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Two isolation treatments on the COVID-19 model
and optimal control with public education

Muhammad Abdurrahman Rois1, Fatmawati2,∗, and Cicik Alfiniyah3

1,2,3Mathematics Department, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia

ABSTRACT. This study examines a COVID-19 mathematical model with two isolation treatments. We assume that
isolation has two treatments: isolation with and without treatment. We also investigated the model using public
education as a control. We show that the model has two equilibria based on the model without control. The basic
reproduction number influences the local stability of the equilibrium and the presence of an endemic equilibrium.
Therefore, the optimal control problem is solved by applying Pontryagin’s Principle. In the 100th day following the
intervention, the number of reported diseases decreased by 85.5% when public education was used as the primary
control variable in the simulations.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction
The COVID-19 virus spreads quickly to different nations via

people with a history of travel to Wuhan [1, 2]. The symptoms
typically manifest gradually. In general, fever, a dry cough, and
feeling tired are all signs of COVID-19. There are also other signs,
like pain and tenderness in the chest, stuffy nose, headache, di-
arrhea, loss of taste or smell, etc [3]. The symptoms are typically
minor and develop gradually. Also, people can get sick and have
mild and severe symptoms, such as fever, cough, chest pain, and
trouble breathing or shortness of breath [2, 3].

A strategy to contain the COVID-19 epidemic is necessary in
light of the rising number of reported cases. When a new disease
outbreak happens in an area with no vaccine or cure, the best
way to handle it is by isolation and individual quarantine [4, 5].
Isolation and quarantine are often used interchangeably. There-
fore, to clarify the difference, the WHO definition of isolation
and quarantine is given [2], which defines isolation as separating
infected individuals from others. As long as nothing exists press-
ing the necessity of going outside, quarantine limits activities
or the separation of susceptible people. Then, the quarantine
group also includes those who have previously been to a place
where transmission of local occurs and kept themselves apart by
remaining at home for the duration of the incubation period (2
weeks). These individuals may also have a history of exposure to
COVID-19-infected individuals. Some of the WHO’s suggestions
for controlling COVID-19 are for people to wear masks in public,
for people who may have the disease to track down all of their
contacts and then be quarantined if they get sick, and for people
who are sick to stay in hospitals or other facilities by themselves
[6]. In addition, mathematical modeling is necessary to evaluate
the spread of an infection and the effectiveness of control efforts.

Future disease propagation can be accurately predicted by
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mathematical modeling, which plays a significant part in this by
looking at current or past conditions so that later it can provide
advice on strategies for controlling the spread of disease. In ad-
dition, WHO recognizes that decision-makers in the health field
(doctors or other health professionals) and policymakers can ben-
efit from the insights provided (governments) by mathematical
modeling [7]. Numerous studies, such as those on the Coro-
navirus, example caused SARS [8] and MERS [9, 10]. Then the
COVID-19 virus emerged from the Coronavirus, which caused a
stir in 2020.

COVID-19 spread model [11] utilizing the four subpop-
ulations of the SEIR model, namely susceptible (S), exposed
(E), infected (I ), and recovered (R). Next there is research
[12, 13] which adds subpopulations for quarantine (Q) and iso-
lation (H ), dividing seven subpopulations of the population:
S, E, I, A, Q, H, and R. Research on COVID-19 [14] also
added isolation (H ) and quarantine (Q), so the model is built six
subpopulations: S, E, I, Q, H , and R. Furthermore, there are
many more studies that discuss the mathematical modeling of
COVID-19 such as [15–20]. Reducing COVID-19’s spread requires
regulation (control) of the developed mathematical model. Many
researchers have established controls to stop COVID-19 spread,
including researcher [21], who lists three controls, namely public
information, preventing the spread of the disease (such as wear
of masks, wash of hands, and others), and treating affected peo-
ple in hospitals.

Next, the researcher [22] provides two controls, namely,
public education and treatment (in the hospital). The other re-
searchers [23] reduced the number of infected by adding two con-
trols, namely, the control of public education and care of medical.

This study was developed by dividing the isolation into two
parts. So, the population is divided into six subpopulations. The
model that has been constructed is validated using the lsqcurve-
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Figure 1. COVID-19 transmission diagram with two isolation treatments

Table 1. Interpretation and parameter values in the model

Notation Interpretation Value Reference
π Recruitment rate 3783175.865 [26]
K Environmental carrying capacity
β Effective contact rate of S 0.098452 Fitted
α Progression from E to I 0011828 Fitted
h Isolation rate 0.0034904 Fitted
r1 Recovery rate of an infected individual 0.0037098 Fitted
r2 Recovery rate of isolation with treatment individual 0.95071 Fitted
r3 Recovery rate of isolation without treatment individual 0.21124 Fitted
θ Infected individuals proportion who became isolated with treatment 0.99721 Fitted
d1 Fatalities due to COVID-19 rate in I 8.4073e-07 Fitted
d2 Fatalities due to COVID-19 rate in H 0.0015666 Fitted
d3 Fatalities due to COVID-19 rate in J 0.63684 Fitted
µ Natural death rate 0.0138 [27]

fit function to find out the suitable parameters for the COVID-
19 problem in Indonesia. Next, mathematical analysis is carried
out, such as identifying 1) positive and boundedness solutions, 2)
equilibrium points, 3) basic reproduction numbers, 4) the equilib-
rium point stability, and 5) optimal control. In the end, a numer-
ical simulation will be carried out based on the parameter values
of the parameter estimation results.

2. Mathematical Model
This section describes a COVID-19 model with two isola-

tion treatments. There are six subpopulations within the popu-
lation: 1) susceptible (S), 2) exposed (E), 3) infected (I ), 4) iso-
lated with treatment (H ), 5) isolated without treatment (J ), and
6) recovered (R). In this model, there are several assumptions
that the infected subpopulation can recover without the need
for isolation in the presence of immunity. Furthermore, isolation
without treatment and isolation with treatment are conditions
for patients who are not critical and critical or have comorbidi-
ties, respectively. Figure 1 is a diagram of the spread of COVID-19
with two isolation treatments which can be explained as follows.

dS

dt
= π − βSI

N
− µS,

dE

dt
=

βSI

N
− αE − µE,

dI

dt
= αE − hI − r1I − d1I − µI, (1)

dH

dt
= θhI − r2H − d2H − µH,

dJ

dt
= (1− θ)hI − r3J − d3J − µJ,

dR

dt
= r1I + r2H + r3J − µR.

The verification of the COVID-19 model using two isolation treat-
ments in eq. (1) is based on data infected with COVID-19 in In-

donesia from November 1, 2020, to February 28, 2021, and the
interpretation of several notations is presented as in Table 1. Fur-
thermore, the results of fitting parameters obtained MAPE =
0.010811 and Figure 2 are very good.

3. Model Analysis
Based on total population N = S + E + I +H + J + R.

Thus obtained
dN

dt
≤ π − µN.

Suppose the initial value N(t) = N(0) at t = 0 is obtained

N(t) ≤ π

µ
+

(
N (0)− π

µ

)
e−µt.

Consequently for t → ∞ then limt→∞ N (t) ≤ π
µ . So, we get a

region of the solution is

Ω =

{
(S,E, I,H, J,R) | N (t) ≤ π

µ

}
.

Next is shown the positivity of the solution of the system (1).

Theorem 1. Suppose S, E, I , H , J ,and R are system solutions
of eq. (1). If S (0) ≥ 0; E (0) ≥ 0; I (0) ≥ 0; H (0) ≥ 0;
J (0) ≥ 0; and R (0) ≥ 0; then all solutions are positive for
each t ≥ 0.

Proof. Take the first equation on the system (1) as follows

dS

dt
= π − βSI − µS,

let η = βI
N . So, it can be written as

dS

dt
= π − (η + µ)S,
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Figure 2. (a) COVID-19 model fittings, (b) residuals from COVID-19 model fittings

d
(
eµt+

∫ t
0
η dsS (t)

)
dt

= πeµt+
∫ t
0
η ds, (2)

then a homogeneous solution is obtained

d
(
eµt+

∫ t
0
η dsS (t)

)
dt

= 0,

S (t) = ke−µt−
∫ t
0
η ds.

Thus, a non-homogeneous solution is assumed

S (t) = ke−µt−
∫ t
0
η ds. (3)

Subsequently, by substituting eq. (3) for eq. (2), we get

dk (t)

dt
= πeµt+

∫ t
0
η ds,

k (t) =

∫ t

0

πeµy+
∫ y
0

η dxdy+K. (4)

Substituting eq. (4) into eq. (3) yields

S (t) =

∫ t

0

πeµy+
∫ y
0

η dxdy × e−µt−
∫ t
0
η ds+S(0)e−µt−

∫ t
0
η ds.

So S(t) is positive for t ≥ 0.
Next, second equation of the system (1) can therefore be

taken as

dE

dt
=

βSI

N
− αE − µE ≥ −αE − µE,

or ∫
dE (t)

E
≥

∫
− (α+ µ) dt,

E (t) ≥ Ke−(α+µ)t,

E (t) ≥ E (0) e−(α+µ)t.

Thus E(t) is positive for t ≥ 0. Additionally, it can be demon-
strated in the same manner starting with I(t), H(t), J(t), and
R(t).

At this point, a disease-free and endemic equilibrium point
exists in the system (1). The disease-free equilibrium point is
obtained

X0 = (S0, E0, I0,H0, J0, R0) =

(
π

µ
, 0, 0, 0, 0, 0

)
.

The next-generation matrix approach is used to obtain the basic
reproduction number, denoted R0. The matrices F and V at the
point X0 are

F (X0) =

[
0 β
0 0

]
, and V (X0) =

[
a1 0
−α a2

]
.

Based on the matrix F (X0) and V −1 (X0), then the next-
generation matrix M = FV −1 so that we get

M =

[
βα
a1a2

β
a2

0 0

]
.

So the basic reproduction number is obtained

R0 =
βα

a1a2
.

Next, the endemic equilibrium point is obtained X1 =
(S∗, E∗, I∗,H∗, J∗, R∗) where

S∗ =
N

R0
,

E∗ =
π

a1R0
(R0 − 1) ,

I∗ =
π

β
(R0 − 1) ,

H∗ =
θhπ

a3β
(R0 − 1) ,

J∗ =
πh (1− θ)

a4β
(R0 − 1) ,

R∗ =
π ((r1a4 + r3h1 (1− θ)) a3 + a4h1r2θ)

a3a4βµ
(R0 − 1) ,
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Figure 3. Behavior of the three different initial values

with a1 = α+ µ, a2 = h+ r1 + d1 + µ, a3 = r2 + d2 + µ, and
a4 = r3 + d3 + µ.

The value of R0 determines whether the endemic equilib-
rium point X1 exists. Furthermore, if R0 > 1 then we get S∗,
E∗, I∗, H∗,J∗, and R∗ are positive, and there is exactly one en-
demic equilibrium pointX1. We demonstrate the next theorem’s
stability for X0.

Theorem 2. X0 as disease-free equilibrium is unstable ifR0 > 1
and locally asymptotically stable if R0 < 1.

Proof. At X0, the Jacobian matrix is given by

J
(
X0

)
=


−µ 0 −β 0 0 0
0 −a1 β 0 0 0
0 α −a2 0 0 0
0 0 hθ −a3 0 0
0 0 h (1− θ) 0 −a4 0
0 0 r1 r2 r3 −µ

 .

So the eigenvalues of λ1, λ2, λ3, and λ4 are negative. Therefore,
the following characteristic equation determines how stable the
disease-free equilibrium point is:

λ2 + x1 λ+ x2 = 0, (5)

with x1 = a1+a2 > 0, and x2 = a1a2−βα = a1a2 (1−R0) >
0, if R0 < 1. Applying the Routh-Hurwitz criterion ensures that
the real roots of the characteristic equation are negative if R0 <
1. So X0 is locally asymptotically stable if R0 < 1.

Theorem 3. X1 as endemic equilibrium is unstable if R0 < 1
and locally asymptotically stable if R0 > 1.

Proof. the Jacobian matrix at the endemic equilibriumX1 is given

by

J (X1) =


−µ 0 −β 0 0 0
0 −a1 β 0 0 0
0 α −a2 0 0 0
0 0 hθ −a3 0 0
0 0 h (1− θ) 0 −a4 0
0 0 r1 r2 r3 −µ

 .

So we get the characteristic equation λ6+x1 λ
5+x2λ

4+x3λ
3+

x4λ
2 + x5λ+ x6 = 0. Roots of characteristic equations are dif-

ficult to solve analytically because they are related to sixth-order
equations. Additionally, with the parameters in Table 1, it will
be possible to test the endemic equilibrium’s stability numeri-
cally, and we will get R0 = 2.158 > 1. Figure 3 shows be-
havior with three different initial values when R0 = 2.158 > 1
goes to a certain point, namely the endemic equilibrium point.
So, the endemic equilibrium point will be asymptotically stable if
R0 > 1.

4. Optimal Control
Public education (u) is used as the control variable. There-

fore, the system (1) becomes

dS

dt
= π − (1− u)

βSI

N
− µS,

dE

dt
= (1− u)

βSI

N
− αE − µE,

dI

dt
= αE − hI − r1I − d1I − µI, (6)

dH

dt
= θhI − r2H − d2H − µH,

dJ

dt
= (1−θ)hI − r3J − d3J − µJ,

dR

dt
= r1I + r2H + r3J − µR.

Optimal control in this study aims to minimize the num-
ber of infected subpopulations and the objective function. The
optimum control issue is expressed as follows:

J (u1, u2)=

∫ T

0

f (t,−→x ,−→u ) dt=

∫ T

0

(
I +

1

2

(
wu2

))
dt, (7)
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Figure 4. Subpopulation behavior of (a) susceptible, (b) exposed, (c) infected, (d) isolation with treatment, (e) isolation without treatment,
(f) recovered
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with u ∈ [0, 1] , t ∈ [0, T ]. Then w is the weight of public edu-
cation control costs. Following a summary of the Hamilton func-
tion.

H =I + 1
2

(
wu2

)
+ λ1

(
π − (1− u)βSI

N − µS
)

+ λ2

(
(1− u)βSI

N − αE − µE
)

+ λ3 (αE − hI − r1I − d1I − µI) (8)

+ λ4 (θhI − r2H − d2H − µH)

+ λ5 ((1−θ)hI − r3J − d3J − µJ)

+ λ6 (r1I + r2H + r3J − µR) .

For each state variable, the derivative of the Hamilton function
(8) with a negative value is the costate equation.

dλ1

dt
= − ∂H

∂S

= (1−u)βI
N (λ1 − λ2) +

(1−u)βSI
N2 (λ2 − λ1) + µλ1,

dλ2

dt = − ∂H
∂E

= (1−u)βSI
N2 (λ2 − λ1) + α (λ2 − λ3) + µλ2,

dλ3

dt
= − ∂H

∂I

= (1−u)βS
N (λ1 − λ2) + (h+ d1 + r1 + µ)λ3

− hθλ4 − (1− θ)hλ5 − r1λ6 − 1,

dλ4

dt
= − ∂H

∂H

= (1−u)βSI
N2 (λ2 − λ1) + (d2 + r2 + µ)λ4 − r2λ6,

dλ5

dt
= − ∂H

∂J

= (1−u)βSI
N2 (λ2 − λ1) + (d3 + r3 + µ)λ5 − r3λ6,

dλ6

dt
= − ∂H

∂R

= (1−u)βSI
N2 (λ2 − λ1) + µλ6,

with the transverse condition λ1 (T ) = λ2 (T ) = λ3 (T ) =
λ4 (T ) = λ5 (T ) = λ6 (T ) = 0..

The optimal control problem (8) has a stationary condition
that can be found by

u=
βSI

wN2 (λ2 − λ1) .

Based on the range of values 0 ≤ u(t) ≤ 1, several possible
values for u are obtained so that the optimal control value is ob-
tained:

u∗=max
{
0,min

(
βSI

wN2 (λ2 − λ1) , 1

) }
.

5. Numerical Simulation
The COVID-19 model with two isolation treatments is nu-

merically simulated using the Runge-Kutta method. Initial values
for each subpopulation: S = 271, 511, 990; E = 1, 000, 000;
I = 412, 784; H = 56, 899; J = 200, 000; and R = 34, 192.
Next, Table 1 displays the parameter values used in the simula-
tion, and the observed time is 100 days. The numerical simula-
tion results in Figure 4(a) show that the number of susceptible

subpopulations increases due to the control of public education.
Then, Figure 4(b)-(f) shows that each subpopulation decreased,
especially the infected subpopulation decreased, to 85.5% in the
100th day due to public education.

Table 2 compares the number of subpopulations with and
without controls after the intervention. The control used (u)
seems quite influential, because it can reduce infections from
1,146,200 to 166,680.

Table 2. Compares subpopulation numbers at the end of the
intervention

Subpopulation Without control With control
S 268,850,000 272,980,000
E 3,065,400 118,350
I 1,146,200 166,680
H 4,084.6 609.0786
J 12.7926 1.9136
R 416,600 223,180

Figure 5 illustrates the optimal control profile u∗, namely
public education for 100 days. From the beginning to t = 96, the
provision of public education control is given a maximum. Then,
control continues to decrease until the end of the period is close
to zero, with an optimal cost of 32,041,000.

Figure 5. Optimal control profile

6. Conclusion

In this study, a COVID-19 model with two isolation treat-
ments is presented. The control variable is public education. The
goal of optimal control is to minimize the number of infected
populations. The equilibrium of the model is disease-free and en-
demic. We also acquired the model’s basic reproduction number
R0. While the endemic equilibrium exists and is asymptotically
stable ifR0 > 1, the disease-free equilibrium is locally asymptot-
ically stable if R0 < 1. The simulation shows that the number of
isolation subpopulations with treatment is greater than the iso-
lation subpopulation without treatment. That is, many patients
are not critical and few patients are critical or have comorbidi-
ties. Furthermore, the simulation results for 100 days show that
implementing public education controls is more effective in re-
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ducing infectious population than without control.
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