biomath Volume 4 | Issue 1 | June 2023

https://doi.org/10.33654/math.v4i0.299
https://doi.org/10.33654/math.v4i0.299
https://doi.org/10.33654/math.v4i0.299
https://doi.org/10.1038/s41586-020-2012-7
https://doi.org/10.1038/s41586-020-2012-7
https://doi.org/10.1038/s41586-020-2012-7
https://doi.org/10.1080/00074918.2020.1798581
https://doi.org/10.1080/00074918.2020.1798581
https://doi.org/10.1080/00074918.2020.1798581


M. Manaqib, Mahmudi, and G. Prayoga – Mathematical Model and Simulation of the Spread of COVID-19 with Vaccination… 79

[4] World Health Organization (WHO), “Global Table Data.” https://
covid19.who.int/data, Accessed on 2023-01-24.

[5] K. Rustandi, “Dukungan Kesmas di Masa Pandemi COVID 19,” wartaKESMAS
Kementerian Kesehatan Republik Indonesia, Tech. Rep. https://www.
ptonline.com/articles/how-to-get-better-mfi-results

[6] World Health Organization (WHO), “Cumulative COVID-19 vaccina-
tion doses administered.” https://www.who.int/southeastasia/
health-topics/immunization/covid-19-vaccination, Accessed
2023-01-24.

[7] S. Anand and Y. S. Mayya, “Size distribution of virus laden droplets from
expiratory ejecta of infected subjects,” Scientific Reports, vol. 10, no. 1, pp.
1–9, 2020. DOI: 10.1038/s41598-020-78110-x

[8] P. Anfinrud, V. Stadnytskyi, C. E. Bax, and A. Bax, “Visualizing Speech-
Generated Oral Fluid Droplets with Laser Light Scattering,” New England
Journal of Medicine, vol. 382, no. 21, pp. 2061–2063, 2020. DOI: 10.1056/NE-
JMc2007800

[9] M. Jayaweera, H. Perera, B. Gunawardana, and J. Manatunge, “Transmission
of COVID-19 virus by droplets and aerosols: A critical review on the un-
resolved dichotomy,” Environmental Research, vol. 188, no. May, p. 109819,
2020. DOI: 10.1016/j.envres.2020.109819

[10] K. S. Kwon et al., “Erratum: Correction of Text in the Article “Evidence of
Long-Distance Droplet Transmission of SARS-CoV-2 by Direct Air Flow in a
Restaurant in Korea”,” Journal of Korean Medical Science, vol. 36, no. 2, pp.
1–2, 2021. DOI: 10.3346/jkms.2021.36.e23

[11] C.-C. Lai et al., “The impact of COVID-19 preventative measures on
airborne/droplet-transmitted infectious diseases in Taiwan,” Journal of Infec-
tion, pp. 1–2, 2021. DOI: 10.1016/j.jinf.2020.11.029

[12] R. Alguliyev, R. Aliguliyev, and F. Yusifov, “Graph modelling for tracking the
COVID-19 pandemic spread,” Infectious Disease Modelling, vol. 6, pp. 112–
122, 2021. DOI: 10.1016/j.idm.2020.12.002

[13] N. Inayah, M. Manaqib, N. Fitriyati, and I. Yupinto, “Model Matematika Dari
Penyebaran Penyakit Pulmonary Tuberculosis Dengan Penggunaan Masker
Medis,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 14, no. 3, pp.
461–472, 2020. DOI: 10.30598/barekengvol14iss3pp461-472

[14] I. Miroslava and D. Lilko, “Data Analytics and SIR Modeling of Covid-19 in
Bulgaria,”, International Journal of Applied Mathematics, vol. 33, no. 6, pp.
1099–1114, 2020. DOI: 10.12732/ijam.v33i6.10

[15] Z. Liao, P. Lan, Z. Liao, Y. Zhang, and S. Liu, “TW-SIR: time-window based
SIR for COVID-19 forecasts,” Scientific Reports, vol. 10, no. 1, pp. 1–15, 2020.
DOI: 10.1038/s41598-020-80007-8

[16] A. Mitra, “Covid-19 in India and Sir Model,” Journal of Mechanics of Con-
tinua and Mathematical Sciences, vol. 15, no. 7, 2020. DOI: 10.26782/jm-
cms.2020.07.00001

[17] M. Ala’raj, M. Majdalawieh, and N. Nizamuddin, “Modeling and forecasting
of COVID-19 using a hybrid dynamic model based on SEIRD with ARIMA
corrections,” Infectious Disease Modelling, vol. 6, pp. 98–111, 2021. DOI:
10.1016/j.idm.2020.11.007

[18] M. Chinazzi, J. T. Davis, M. Ajelli, C. Gioannini, M. Litvinova, S. Merler, A. Pas-
tore y Piontti, K. Mu, L. Rossi, K. Sun, C. Viboud, X. Xiong, H. Yu, M. Elizabeth
Halloran, I. M. Longini, and A. Vespignani, “The effect of travel restrictions
on the spread of the 2019 novel coronavirus (COVID-19) outbreak,” Science,
vol. 368, no. 6489, pp. 395–400, 2020. DOI: 10.1126/science.aba9757

[19] D. Kai et al., “Universal Masking is Urgent in the COVID-19 Pandemic: SEIR
and Agent Based Models, Empirical Validation, Policy Recommendations,”,
Preprint on arXiv, 2020. DOI: 10.48550/arXiv.2004.13553

[20] A. J. Kucharski et al., “Early dynamics of transmission and control of COVID-
19: a mathematical modelling study,” The Lancet Infectious Diseases, vol. 20,
no. 5, pp. 553–558, 2020. DOI: 10.1016/S1473-3099(20)30144-4

[21] C. Wang et al., “Evolving Epidemiology and Impact of Non-pharmaceutical
Interventions on the Outbreak of Coronavirus Disease 2019 in
Wuhan, China,” medRxiv, p. 2020.03.03.20030593, 2020. DOI:
10.1101/2020.03.03.20030593

[22] J. T. Wu, K. Leung, and G. M. Leung, “Nowcasting and forecasting the poten-
tial domestic and international spread of the 2019-nCoV outbreak originat-
ing in Wuhan, China: a modelling study,” The Lancet, vol. 395, no. February,
pp. 689–697, 2020. DOI: 10.1016/ S0140-6736(20)30260-9

[23] Z. Yang et al., “Modified SEIR and AI prediction of the epidemics trend of
COVID-19 in China under public health interventions,” Journal of Thoracic
Disease, vol. 12, no. 3, pp. 165–174, 2020. DOI: 10.21037/jtd.2020.02.64

[24] S. Zhao et al., “Preliminary estimation of the basic reproduction num-
ber of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A
data-driven analysis in the early phase of the outbreak,” International Jour-
nal of Infectious Diseases, vol. 92, no. March, pp. 214–217, 2020. DOI:
10.1016/j.ijid.2020.01.050

[25] I. Ahmed et al., “A mathematical model of Coronavirus Disease (COVID-19)
containing asymptomatic and symptomatic classes,” Results in Physics, vol.
21, no. February, 2021. DOI: 10.1016/j.rinp.2020.103776

[26] E. A. Iboi, C. N. Ngonghala, and A. B. Gumel, “Will an imperfect vaccine
curtail the COVID-19 pandemic in the U.S.?” Infectious Disease Modelling,
vol. 5, pp. 510–524, 2020. DOI: 10.1016/j.idm.2020.07.006

[27] S. S. Musa et al., “Mathematical modeling of COVID-19 epidemic with effect
of awareness programs,” Infectious Disease Modelling, vol. 6, pp. 448–460,
2021. DOI: 10.1016/j.idm.2021.01.012

[28] R. R. Musafir, A. Suryanto, and I. Darti, “Dynamics of COVID-19 Epidemic
Model with Asymptomatic Infection, Quarantine, Protection and Vaccina-
tion,” Communication in Biomathematical Sciences, vol. 4, no. 2, pp. 106–124,
2021. DOI: 10.5614/cbms.2021.4.2.3

[29] D. Otoo, P. Opoku, S. Charles, and A. P. Kingsley, “Deterministic epidemic
model for (SVCSyCAsyIR) pneumonia dynamics, with vaccination and tem-
poral immunity,” Infectious Disease Modelling, vol. 5, pp. 42–60, 2020. DOI:
10.1016/j.idm.2019.11.001

[30] V. Dale, E. J. Purcell, and S. Rigdon, “Calculus (Ninth Edition) - Varberg, Pur-
cell, Rigdon,” 2007.

[31] G. Olsder,Mathematical Systems Theory, 2nd ed. Delft University Press, 2003,
vol. 11. ISBN 9040712727

[32] A. A. Mat Daud, “A note on lienard-chipart criteria and its application to
epidemic models,” Mathematics and Statistics, vol. 9, no. 1, pp. 41–45, 2021.
DOI: 10.13189/ms.2021.090107

[33] Badan Pusat Statistik, “Hasil Sensus Penduduk 2020,” Tech. Rep.,
2021., https://www.bps.go.id/pressrelease/2021/01/21/1854/
hasil-sensus-penduduk-2020.html., Accessed on 12 December 2021

[34] D. Aldila et al., “A mathematical study on the spread of COVID-19 con-
sidering social distancing and rapid assessment: The case of Jakarta, In-
donesia,” Chaos, Solitons and Fractals, vol. 139, p. 110042, 2020. DOI:
10.1016/j.chaos.2020.110042

[35] M. Manaqib, I. Fauziah, and E. Hartati, “Model matematika penyebaran
COVID-19 dengan penggunaan masker kesehatan dan karantina,” Jam-
bura Journal of Biomathematics, vol. 2, no. 2, pp. 68–79, 2021. DOI:
10.34312/jjbm.v2i2.10483

[36] UCONN Health, “COVID-19 Boosters and Third-Doses.” [Online]. Avail-
able: https://health.uconn.edu/coronavirus/covid-vaccine/
covid-19-vaccine-third-dose-and-boosters, Accessed on 2
February 2023.

[37] Centers for Disease Control and Prevention, “Understanding How Vaccines
Work,” 2022. [Online]. Available: https://www.cdc.gov/vaccines/
hcp/conversations/understanding-vacc-work.html, Accessed on 2
February 2023.

[38] J. Kertes et al., “Effectiveness of mRNA BNT162b2 Vaccine 6 Months after
Vaccination among Patients in Large Health Maintenance Organization, Is-
rael,” Emerging infectious diseases, vol. 28, no. 2, pp. 338–346, 2022. DOI:
10.3201/eid2802.211834

[39] A. Pani et al., “Results of the RENAISSANCE Study: REsponse to BNT162b2
COVID-19 vacciNe—short- And long-term Immune reSponSe evAluatioN in
health Care workErs,” Mayo Clinic Proceedings, vol. 96, no. 12, pp. 2966–
2979, 2021. DOI: 10.1016/j.mayocp.2021.08.013

[40] M. E. Flacco et al., “Risk of SARS-CoV-2 Reinfection 18 Months After Primary
Infection: Population-Level Observational Study,” Frontiers in Public Health,
vol. 10, no. May, pp. 2020–2023, 2022. DOI: 10.3389/fpubh.2022.884121

[41] R. Resmawan and L. Yahya, “Sensitivity Analysis of Mathematical Model of
Coronavirus Disease (COVID-19) Transmission,” CAUCHY: Jurnal Matematika
Murni dan Aplikasi, vol. 6, no. 2, pp. 91–99, 2020. DOI: 10.18860/ca.v6i2.9165

JJBM | Jambura J. Biomath Volume 4 | Issue 1 | June 2023

https://covid19.who.int/data
https://covid19.who.int/data
https://www.ptonline.com/articles/how-to-get-better-mfi-results
https://www.ptonline.com/articles/how-to-get-better-mfi-results
https://www.ptonline.com/articles/how-to-get-better-mfi-results
https://www.who.int/southeastasia/health-topics/immunization/covid-19-vaccination
https://www.who.int/southeastasia/health-topics/immunization/covid-19-vaccination
https://www.who.int/southeastasia/health-topics/immunization/covid-19-vaccination
https://www.who.int/southeastasia/health-topics/immunization/covid-19-vaccination
https://doi.org/10.1038/s41598-020-78110-x
https://doi.org/10.1038/s41598-020-78110-x
https://doi.org/10.1038/s41598-020-78110-x
https://doi.org/10.1056/NEJMc2007800
https://doi.org/10.1056/NEJMc2007800
https://doi.org/10.1056/NEJMc2007800
https://doi.org/10.1056/NEJMc2007800
https://doi.org/10.1016/j.envres.2020.109819
https://doi.org/10.1016/j.envres.2020.109819
https://doi.org/10.1016/j.envres.2020.109819
https://doi.org/10.1016/j.envres.2020.109819
https://doi.org/10.3346/jkms.2021.36.e23
https://doi.org/10.3346/jkms.2021.36.e23
https://doi.org/10.3346/jkms.2021.36.e23
https://doi.org/10.3346/jkms.2021.36.e23
https://doi.org/10.1016/j.jinf.2020.11.029
https://doi.org/10.1016/j.jinf.2020.11.029
https://doi.org/10.1016/j.jinf.2020.11.029
https://doi.org/10.1016/j.idm.2020.12.002
https://doi.org/10.1016/j.idm.2020.12.002
https://doi.org/10.1016/j.idm.2020.12.002
https://doi.org/10.30598/barekengvol14iss3pp461-472
https://doi.org/10.30598/barekengvol14iss3pp461-472
https://doi.org/10.30598/barekengvol14iss3pp461-472
https://doi.org/10.30598/barekengvol14iss3pp461-472
http://dx.doi.org/10.12732/ijam.v33i6.10
http://dx.doi.org/10.12732/ijam.v33i6.10
http://dx.doi.org/10.12732/ijam.v33i6.10
https://doi.org/10.1038/s41598-020-80007-8
https://doi.org/10.1038/s41598-020-80007-8
https://doi.org/10.1038/s41598-020-80007-8
https://doi.org/10.26782/jmcms.2020.07.00001
https://doi.org/10.26782/jmcms.2020.07.00001
https://doi.org/10.26782/jmcms.2020.07.00001
https://doi.org/10.1016/j.idm.2020.11.007
https://doi.org/10.1016/j.idm.2020.11.007
https://doi.org/10.1016/j.idm.2020.11.007
https://doi.org/10.1016/j.idm.2020.11.007
https://doi.org/10.1126/science.aba9757
https://doi.org/10.1126/science.aba9757
https://doi.org/10.1126/science.aba9757
https://doi.org/10.1126/science.aba9757
https://doi.org/10.1126/science.aba9757
https://doi.org/10.48550/arXiv.2004.13553
https://doi.org/10.48550/arXiv.2004.13553
https://doi.org/10.48550/arXiv.2004.13553
https://doi.org/10.1016/S1473-3099(20)30144-4
https://doi.org/10.1016/S1473-3099(20)30144-4
https://doi.org/10.1016/S1473-3099(20)30144-4
https://doi.org/10.1101/2020.03.03.20030593
https://doi.org/10.1101/2020.03.03.20030593
https://doi.org/10.1101/2020.03.03.20030593
https://doi.org/10.1101/2020.03.03.20030593
https://doi.org/10.1016/ S0140-6736(20)30260-9
https://doi.org/10.1016/ S0140-6736(20)30260-9
https://doi.org/10.1016/ S0140-6736(20)30260-9
https://doi.org/10.1016/ S0140-6736(20)30260-9
https://doi.org/10.21037/jtd.2020.02.64
https://doi.org/10.21037/jtd.2020.02.64
https://doi.org/10.21037/jtd.2020.02.64
https://doi.org/10.1016/j.ijid.2020.01.050
https://doi.org/10.1016/j.ijid.2020.01.050
https://doi.org/10.1016/j.ijid.2020.01.050
https://doi.org/10.1016/j.ijid.2020.01.050
https://doi.org/10.1016/j.ijid.2020.01.050
https://doi.org/10.1016/j.rinp.2020.103776
https://doi.org/10.1016/j.rinp.2020.103776
https://doi.org/10.1016/j.rinp.2020.103776
https://doi.org/10.1016/j.idm.2020.07.006
https://doi.org/10.1016/j.idm.2020.07.006
https://doi.org/10.1016/j.idm.2020.07.006
https://doi.org/10.1016/j.idm.2021.01.012
https://doi.org/10.1016/j.idm.2021.01.012
https://doi.org/10.1016/j.idm.2021.01.012
https://doi.org/10.5614/cbms.2021.4.2.3
https://doi.org/10.5614/cbms.2021.4.2.3
https://doi.org/10.5614/cbms.2021.4.2.3
https://doi.org/10.5614/cbms.2021.4.2.3
https://doi.org/10.1016/j.idm.2019.11.001
https://doi.org/10.1016/j.idm.2019.11.001
https://doi.org/10.1016/j.idm.2019.11.001
https://doi.org/10.1016/j.idm.2019.11.001
https://books.google.co.id/books/about/Calculus.html?id=TksIOewEGZ8C&redir_esc=y
https://books.google.co.id/books/about/Calculus.html?id=TksIOewEGZ8C&redir_esc=y
https://books.google.co.id/books/about/Mathematical_Systems_Theory.html?id=uohGtAEACAAJ&redir_esc=y
https://books.google.co.id/books/about/Mathematical_Systems_Theory.html?id=uohGtAEACAAJ&redir_esc=y
https://doi.org/10.13189/ms.2021.090107
https://doi.org/10.13189/ms.2021.090107
https://doi.org/10.13189/ms.2021.090107
https://www.bps.go.id/pressrelease/2021/01/21/1854/hasil-sensus-penduduk-2020.html.
https://www.bps.go.id/pressrelease/2021/01/21/1854/hasil-sensus-penduduk-2020.html.
https://www.bps.go.id/pressrelease/2021/01/21/1854/hasil-sensus-penduduk-2020.html.
https://doi.org/10.1016/j.chaos.2020.110042
https://doi.org/10.1016/j.chaos.2020.110042
https://doi.org/10.1016/j.chaos.2020.110042
https://doi.org/10.1016/j.chaos.2020.110042
https://doi.org/10.34312/jjbm.v2i2.10483
https://doi.org/10.34312/jjbm.v2i2.10483
https://doi.org/10.34312/jjbm.v2i2.10483
https://doi.org/10.34312/jjbm.v2i2.10483
https://health.uconn.edu/coronavirus/covid-vaccine/covid-19-vaccine-third-dose-and-boosters
https://health.uconn.edu/coronavirus/covid-vaccine/covid-19-vaccine-third-dose-and-boosters
https://health.uconn.edu/coronavirus/covid-vaccine/covid-19-vaccine-third-dose-and-boosters
https://health.uconn.edu/coronavirus/covid-vaccine/covid-19-vaccine-third-dose-and-boosters
https://www.cdc.gov/vaccines/hcp/conversations/understanding-vacc-work.html
https://www.cdc.gov/vaccines/hcp/conversations/understanding-vacc-work.html
https://www.cdc.gov/vaccines/hcp/conversations/understanding-vacc-work.html
https://www.cdc.gov/vaccines/hcp/conversations/understanding-vacc-work.html
https://doi.org/10.3201/eid2802.211834
https://doi.org/10.3201/eid2802.211834
https://doi.org/10.3201/eid2802.211834
https://doi.org/10.3201/eid2802.211834
https://doi.org/10.1016/j.mayocp.2021.08.013
https://doi.org/10.1016/j.mayocp.2021.08.013
https://doi.org/10.1016/j.mayocp.2021.08.013
https://doi.org/10.1016/j.mayocp.2021.08.013
https://doi.org/10.3389/fpubh.2022.884121
https://doi.org/10.3389/fpubh.2022.884121
https://doi.org/10.3389/fpubh.2022.884121
https://doi.org/10.18860/ca.v6i2.9165
https://doi.org/10.18860/ca.v6i2.9165
https://doi.org/10.18860/ca.v6i2.9165

	Introduction
	Model Formulation
	Model Analysis
	Equilibrium Point and Basic Reproduction Number
	Stability of the Equilibrium Point
	Numerical Simulation

	Conclusion

