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Dynamics of Covid-19 model with public awareness,
quarantine, and isolation

Risyqaa Syafitri1,∗, Trisilowati2, and Wuryansari Muharini Kusumawinahyu 3

1,2,3 Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Malang, Indonesia

ABSTRACT. This paper presents a new COVID-19 model that contains public awareness, quarantine, and
isolation. The model includes eight compartments: susceptible aware (SA), susceptible unaware (SU), ex-
posed (E), asymptomatic infected (A), symptomatic infected (I), recovered (R), quarantined (Q), and isolated
(J). The introduction will be shown in the first section, followed by the model simulation. The equilibrium
points, basic reproduction number, and stability of the equilibrium points are then determined. The model
has two equilibrium points: disease-free equilibrium point and endemic equilibrium point. The next gen-
eration matrix is used to calculate the basic reproduction number R0. The disease-free equilibrium point
always exists and is locally stable if R0 < 1, whereas the endemic equilibrium point exists when R0 > 1 and
is locally stable if satisfying the Routh-Hurwitz criterion. Stability properties of the equilibrium confirmed
by numerical simulation also show that quarantine rate and isolation rate have an impact in the transmission
of COVID-19.

This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of
Mathematics, Universitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554,
Indonesia.

1. Introduction

Corona Virus or we known as COVID-19 was an interna-
tional concern, especially WHO. This disease that attacks the res-
piratory system affects various countries. In some severe cases,
the infection can cause pneumonia, acute respiratory syndrome,
kidney failure, and even death [1]. This disease was caused by
coronavirus 2 (SARS-CoV-2), which originated in a wet market
in Wuhan, China. Since 17 January 2020, the reported cases
have increased significantly. The COVID-19 pandemic has caused
a global crisis with 47,209,305 confirmed cases and 1,209,505
deaths worldwide as of 2 November 2020 [2]. Due to the large
number of cases that have occurred, it is necessary to study the
mechanism of COVID-19 transmission.

COVID-19 can be transmitted through liquid splashes when
an infected individual coughs, sneezes, or talks [3]. COVID-19
poses a serious threat to the health and safety of people around
the world. There are two actions to mitigate the virus. The first is
to forecast daily confirmed cases so that the health system can ef-
ficiently manage the pandemic, such as testing and treating large
numbers of confirmed patients. The next considered step is to
understand the dynamics of disease spread so that public health
professionals can effectively implement control estimates to slow
the rapid growth of infection [4]. A mathematical model can be
applied to find out the dynamics of the spread of the disease.

Mathematical modeling is a tool that can be applied to
study dynamic phenomena [5]. In this case, mathematical model-
ing can help solve the COVID-19 problem. Through mathematical
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modeling, the relationship between COVID-19 transmission and
it is possible to identify a variety of epidemiological parameters
that can aid in effective control [6]. The epidemic model com-
monly used in analyzing the spread of disease is the SIR model
introduced by Kermack and Kedrick (1927), which divides the hu-
man population into several groups of individuals, namely sus-
ceptible individuals, infected individuals, and recovered individ-
uals. Based on several previous studies, Fosu et al. [7] modeled
the SIR implemented in Ghana and demonstrated that in an en-
demic state, it would take a maximum of 120 days for the entire
cohort to transfer to the recovered compartment [7].

Efforts to reduce the rate of transmission of COVID-19 can
be made by maintaining physical distance, using masks, washing
hands, and limiting the entry of newcomers. Even so, the rate
of spread of COVID-19 continues to increase. The current de-
velopment of COVID-19 is the discovery of infected people who
are not diagnosed but can transmit the infection to others [8].
Chen et al. [8] pointed out the need for several interventions to
control the spread of COVID-19. Therefore a strategy is needed
to stop interactions between individuals so that the transmission
rate gets smaller, namely by carrying out quarantine. Memon et
al. [9] demonstrate that the COVID-19 pandemic can be effec-
tively managed through isolation and quarantine [9]. The goal of
quarantine is to keep people who have been exposed to COVID-
19 apart, even if they are still in the incubation period or have
not yet manifested any symptoms. To lessen the risk of transmis-
sion, isolation involves keeping an infected person who needs
COVID-19 treatment or someone who has been diagnosed with
the disease apart from healthy individuals.
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Figure 1. Diagram of COVID-19

COVID-19 also affects a nation’s economy, causing issues
such as a shortage of jobs and difficulty supplying basic needs.
Also, hospitals have trouble getting hold of necessities like test
kits, ventilators, and personal protective equipment [10]. The
model with implementation of the level of awareness for the
Covid-19 disease shows that it can reduce the number of in-
fected populations [11]. Yuan and Li [12] study the COVID-19
model by using susceptible individuals with protection aware-
ness and susceptible individuals without protection awareness.
Their research shows that awareness of human protection and
willingness to take protective measures play an important role
in controlling outbreaks [12]. Therefore, increasing awareness of
self-protection is very important to prevent wider transmission.
Thus, a COVID-19 model using public education, quarantine, and
isolation is constructed in this paper.

We organize this paper as follows. In Section 2, we will
show how to construct the COVID-19 model. Furthermore, the
fixed point and local stability are investigated in Section 3. In
Section 4, we calculate the sensitivity analysis of the basic repro-
duction number. Numerical simulations are carried out in Sec-
tion 5 to validate analytical dynamics, and in the final section, we
reach conclusions about our work.

2. Model Formulation

In this study, a COVID-19 model is constructed with pub-
lic awareness, quarantine, and isolation. This model combines
the research of Yuan and Li (2022) and Memon et al. (2021).
Memon et al. (2021) constructed the COVID-19 model SEIR
(Susceptible-Exposed-Infecter-Recovered) by adding quarantine
compartments (Q) and isolation (J). In this model, the quaran-
tined individuals decrease from the exposed class, transferring
individuals who are asymptomatic. The infected population oc-
curs due to the development of COVID-19 by exposed individ-
uals. The isolation group consists of infected individuals with
symptoms and individuals who are quarantined but are getting
worse. The isolation population is intended for medical treat-
ment [8]. Memon et al. (2021) assume that individuals who have
recovered tend to be vulnerable because there is no immunity
to COVID-19 yet. Yuan and Li (2022) constructed the COVID-
19modelSEIR (Susceptible-Exposed-Infected-Recovered) by di-
viding the infected population into infected with symptoms (I)
and infected without symptoms (asymptomatic) (A).

The susceptible group (S) then divides into susceptible
groups with protection awareness and those without protection
awareness, becoming SA and SU . By raising public knowledge
and implementing preventative measures, it is possible to suc-
cessfully minimize contact with the disease’s cause and, in turn,
indirectly control the disease’s occurrence [12].

This research contains the dependent variables SA(t),
SU (t), E(t), I(t), A(t), Q(t), J(t), and R(t) respectively repre-
sent the size of the susceptible group with public awareness, the
susceptible group without public awareness, the exposed group,
the symptomatic infected, the asymptomatic infected, the quar-
antined group, the isolated group, and the recovered group. The
parameters µ and γ are birth rates and death rates. The pa-
rameter p represents the proportion of susceptible groups with
public awareness SA and 1 − p without awareness. Susceptible
groups with public awareness of SA and SU awareness can be
infected with the virus at β1 and β2 rates, symptomatic infected
and asymptomatic infected. Exposed individuals can quarantine
at the rate of θ2. An exposed individual becomes an infected indi-
vidual at σ for the symptomatic rate and ψ for the asymptomatic
rate. The isolated group comes from quarantined individuals who
are getting worse and symptomatic infected individuals. In this
model, it is assumed that all individuals who have recovered will
not return to susceptible individuals. The proposed model using
eight compartments is shown in Figure 1.

The proposedmodel is expressed in a differential equations
system (1).

S′
A(t) = pµ− (β1I + β2A)SA − γSA,

S′
U (t) = (1− p)µ− (β1I + β2A)SU − γSU ,

E′(t) = (β1I + β2A)SA + (β1I + β2A)SU

− (γ + θ2 + σ + ψ)E,

I ′(t) = σE − (γ + θ1 + α)I, (1)

A′(t) = ψE − (γ + δ)A,

Q′(t) = θ2E − (γ + ϑ)Q,

J ′(t) = ϑQ+ θ1I − (γ + λ)J,

R′(t) = αI + δA+ λJ − γR,

with initial conditions SA(0) ≥ 0, SU (0) ≥ 0, E(0) ≥ 0, I(0) ≥
0, A(0) ≥ 0, Q(0) ≥ 0, J(0) ≥ 0, and R(0) ≥ 0 are positive. To
simplify themodel (1), we use new symbols as e1 = γ+θ2+σ+ψ,
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e2 = γ+θ1+α, e3 = γ+δ, e4 = γ+ϑ, dan e5 = γ+λ. Since the
first seven equations do not depend on R(t), we can reduce the
eight-equations model (1) to the seven-equationmodel as follows

S′
A(t) = pµ− (β1I + β2A)SA − γSA,

S′
U (t) = (1− p)µ− (β1I + β2A)SU − γSU ,

E′(t) = (β1I + β2A)SA + (β1I + β2A)SU − e1E,

I ′(t) = σE − e2I,

A′(t) = ψE − e3A,

Q′(t) = θ2E − e4Q,

J ′(t) = ϑQ+ θ1I − e5J,

(2)

with initial conditions SA(0) ≥ 0, SU (0) ≥ 0, E(0) ≥ 0,
I(0) ≥ 0, A(0) ≥ 0, Q(0) ≥ 0, and J(0) ≥ 0 are positive.
Furthermore, we investigate the dynamics of model COVID-19,
such as the existence of equilibrium points, basic reproduction
number, local stability of equilibrium points, and numerical sim-
ulations.

3. Equilibrium Point and Basic Reproduction Number
In this section, we determine the equilibrium point and ba-

sic reproduction number. The equilibrium point is obtained by
making the right-hand side of the equation in the model (2) equal
to zero. Then the third equation of model (2) can be written as

E′(t) =
(
β1

σ
e2
E + β2

ψ
e3
E
)
SA+

(
β1

σ
e2
E+β2

ψ
e3
E

)
SU−e1E.

It is either E = 0 or(
β1

σ
e2

+ β2
ψ
e3

)
SA +

(
β1

σ
e2

+ β2
ψ
e3

)
SU = e1.

Then it has two equilibrium points, a disease-free equilibrium
point and an endemic equilibrium point. The disease-free equi-
librium point is as follows

X0

(
S0
A, S

0
U , E

0, I0, A0, Q0, J0
)
=

(
pµ
γ ,

(1−p)µ
γ , 0, 0, 0, 0, 0

)
.

The basic reproduction number (R0) can be determined by
using the next generation matrix technique. First, define
E(t), I(t), A(t), Q(t), J(t) as infected compartement. The next
generation matrix denoted as F (X0)H

−1(X0) where F (X0) is
the Jacobian matrix of infected compartment andH(X0) respec-
tively

F (X0) =


0

pµβ1

γ
+

(1− p)µβ1

γ

pµβ2

γ
+

(1− p)µβ2

γ
0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,
and

H(X0) =


e1 0 0 0 0
−σ e2 0 0 0
−ψ 0 e3 0 0
−θ2 0 0 e4 0
0 −θ1 0 0 e5

 .
Then the next generation matrix is

F (X0)H
−1(X0) =


µ(β1σe3 + β2ψe2)

γe1e2e3

µβ1

γe2

µβ2

γe3
0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

The spectral radius of F (X0)H
−1(X0) is the basic repro-

duction number (R0)

R0 =
µ(β1σe3 + β2ψe2)

γe1e2e3
.

The second equilibrium point

X∗ = (S∗
A, S

∗
U , E

∗, I∗, A∗, Q∗, J∗),

where

S∗
A =

pµe2e3
(β1σe3 + β2ψe2)E∗ + γe2e3

,

S∗
U =

(1− p)µe2e3
(β1σe3 + β2ψe2)E∗ + γe2e3

,

E∗ =
µ(R0 − 1)

e1R0
, I∗ =

σ

e2
E∗,

A∗ =
ψ

e3
E∗, Q∗ =

θ2
e4
E∗,

J∗ =
σθ1e4 + θ2ϑe2

e2e4e5
E∗,

where E∗ =
µ(β1σe3 + β2ψe2)− γe1e2e3

β1σe1e3 + β2ψe1e2
. Then endemic

equilibrium point X∗ exist when R0 > 1.

4. Stability Analysis
The system (2) is a nonlinear autonomous system. Local

stability from disease-free and endemic equilibrium points can
be analyzed by linearization.

Results linearization of model (2), the Jacobian matrix at
disease-free equilibrium point is given by

J(X0) =

−γ 0 0 −β1SA −β2SA 0 0
0 −γ 0 −β1SU −β2SU 0 0
0 0 −e1 β1(SA + SU ) β2(SA + SU ) 0 0
0 0 σ −e2 0 0 0
0 0 ψ 0 −e3 0 0
0 0 θ2 0 0 −e4 0
0 0 0 θ1 0 ϑ −e5


, (3)

The eigenvalues of the Jacobian matrix J(X0) are λ1,2 = −γ,
λ3 = −e4, λ4 = −e5, snf λ5, λ6, λ7 are characteristic equation
that can be written as

λ3 + c1λ
2 + c2λ+ c3, (4)

with c1 = e1+ e2+ e3, c2 = e2e3+ e1e2(1−RI)+ e1e3(1−RA),
c3 = e1e2e3(1 − R0). Based on Routh-Hurwitz criteria, the real
part of the root of the characteristic eq. (4) is negative if and
only if all three conditions are met, yield c1 > 0, c3 > 0 and
c1c2 − c3 > 0.
1. c1 > 0 because e1, e2, e3 is positive.
2. Since R0 < 1, so that e1e2e3(1− R0) > 0.
3. Since R0 < 1, we get RI < 1 and RA < 1. The result c1c2 −
c3 = (e1 + e2 + e3)(e2e3 + e1e2(1− RI) + e1e3(1− RA))−
e1e2e3(1− R0) > 0.

If R0 < 1, then each λ of the characteristic equation (4) has a
negative real part which causes a locally asymptotically stable
disease-free equilibrium point.
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The second equilibrium using linearization of model (2) at
the endemic equilibrium point is as follows.

J(X∗) =



a11 0 0 −β1S∗
A −β2S∗

A 0 0
0 a22 0 −β1S∗

U −β2S∗
U 0 0

a31 a32 −e1 a33 a34 0 0
0 0 σ −e2 0 0 0
0 0 ψ 0 −e3 0 0
0 0 θ2 0 0 −e4 0
0 0 0 θ1 0 ϑ −e5


,

where a11 = −β1I∗ − β2A
∗ − γ, a22 = −β1I∗ − β2A

∗ − γ,
a31 = β1I

∗ + β2A
∗, a32 = β1I

∗ + β2A
∗, a33 = β1(S

∗
A + S∗

U ),
and a34 = β2(S

∗
A + S∗

U ). Then, the eigenvalues of the Jacobian
matrix J(X∗) are obtained, which are λ1 = −e4, λ2 = −e5, and
λ3, λ4, λ5, λ6, λ7 are the eigenvalues in the characteristic equa-
tion of J(X∗) can be written as

λ5 + c1λ
4 + c2λ

3 + c3λ
2 + c4λ+ c5, (5)

with

c1 = 2γR0 + e1 + e2 + e3,

c2 = 2γR0(e1 + e2 + e3) + d+ e2e3 + e1e2(1− RI)

+ e1e3(1− RA),

c3 = 2γR0(e1e2 + e2e3 + e1e3) + d(e1 + e2 + e3)

+ e1e2e3(1− R0 − γR0)− γe1R0(e2RI + e3RA),

c4 = 2γR0e1e2e3 + d(e1e2 + e1e3 + e2e3)

− (γe1 + γ2e1R0)(e2RI + e3RA)− γe1e2e3R20,

c5 = γ2e1e2e3R0(R0 − 1),

with

d =
γ2R20
µ

=
µ(β1σe3 + β2ψe2)

2

e21e
2
2e

2
3

.

According to the Routh-Hurwitz criterion, real values for each
characteristic (5) are negative or only for c1 > 0, c5 > 0, c1c2 −
c3 > 0,,c3(c1c2−c3)+c1(c5−c1c4) > 0, and (c1c2−c3)(c3c4−
c2c5)− (c5−c1c4)2 > 0. If R0 > 1 and γ, e1, e2, e3 positive, then
c1 > 0 also c5 > 0. Then when the criteria are met, the endemic
equilibrium point is locally asymptotically stable.

5. Sensitivity Analysis
Sensitivity analysis was carried out to determine the pa-

rameters that influence the epidemic model [13]. This analysis is
focused on the parameters of the basic reproduction number R0.
This aims to determine the effect of changes in parameter values
on the basic reproduction number R0 [14]. The normalized sensi-
tivity index is obtained by the normalized sensitivity index of R0,
differentiable on the parameter q, defined as follows.

IR0q =
∂R0
∂qi

× q

R0
. (6)

If the parameter value is positive, the R0 value will increase.
Conversely, if the parameter value is negative, the R0 value will
decrease. Analysis for each parameter is as follows.

IR0µ = 1,

IR0β1
= β1σ(γ+δ)

γβ1σ+γβ2ψ+β1δσ+β2θ1ψ+β2ψα
,

IR0β2
= β2ψ(γ+α+θ1)

γβ1σ+γβ2ψ+β1δσ+β2θ1ψ+β2ψα
,

IR0p = 0,

IR0θ1 = − σβ1θ1(γ+δ)
(γ+α+θ1)(γβ1σ+γβ2ψ+β1δσ+β2θ1ψ+β2ψα)

,

IR0θ2 = − θ2
γ+σ+ψ+θ2

,

IR0ϑ = 0,

IR0σ =

(
γ2β1 + γβ1ψ + γβ1θ2 + γβ1δ − γβ2ψ

+β1ψδ + β1θ2δ − β2θ1ψ − β2ψα

)
σ

(γ+σ+ψ+θ2)(γβ1σ+γβ2ψ+β1δσ+β2θ1ψ+β2ψα)
,

IR0ψ =

(
γ2β2 − γβ1σ + γβ2θ1 + γβ2θ2 + γβ2α+ γβ2σ
−β1δσ + β2θ1θ2 + β2θ1σ + β2θ2α+ β2ασ

)
ψ

(γ+σ+ψ+θ2)(γβ1σ+γβ2ψ+β1δσ+β2θ1ψ+β2ψα)
,

IR0λ = 0,

IR0α = − σβ1α(γ+δ)
(γ+α+θ1)(γβ1σ+γβ2ψ+β1δσ+β2θ1ψ+β2ψα)

,

IR0δ = − ψβ2δα(γ+α+θ1)
(γ+δ)(γβ1σ+γβ2ψ+β1δσ+β2θ1ψ+β2ψα)

.

To show the sensitivity index of R0, substitute the parameter
value in Table 1. The results of the sensitivity index can be seen
in Table 2. It can be seen that θ1 and θ2 can decrease the value
of R0. Because θ1 and θ2 are negative, the larger the value, the
smaller R0. The results show that the parameter θ1 and θ2 have
an effect on reducing R0 and have an impact on the stability of
the equilibrium point.

Table 1. The parameter of COVID-19 model

Parameter Definition Value Source
µ Recruitment rate 1.943 [12]
γ Natural death rate 0.3933 [12]
β1 Transmission rate S(t) from symp-

tomatic infection
0.976 [12]

β2 Transmission rate S(t) from asymp-
tomatic infection

1.638 [12]

p Public awareness rate 0.4 [12]
1− p Rate of carelessness in public aware-

ness
1− 0.4 [12]

θ1 Isolation rate of I(t) 1.0715 [9]
θ2 Quarantine rate of E(t) 1.1973 [9]
ϑ Transmission rate from Q(t) to J(t) 0.68 [8]
σ Symptomatic proportion 0.86834 [8]
ψ Asymptomatic proportion 0.132 [8]
λ Recovery rate of J(t) 1.7039 [9]
α Recovery rate of I(t) 0.13029 [8]
δ Recovery rate of A(t) 0.1 [8]

Table 2. The value of sensitivity index of R0

Parameter Value of Sensitivity Index
µ 1
β1 0.6028
β2 0.3971
p 0
θ1 −0.4049
θ2 −0.4621
ϑ 0
σ 0.2676
ψ 0.3462
λ 0
α −0.0492
δ −0.0805

6. Numerical Simulation
In this section, we will illustrate the spread of the COVID-19

model with public awareness, quarantine, and isolation through
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numerical simulations. We use Matlab as the application and
use fourth-order Runge-Kutta to solve the model with step size
h = 0.1. The parameter values of the model are given by Table 1.
The first simulation is carried out using parameter values in Ta-
ble 1. Then, simulate with parameter values in Table 1, except
parameter value β1 = 0.476. This simulation aims to determine
the effect of infected individuals in the model of the spread of
COVID-19. Then a simulation was carried out with an interven-
tion strategy, with the aim of knowing its effect on the spread of
COVID-19.

6.1. Endemic Equilibrium Simulation

Using the parameter values in Table 1, we get R0 =
1.3386 > 1.The basic reproduction number shows that the
spread of the COVID-19 virus always exists.

Then implementing the parameter values in the model
(2) obtained, the disease-free equilibrium point X0 =
(1.9760, 2.9641, 0, 0, 0, 0, 0) and the endemic equilibrium point
X∗ = (1.4762, 2.2143, 0.1896, 0.1032, 0.0507, 0.2116, 0.1275).
To show the stability of the equilibrium point, this simulation pro-
duces successive Routh-Hurwitz criterion values c3(c1c2 − c3) +
c1(c5 − c1c4) = 20.9675 > 0 and (c1c2 − c3)(c3c4 − c2c5) −
(c5 − c1c4)

2 = 6250.4588 > 0. Therefore, the endemic equi-
librium points are asymptotically locally stable. The simulation
results are represented by Figure 2.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Waktu

S
u
b
p
o
p
u
la

s
i

 

 

S
A
(t)

S
U

(t)

E(t)

I(t)

A(t)

Q(t)

J(t)

Figure 2. Solution model (2) of COVID-19 using parameter in
Table 1.

Based on Figure 2, the numerical solution converges to
the endemic equilibrium point. One of the causes is an infec-
tion that can cause disease again in the future. A simulation is
performed with parameter values Table 1, except β1 = 0.476,
to verify this condition. Obtained basic reproduction numbers
R0 = 0.8196 < 1. The basic reproduction number shows that
the endemic equilibrium point does not exist. The simulation re-
sults are shown in Figure 3. When the infection does not exist,
the disease will not appear in the future. Therefore, the infection
has a role in the dynamics of the COVID-19 spread model at R0
and the stability of the equilibrium point.
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Figure 3. Solution model (2) of COVID-19 using parameter in
Table 1, except β1 = 0.476.

6.2. The Impact of Quarantine
This numerical simulation was carried out to determine the

effect of quarantine on the spread of COVID-19. The value of the
quarantine rate parameter acts to lower the previous baseline re-
production number (R0 = 1.33). Quarantine rate value in Table 1,
doubled from the previous value to θ2 = 2.2. This simulation
obtained R0 = 0.95 < 1 with a disease-free equilibrium point
X0 = (1.9760, 2.9641, 0, 0, 0, 0, 0). The simulation results are
shown in Figure 4. Increased quarantine rates can avoid endemic
conditions.
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Figure 4. Solution model (2) of COVID-19 using parameter in
Table 1, except θ2 = 2.2.

6.3. The Impact of Isolation
This numerical simulation was carried out to determine the

effect of isolation on the spread of COVID-19. The value of the
isolation rate parameter serves to lower the previous baseline
reproduction number (R0 = 1.33). Parameters related to the
effect of isolation in the COVID-19 model are ϑ and θ1, which
are quarantined individuals that get worse and the isolation rate
from symptomatic infection. This simulation uses ϑ = 1.2 and
θ1 = 2 as new parameter values to show the effect of isola-
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tion. The result from the simulation is a basic reproduction num-
ber of R0 = 0.96 < 1 and a disease-free equilibrium point of
X0 = (1.9760, 2.9641, 0, 0, 0, 0, 0). From R0, it can be concluded
that isolation affects the spread of COVID-19. Simulation results
are shown in Figure 5.
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Figure 5. Solution model (2) of COVID-19 using parameter in
Table 1, except ϑ = 1.2 and θ1 = 2.

7. Conclusions
We introduce the new model of COVID-19 with quarantine,

isolation, and public awareness. The quarantine for exposed in-
dividuals so that they be apart of other individuals and isolation
purpose to keep infected symptomatic individuals for treatment
and aside from individuals. Susceptible is divided into two com-
partments, namely susceptible with public awareness and with-
out public awareness. In this model, we found two equilibrium
points, the disease-free equilibrium point and the endemic equi-
librium point. After we find the equilibrium point using the spec-
tral radius of the next generation matrix, we can determine for
basic reproduction number, R0. The disease-free equilibrium
point (X0) always exists, and the equilibrium point (X∗) exist
when R0 > 1. Linearization and Jacobian matrix to approximate
local stability of equilibrium points. If R0 < 1, the disease-free
equilibrium point is locally stable. Based on the Routh-Hurwitz
criteria, the endemic equilibrium point will be locally asymptot-
ically stable if R0 > 1 and satisfy the Routh-Hurwitz criterion.
Sensitivity analysis shows that the parameter θ1 and θ2 have an
effect on reducing R0 and have an impact on the stability of the
equilibrium point. Numerical simulations confirm both equilib-
rium points using fourth-order Runge-Kutta and Matlab as simu-
lations. The simulation also shows that θ1 and θ2, which isolation
rate and quarantine rate have an impact on the transmission of
COVID-19.
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