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Hybrid ARIMA-Spatial Autocorrelation (Moran Index and LISA)
for Covid-19 Vaccination in All Indonesian Provinces

Nur’ainul Miftahul Huda1 and Nurfitri Imro’ah2,∗

1,2Mathematics Department, FMIPA, Universitas Tanjungpura, Pontianak 78124, Indonesia

ABSTRACT. Numerous issues arise from stochastic processes with temporal and spatial index parameters. From
2020, Covid-19 has occurred worldwide. Combining time series with geographical analysis is crucial. ARIMA and
spatial autocorrelation analysis using Moran’s Index and LISA are prominent models for the two analyses. ARIMA
predicts future values. The ARIMA model is applied to all recorded locations since it involves a stochastic process
with a time and location parameter index. Then the prediction results at each location were examined using spatial
autocorrelation, starting with the Moran index to see global relationships, then LISA (to look at the relationship
between locations locally, to see which locations have a significant effect). The Queen Contiguity weight matrix
calculates spatial autocorrelation (assuming that locations that are directly adjacent to each other have a spatial
effect). Spatial autocorrelation will divide each place into four quadrants: High-High (HH), High-Low (HL), Low-High
(LH), and Low-Low (LL). This approach was applied to 2021 Indonesian vaccination rates in all 34 provinces (354 days).
Hence, the ARIMA model was applied to the 34 provinces, and each location received three forecasting. Moran’s Index
revealed spatial autocorrelation in the 354th and 355th time forecasts. LISA shows that Aceh (LL), West Sumatra (LH),
South Sumatra (HH), Lampung (LH), and North Maluku (LL) influence other provinces (LH).

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction

The approach of measuring spatial autocorrelation is an
important one in quantitative analysis, particularly when viewed
from a geographical prespective [1, 2]. This approach can serve
as a foundation for spatial statistics when applied appropriately.
The spatial technique is based on the first law of geography,
which asserts that ”everything is related to another, but things
that are near are related more than those that are far” [3, 4].
These spatial qualities suggest that there is a dependence on
space. When there is regular spatial variation in the values of
a given variable, a phenomenon known as spatial autocorrela-
tion is said to exist [5–7]. This variation can be broken down
into two categories, which are known as positive and negative
spatial autocorrelation, of between [8]. In the event that the au-
tocorrelation is positive, the value variables at a certain location
have a tendency to be comparable to the value variables in the
surrounding area. If the values of numerous variables are found
to be lower at a certain place, this denotes that the presence of
spatial autocorrelation suggests that the value that is nearest to
that position is also found to be lower [6, 9]. On the other hand,
negative spatial autocorrelation is distinguished by the presence
of distinct variance values at the site that is physically closest.
For instance, when there is a negative spatial autocorrelation
present, values with a low variation could be surrounded by val-
ues with a large variance at close places [10]. The term ”positive
spatial autocorrelation” refers to a pattern on a map in which
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geographic features that have the same value have a tendency
to cluster on the map. On the other hand, the term ”negative
spatial autocorrelation” describes a pattern on a map in which
geographic units that have similar values are distributed over the
map [11]. Positive spatial autocorrelation happens when nearby
environmental places have attribute values that are similar to one
another [10, 12, 13].

The concept of spatial autocorrelation can be investigated
from two different perspectives, namely, the local and the global
[14]. Analysis of global autocorrelation entails looking at all of the
different patterns on the maps [15]. The grouping or distribution
of variations is typically what causes this global autocorrelation
to give rise to problems in its use. On the other hand, local auto-
correlation shifts focus to study more deeply global patterns to
identify possible clusters, or that represent heterogeneity that
deviates from global patterns [16]. This can be done by identify-
ing probable clusters. The solution to many questions concern-
ing the presence of spatial patterns can be found in global spa-
tial autocorrelation [17]. Clustered as well as spread around the
area. On the other hand, local provides solutions to location is-
sues that have a considerable impact on the spatial patterns that
exist (maps) [18].  Several approaches in spatial autocorrelation,
including
1. The Gamma index of spatial autocorrelation, Moran’s I, and

Geary’s C are examples of global spatial autocorrelation
methods [19–21]

2. The Local Spatial Autocorrelation Index (LISA) and the Local
Geary Index are both examples of local spatial autocorrela-
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(a) positive (b) negative (c) zero

Figure 1. Illustration of autocorrelation

tion indicators [22, 23]
3. The variogrammethod for analyzing spatial connection from

a geostatistical point of view, comprising the correlogram
and semi-variogram [24–26]

In the field of geographic analysis, LISA was first presented
by Luc Anselin as an extension of Moran’s statistics [22], which
had been conceived of and developed by Patrick Moran. When
looking for statistically connected spatial autocorrelation on a
global scale, Moran is a useful tool. whereas LISA is utilized
to help in the formation of local spatial association patterns in
mapped data and for the deconstruction of global autocorrela-
tion measures, such as Moran statistics [27–29], Geary statistics
[30], and Getis-Ord G statistics [31]. It is possible to think of LISA
as a variation of the window-based Moran coefficient that was
developed for pixels that are contained within a local region of
an image [23]. A more succinct explanation would be to say that
LISA is an advanced study that compares the qualities of one site
with those of other nearby locations. In addition, LISA catego-
rizes each place into one of four quadrants, labeled High-High
(HH), High-Low (HL), Low-High (LH), and Low-Low (LL), respec-
tively [32]. When applied to data on stationary time series, the
Autoregressive Moving Average (ARIMA) models perform quite
well. In time series analysis, it is common practice to make the
assumption of stationarity. The ARIMA time series model’s pre-
diction performances are examined in this article using a spatial
autocorrelation analysis. Future perception of the spatial rela-
tionship is its goal. The Box-Jenkins iterative process was used to
create prediction results using the ARIMA time series model. In
other words, based on the optimal ARIMAmodel at each location,
this work presents a new method for identifying spatial autocor-
relation. Several studies pertaining to the ARIMA model have ad-
vanced significantly [29, 33, 34]. The most recent research also
incorporates spatial autocorrelation and GSTAR space-time anal-
ysis in Covid-19 instances [35].

Case studies of vaccine distribution in each province were
employed in this study (in relative proportions to the population).
Regarding vaccine distribution, vaccination-related issues in In-
donesia are of the utmost importance. In each province, different
data patterns can be identified. This is demonstrated by the un-
even distribution of the vaccine throughout the population. Up
to 50% of the recommended doses of the Covid-19 vaccination
are distributed to each of the seven provinces on the islands of
Java and Bali. Due to the comparatively high number of Covid-
19 cases discovered in the islands of Java and Bali, the high dis-

tribution was caused. The remainder are dispersed throughout
27 more provinces that are not in Java or Bali. Another reason
for the comparatively low vaccination rates in some areas is a
lack of understanding of the value of vaccines. Vaccination and
herd immunity are closely connected concepts. If more people
were immune to the disease, it would be more harder for it to
spread [36–39]. The percentage of the population that receives
the vaccine will decide how much less frequently the disease oc-
curs. A person’s body will develop a specific immunity to dis-
eases that can be prevented by vaccination after receiving a vac-
cination. The body will be better able to fight sickness as a re-
sult. These individuals’ immune systems assault disease-causing
germs or viruses when they attempt to infect them, preventing
infection [40]. As a result, there will be a spatial effect that is
proportional to the population immunised in a particular loca-
tion on lowering Covid-19 instances in the closest location. This
study aims to reveal which Indonesian provinces are notewor-
thy in terms of vaccine injections based on the results of ARIMA
forecasting and to predict when vaccination will begin to have a
spatial effect in each province. Also, this study uses the forecast-
ing findings from ARIMA to examine the spatial connection of the
specification level on a map for each province in Indonesia. The
distribution of the assets will be displayed on the map.

2. Weight Matrix in Spatial

The correlation between variables and themselves that is
based on space is known as spatial autocorrelation. Alternatively,
spatial autocorrelation can be interpreted as a correspondence
between the objects in the area. The values for spatial auto-
correlation might vary anywhere from -1 to 1, inclusive. The
neighboring places have values that are comparable to one an-
other, which is typically indicative of positive spatial autocorre-
lation. On the other hand, sites that are near to one another have
different values, which indicates that there is a negative spatial
autocorrelation. In comparison, 0% spatial auto-correlation dis-
plays random location patterns. The examples of positive, nega-
tive, and zero auto-correlation are presented in Figures 1a to 1c
[22].

In spatial data modeling, a key component is the spatial
weighting matrix, which reflects the dependence in the data in a
spatial context. The overarching structure of the spatial weight-
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ing matrix, Wn×n, is [35]

W =


w11 w12 . . . w1n

w21 w22 . . . w2n

...
...

. . .
...

wn1 wn2 . . . wnn


The elements of W are wij , where i and j is the row and col-
umn on the W. All diagonal elements of wij are 0, whereas it
is assumed that locations are not adjacent to the site itself. The
wij comprises two values, particularly zero and one. One for the
region that is adjacent, and zero for the areas that are not adja-
cent. The contiguity weight and the distance weight are the two
primary categories of spatial weighting matrices. The link of the
sides or vertices of one site to those of another site is what is
meant by the term ”contiguity weight.” It is made up of a rook, a
bishop, and a queen in close proximity to one another [22]. Fig-
ures 1a to 1c shows the illustration of contiguity weight. Based
on those figures, let xi be the i-th location for i = 1, 2, . . . , 9 and
x0 be the reference location. Using rock contiguity weight, the
edges only x2;x4;x5;x7 are neighbors of x0. While in bishop’s
contiguity weight, the corners only x1;x3;x6;x8 are neighbors
of x0. In contrast, the queen contiguity weight of the edges and
corners x0 has eight neighbors. In this study, the weight ma-
trix used is the Queen Contiguity Matrix. Queen contiguity is the
intersection of a site’s sides and the corner point with another.

3. ARIMA - Spatial Autocorrelation (Moran Index and LISA)
A combination of time series modeling with spatial data

modeling, the ARIMA Model - Spatial Autocorrelation is a power-
ful tool. The fundamental description of this modeling might be
stated as [41]
1. The ARIMA model is applied to the modeling of time series

data collected at each location. The model is applied so that
prediction results can be obtained at each location. If there
are four locations, then there will be four different ARIMA
models (one model per location).

2. The results of the prediction for each place are then mod-
eled spatially using the Moran Index and LISA so that the
spatial correlation between locations and times may be ex-
amined. The Moran Index and the LISA are the two ap-
proaches that are used, and each of these methods is used
to see global and local spatial correlations accordingly. Both
of these methods are utilized.
The combination of these models enables the development

of prediction results divided by time and location, as well as spa-
tial correlation forecasts decomposed by time. Figure 2 provides
further information regarding the modeling technique.

3.1. ARIMA
Let {Yt} = [Yi,t], for i = 1, 2, . . . , N (locations) and t =

1, 2, . . . , T (time), follows the ARIMA(p, d, q) model, then

Φi,p(B)Yi,t = Θi,q(B)ei,t,

(1− ϕi,1B − ϕi,2B
2 = (1− θi,1B − θi,2B

2

− · · · − ϕi,pB
p)Yi,t − · · · − θi,qB

q)ei,t,

Yi,t − ϕi,1Yi,t−1 − ϕi,2Yi,t−2 = ei,t − θi,1ei,t−1 − θi,2ei,t−2

− · · · − ϕi,pYi,t−p − · · · − θi,qet−q,

so that,

Yi,t = ϕi,1Yi,t−1 + ϕi,2Yi,t−2 + · · ·+ ϕi,pYi,t−p + ei,t
−θ1ei,t−1 − θ2ei,t−2 − · · · − θqet−q

(1)
where Φp = (1 − ϕi,1B − ϕi,2B

2 − · · · − ϕi,pB
p), ϕi,p is au-

toregressive’s parameter, Θi,q(B) = (1− θi,1B− θi,2B
2−· · ·−

θi,qB
q), θi,q is moving average’s parameter, B is backshift oper-

ator (BdYt = Yt−d), and ei,t is noise term for i− th location and
t− th time.

In using the ARIMA model to analyze time series data us-
ing the Box-Jenkins method, it is assumed that the data must be
stationary, i.e., have a constant mean and standard deviation. It
is possible to conduct a test of stationarity using a variety of ap-
proaches, including a visual analysis based on plots, an autocorre-
lation function, or a unit root test, among others. Moreover, sta-
tionary data is modeled using the three-stage ARIMA Box-Jenkins,
which includes [41]:
1. Order Identification, which involves deciding between the

possible p, d, and q orders given the data. At this point, a
number of possible orders are generated for use in subse-
quent parameter estimates and the decision of the most ac-
curate model during the diagnostic test step. To identify the
order, use Autocorrelation Function (ACF) and Partial ACF
(PACF) plot from the data.

Table 1. Order Identification based on ACF and PACF

Model ACF PACF
AR(p) tail off cut off after lag p
MA(q) cut off after lag q tail off

ARMA(p, q) tail off tail off

2. The next step is called parameter estimation, and its pur-
pose is to determine the values of the ARIMA model’s pa-
rameters based on the orders that were found in the stage
preceding it. Several ARIMA models were obtained at this
point, which would subsequently undergo diagnostic test-
ing.

3. Diagnostic checking. At this point, the model that will ul-
timately be chosen is determined. The assumption of in-
dependence between time lags (can be seen from ACF of
residual) and normality (can be seen from normal q-q plot)
needs to be satisfied by each and every residual value from
the previous stages of the model. To put it another way,
the model verifies that the white noise assumption is cor-
rect. The model that satisfies the white noise assumption as
well as having the minimumMean Square Error (MSE), Mean
Absolute Percentage Error (MAPE), and Akaike Information
Criterion (AIC) is the optimal model that can be utilized for
prediction purposes.

3.2. Moran Index
The Moran’s Index is a measurement of global spatial auto-

correlation that is used to determine the existence or absence of
a specific event. This is done by comparing the value of obser-
vations made at one location to those made at other sites that
are close together at the same time [8]. Moran’s Index examines
the spatial autocorrelation, which reveals a relationship in which
the significance of observations gathered at one site is contin-
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Figure 2. Flowchart of ARIMA-Spatial Autocorrelation

gent on the observations gathered at other sites located in close
proximity to it. The value of the Moran Index ranges between -1
and 1. According to [22] Moran index can be measured using the
equation [22]:

I =
n
∑n

i=1

∑n
j=1 wij(xi − x̄)(xj − x̄)∑n

i=1(xi − x̄)2
,

where xi is the value of observations in the i− th region, x̄ is the
average number of events, wij is the element of the weighting
matrix between area i and j.

The Moran’s scatterplot (see Figure 3) is a tool that allows
one to examine the link between standardized observation val-
ues and the standardized, average values of nearby areas. It is
the first stage in getting across the statistics of the Moran’s In-
dex. The significance of the data is used to determine the posi-
tion of the horizontal X-axis in Moran’s scatterplot. Thematching
observation’s weighted average or spatial lag on the horizontal
X-axis serves as the basis for the calculation of the vertical Y-axis
[8]. According to [22], the quadrants in the Moran’s scatterplot
are as follows:
(1) Quadrant I (High-High, HH) identifies areas with high sur-

rounded by high observation values (yellow square in Fig-
ure 3)

(2) Quadrant 2 (Low-High, LH) identifies areas with low sur-
rounded by high observation values (grey square in Figure 3)

(3) Quadrant III (Low-Low, LL) identifies areas with low sur-
rounded by low observation values (blue square in Figure 3)

(4) Quadrant IV (High-Low, LL) identifies areas with high sur-
rounded by low observation values (orange square in Fig-
ure 3)

Figure 3. Moran’s Scatterplot

The Moran Scatterplot, which places observations in quad-
rants I and III, demonstrates the presence of a positive spatial
autocorrelation, which can be defined as the clustering of values
that have the same high and low extremes. The Moran Scatter-
plot, on the other hand, arranges the observations in quadrants
II and IV and reveals a negative spatial autocorrelation as well as
distinct grouping values.

3.3. Local Indicator of Spatial Autocorrelation (LISA)
In this instance, the issue with global spatial autocorrela-

tion is that Moran’s Index does not provide any information on
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Table 2. Notation for Each Location

No. Variable Province No. Variable Province

1 P
(1)
1,t Aceh 18 P

(3)
1,t West Nusa Tenggara

2 P
(1)
2,t West Sumatera 19 P

(3)
2,t East Nusa Tenggara

3 P
(1)
3,t South Sumatera 20 P

(3)
3,t Papua

4 P
(1)
4,t Riau Island 21 P

(3)
4,t West Papua

5 P
(1)
5,t North Sumatera 22 P

(3)
5,t Maluku

6 P
(1)
6,t Bengkulu 23 P

(3)
6,t North Maluku

7 P
(1)
7,t Jambi 24 P

(4)
1,t South Sulawesi

8 P
(1)
8,t Riau 25 P

(4)
2,t Central Sulawesi

9 P
(1)
9,t Bangka Island 26 P

(4)
3,t Gorontalo

10 P
(1)
10,t Lampung 27 P

(4)
4,t West Sulawesi

11 P
(2)
1,t Banten 28 P

(4)
5,t South-East Sulawesi

12 P
(2)
2,t Jakarta 29 P

(4)
6,t North Sulawesi

13 P
(2)
3,t West Java 30 P

(5)
1,t East Kalimantan

14 P
(2)
4,t Yogyakarta 31 P

(5)
2,t West Kalimantan

15 P
(2)
5,t Central Java 32 P

(5)
3,t South Kalimantan

16 P
(2)
6,t East Java 33 P

(5)
4,t Central Kalimantan

17 P
(2)
7,t Bali 34 P

(5)
5,t North Kalimantan

the spatial patterns that are present in specific regions. As a
result, employing the Local Indicator of Spatial Autocorrelation
(LISA) to gather data on the pattern of spatial correlations in each
site is necessary. According to [8], LISA identifies the relationship
between one observation location and others. The LISA for each
region i is written as follows [22]:

Li =
(xi − x̄)

1
n

∑n
i=1(xi − x̄)2

n∑
j=1

wij(xj − x̄),

where Li is the LISA value in the i− th region, n is the number of
observations in the i− th region, xj is the value of observations
in the j− th region, x̄ is the average number of events, wij is the
element of the weighting matrix between area i and j.

4. Result and Discussion
4.1. Descriptive Statistics

The data used is the proportion of the population vacci-
nated with the first dose in all Indonesian provinces since Jan-
uary 13rd - December 31st, 2021 or 354 days (time)). There are
34 provinces used (location). Figure 4a shows the total popula-
tion per province; the darker the color, the more densely popu-
lated the province is. In comparison, the proportion of vaccines
is given in Figure 4b. The darker the color, the more the propor-
tion of vaccines injected by the province. The mean and standard
deviation of the data used is driven in Figure 4b.

The number of locations used are 34 locations. It means
that there are 34 ARIMAmodel. To facilitate the presentation, the
presentation of data is grouped by island. The notation of P (k)

i,t

represents the variable at i−th location in k−th island at time t,
for k = 1, 2, . . . , 5, i = 1, 2, . . . , 10, and t = 1, 2, . . . , 353.

The existence of a strong correlation in time and space is
one of the important premises upon which time series modeling
and spatial modeling are constructed. Pearson’s correlation is a
useful tool for determining whether or not two locations are as-
sociated with one another before making any initial assumptions.

More specifically, for time correlation, ARIMA time series model-
ing use a correlogram plot, and for spatial correlation, the Moran
Index value. Figure 5 displays the findings of this study’s appli-
cation of Pearson’s correlation analysis on Java (P2) data. The
correlation coefficient between locations is demonstrated by the
numbers that are given in Figure 5. For instance, in the first row
of the third column, the number 0.84 is written. This indicates
that the correlation between Banten andWest Java areas in terms
of the proportion of vaccines is 84%. In addition, the significance
level is shown by the asterisk (*), which ranges from *** (99%), **
(95%), and * (90%). In addition to this, the scatter plot and the
histogram of the data are presented in Figure 5.

4.2. ARIMA Model

The ARIMA time series modeling approach investigates his-
torical data trends in its most fundamental form. As a result, a
time series data plot is given for each site prior to engaging in
ARIMA time series modeling. As can be seen in Table 1, the plots
of the time series data for each site have been categorized ac-
cording to the transmission of the islands. Hence, there are five
different time series plots (see Figure 1). Interpretation. In the
middle of the year, between June and July, there is an increase in
the amount of data for each location. The same thing, a rise, took
place toward the end of the year as it did before. This is inversely
proportionate to the beginning of the year, when the percentage
of people who have had their vaccinations is still relatively low.
The month of March marked the beginning of the observed in-
creases, particularly on the island of Java. When compared to
Java Island, which has the highest level of vaccination awareness,
the levels of vaccination awareness in Nusa Tenggara and Papua
are very low. This is in contrast to Java Island, which has the
highest level of vaccination awareness. The fact that Java Island
serves as the administrative hub of the nation is one factor that
may have an impact on this.

The assumption in ARIMA model is stationary. The station-
arity test utilizing the Augmented Dickey Fuller (ADF) test on the
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(a) The population of Indonesia (in 2020)

(b) Total vaccine proportion (in 2021)

Figure 4. Mapping of:

data for each site showed that the entire data are not stationary.
This conclusion was reached after applying the test to each set
of data. A differentiation process is applied to the data for each
location just once as a consequence of this conclusion. In addi-
tion, the stationarity test was performed on differentiated data
using the ADF test, and the conclusion reached was that the data
for each site were stationary.

Based on the preceding stationarity process, the model cre-
ated at each point might be ARIMA (p, 1, q). At the stage of order
identification, the ACF and PACF plots are analyzed in order to
make a decision about the order in which p and q should be de-
cided. The process of estimating parameters is not discussed in
detail in this article, nor are any of the various different models
that could be derived from each site. Following completion of
all three Box-Jenkins phases for each location, the best model for
each location is subsequently obtained (see Table 3).

Interpretation. According to Table 3, for the case of k = 1
(Sumatra Island) and i = 1 (Aceh), the best ARIMA model that can

be produced is ARIMA(2,1,5), which means that

P
(1)
1,t = −0.32P

(1)
1,t−1 − 0.75P

(1)
1,t−2 + 0.02e

(1)
1,t−1 − 0.77e

(1)
1,t−2

+0.29e
(1)
1,t−3 − 0.03e

(1)
1,t−4 + 0.28e

(1)
1,t−5.

This indicates that the proportion of people who have re-
ceived vaccines in Aceh one and two days ago (at times t − 1
and t − 2) has an effect on the proportion of people who have
received vaccinations today (at time t). In addition to that, it is
also impacted by errors that occurred between 1 and 5 days ago
(at times t − 1, t − 2, . . . , t − 5). For the remaining locations,
the ARIMA model conforms to the ARIMA order and is described
based on eq. (1).

Prediction is the last stage of the ARIMAmodeling approach
for time series. Afterwards, the results of this prediction will
be utilized to examine the spatial autocorrelation that exists be-
tween diverse locations (P̂ (k)

i,354+h). On the basis of each ARIMA
model at each location, forecasts are generated for three differ-
ent times (h = 1, 2, 3) in the future. Table 4 offers a comprehen-
sive presentation of the results of the predicted for each location.
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Figure 5. Correlation among Locations in Java Island

Table 3. Parameter Estimation of ARIMA(p,1,q) Model for 34 Locations

Loc. Ordo
Autoregressive (AR) Moving Average (MA)

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 θ1 θ2 θ3 θ4 θ5

P
(1)
1,t (2, 1, 5) -0.32 -0.75 -0.02 0.77 -0.29 0.03 -0.28

P
(1)
2,t (1, 1, 1) -0.26 -0.73

P
(1)
3,t (4, 1, 2) -0.71 0.04 -0.12 -0.23 0.19 -0.54

P
(1)
4,t (0, 1, 2) -0.81 0.13

P
(1)
5,t (1, 1, 1) 0.35 -0.83

P
(1)
6,t (4, 1, 5) -0.54 0.24 -0.53 -0.94 -0.11 -0.51 0.50 0.46 -0.43

P
(1)
7,t (4, 1, 3) -0.36 0.23 -0.54 -0.68 -0.31 -0.37 0.57

P
(1)
8,t (0, 1, 3) -0.45 0.13 -0.16

P
(1)
9,t (4, 1, 3) -0.10 0.19 -0.60 -0.51 -0.48 -0.30 0.79

P
(1)
10,t (4, 1, 3) -0.17 -0.39 0.47 0.38 -0.32 0.32 -0.83

P
(2)
1,t (1, 1, 1) 0.44 -0.87

P
(2)
2,t (2, 1, 2) 1.11 -0.66 -1.57 0.80

P
(2)
3,t (2, 1, 3) -1.18 -0.61 0.47 -0.18 -0.74

P
(2)
4,t (4, 1, 3) -0.34 0.21 -0.59 -0.72 -0.30 -0.21 0.64

P
(2)
5,t (2, 1, 3) -1.42 -0.72 0.63 -0.26 -0.74

P
(2)
6,t (4, 1, 3) -0.33 0.23 -0.56 -0.73 -0.43 -0.29 0.66

P
(2)
7,t (2, 1, 4) -0.95 -0.63 0.45 -0.01 -0.62 0.01

P
(3)
1,t (0, 1, 1) -0.69

P
(3)
2,t (0, 1, 2) -0.60 -0.16

P
(3)
3,t (0, 1, 1) -0.61

P
(3)
4,t (0, 1, 1) -0.77

P
(3)
5,t (2, 1, 5) -0.39 -0.75 -0.20 0.65 -0.65 0.00 -0.50

P
(3)
6,t (0, 1, 1) -0.29

P
(4)
1,t (1, 1, 5) 0.44 -1.05 0.38 0.07 -0.56 0.48

P
(4)
2,t (0, 1, 1) -0.60

P
(4)
3,t (2, 1, 5) -0.20 0.46 -0.39 -0.72 0.08 0.02 0.28

P
(4)
4,t (2, 1, 1) 0.19 0.23 -0.86

P
(4)
5,t (0, 1, 1) -0.53

P
(4)
6,t (5, 1, 2) 0.09 -0.69 -0.35 -0.33 -0.50 -0.63 0.60

P
(5)
1,t (4, 1, 3) -0.25 0.22 -0.57 -0.57 -0.46 -0.25 0.66

P
(5)
2,t (5, 1, 2) 0.34 -0.58 -0.31 -0.27 -0.29 -0.83 0.69

P
(5)
3,t (2, 1, 3) 0.91 -0.64 -1.37 1.27 -0.60

P
(5)
4,t (5, 1, 2) -0.55 0.30 -0.05 -0.28 0.20 -0.11 -0.61

P
(5)
5,t (3, 1, 3) -1.34 -0.20 0.42 0.80 -0.66 -0.76
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Table 4. Forecasting Results for 3 Steps Ahead based on ARIMA(p,d,q) Model for 34 Locations

Location
Forecasting (P̂

(k)
i,354+h) Location

Forecasting (P̂
(k)
i,354+h)

h = 1 h = 2 h = 3 h = 1 h = 2 h = 3

P̂
(1)
1,354+h 0.0014 0.0020 0.0017 P̂

(3)
1,354+h 0.0019 0.0019 0.0019

P̂
(1)
2,354+h 0.0012 0.0014 0.0013 P̂

(3)
2,354+h 0.0013 0.0013 0.0013

P̂
(1)
3,354+h 0.0037 0.0028 0.0031 P̂

(3)
3,354+h 0.0003 0.0003 0.0003

P̂
(1)
4,354+h 0.0021 0.0020 0.0020 P̂

(3)
4,354+h 0.0011 0.0011 0.0011

P̂
(1)
5,354+h 0.0051 0.0048 0.0047 P̂

(3)
5,354+h 0.0051 0.0046 0.0042

P̂
(1)
6,354+h 0.0039 0.0018 0.0025 P̂

(3)
6,354+h 0.0006 0.0007 0.0006

P̂
(1)
7,354+h 0.0025 0.0015 0.0017 P̂

(4)
1,354+h 0.0024 0.0022 0.0018

P̂
(1)
8,354+h 0.0019 0.0020 0.0018 P̂

(4)
2,354+h 0.0012 0.0012 0.0012

P̂
(1)
9,354+h 0.0047 0.0029 0.0026 P̂

(4)
3,354+h 0.0011 0.0008 0.0010

P̂
(1)
10,354+h 0.0040 0.0045 0.0038 P̂

(4)
4,354+h 0.0027 0.0027 0.0026

P̂
(2)
1,354+h 0.0014 0.0016 0.0017 P̂

(4)
5,354+h 0.0017 0.0017 0.0017

P̂
(2)
2,354+h 0.0013 0.0014 0.0014 P̂

(4)
6,354+h 0.0037 0.0031 0.0013

P̂
(2)
3,354+h 0.0017 0.0021 0.0027 P̂

(5)
1,354+h 0.0027 0.0013 0.0014

P̂
(2)
4,354+h 0.0021 0.0003 0.0008 P̂

(5)
2,354+h 0.0020 0.0012 0.0005

P̂
(2)
5,354+h 0.0015 0.0022 0.0030 P̂

(5)
3,354+h 0.0018 0.0016 0.0016

P̂
(2)
6,354+h 0.0039 0.0014 0.0020 P̂

(5)
4,354+h 0.0028 0.0018 0.0027

P̂
(2)
7,354+h 0.0006 0.0007 0.0007 P̂

(5)
5,354+h 0.0035 0.0021 0.0035

4.3. Spatial Autocorrelation - Moran Index and LISA

In the process of measuring spatial autocorrelation, one of
the most significant procedures is the calculation of the weight
matrix, which is also sometimes referred to as the queen conti-
guity matrix. The number one is assigned to the provinces that
are immediately adjacent to one another, whereas the number
zero is assigned to the remaining provinces. For instance, the
province of Central Kalimantan (x0) is given a value of 1 in rela-
tion to the provinces of West Kalimantan (x1), East Kalimantan
(x2), and South Kalimantan (x3). Since these provinces are di-
rectly adjacent to Central Kalimantan, they are each given a value
of 1 in relation to Central Kalimantan. In the event that a province
is not immediately next to another province, the number of trans-
portation routes that may be rerouted to reach that province is
one of the criteria that is used to decide whether or not that
province can be released. For instance, the province of Maluku
(y0) is made up of a number of smaller islands, and there are no
provinces that lie immediately to their immediate north or south.
Maluku province, on the other hand, is accessible by road, air,
and sea and may be reached via South Sulawesi (y1) and North
Maluku (y2, respectively). Because of this, the rank of number 1
has been given to both of the provinces in this scenario. Figure 7
offers a graphical representation of the two scenarios that were
mentioned earlier.

Based on the weight matrix calculation grid using queen
contiguity, the following queen contiguity matrix is obtained

Q =


P(1) O O O O
O P(2) O O O
O O P(3) O O
O O O P(4) O
O O O O P(5)



where O is a zero matrix, and

P
(1) =



0 1 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0

0 1 0 1 0 0 1 1 0 0

0 1 1 0 1 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1

0 0 1 1 0 1 0 1 0 0

0 0 1 0 0 1 1 0 0 1

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 1 0 0



;

P
(2) =



0 1 1 0 0 0 0

1 0 1 0 0 0 0

1 1 0 1 0 0 0

0 0 1 0 1 1 0

0 0 0 1 0 0 0

0 0 0 1 0 0 1

0 0 0 0 0 1 0



; P
(4) =



0 1 0 1 1 0

1 0 1 1 1 0

0 1 0 0 0 1

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0



;

P
(3) =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0



; P
(5) =



0 1 1 1 1

1 0 0 1 1

1 0 0 1 0

1 1 1 0 0

1 1 0 0 0



.

P1 represents weigth block matrix for Sumatera’s Island
(Blue in Figure 7), P2, P3 consecutively represent Java (Red in Fig-
ure 7)and Kalimantan’s Island (Yellow in Figure 7). The black in
Figure 7 represent Sulawesi’s Island, Maluku and North Maluku
for P4. Then, P5 represents West Nusa Tenggara, East Nusa Teng-
gara, Papua, and West Papua. The following step is to standard-
ize the Q matrix by making the number of each row 1, Q*. The
standardized matrix is used as a weight matrix in calculating the
Moran and local Moran index (LISA) values.
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Figure 6. Time Series Plot for Each Island

4.4. Moran’s Index
The next step is to calculate the global spatial auto-

correlation using the Moran’s Index method for all t. The fol-
lowing is the calculation of the spatial auto-correlation using the
Moran’s Index for all t:

I354+h =
34

∑34
i=1

∑34
j=1 q

∗
ij(P̂i,354+h − P̄ )(P̂j,354+h − P̄ )

S0

∑34
i=1(P̂i,t+h − P̄ )2

(2)
where q∗ij is the weight for i-th to j-th location, P̄ is the

average proportion of vaccines across 34 provinces, P̂i,354+h is
the proportion of vaccines at i-th location, and h = 1, 2, 3.

It is crucial to make sure that the Moran Index performs
a calculation of the global spatial autocorrelation. The ARIMA
model will be utilised to make a prediction regarding the per-
centage of vaccines that will be given out, and the spatial auto-
correlation will then be established on the basis of the results of
the prediction. After that, the Moran Index can be calculated for

each individual forecast outcome during the course of the follow-
ing three days bymaking use of the eq. (2). The results of comput-
ing the Moran Index for each of the prediction times are listed in
the table that can be found in Table 5. The global geographic cor-
relation on the first day of predictions is 0.472, as shown in the
Moran Index column, which depicts global geographical correla-
tion. This can be seen by looking at the global spatial correlation.
This suggests that the aggregate percentage of individuals who
have received vaccinations across all of Indonesia’s provinces is
47.2%. Because the p-value for the Moran Index on that day was
4.8 %, which is less than 5%, it is feasible to reach the conclusion
that there is a substantial link between the percentage of people
who have been vaccinated and the geographical location. On the
other hand, the spatial correlation based on the Moran Index was
-0.038 on the third day (354 + 3), with a p-value (3.7%) that was
greater than 5 %. This was shown to be the case on the third day
(354 + 3). In other words, the geographical correlation on the
third day of prediction does not have a substantial influence on
the outcome of the forecast. In light of this, the projection of the
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Figure 7. Illustration of Computing the Queen Contiguity

proportion of vaccines that were given out on the third day will
not be affected by the computation of the spatial correlation that
will be performed using LISA.

Table 5. Moran Index for each Forecasting Result based on
ARIMA Model

Time (354 + h) Moran Index p-value
I354+1 0.472 0.048
I354+2 0.374 0.029
I354+3 -0.038 0.366

4.5. LISA

The only thing that can be determined from the outcomes
of Moran’s computation is whether or not there is a strong spa-
tial auto-correlation. On the other hand, information that would
have shown which places were responsible for the large spatial
auto-correlation was left out. Despite this, additional research
employing LISA was carried out in order to resolve this issue.
The spatial auto-correlation value was computed in LISA for each
province for each day that was significant (Moran’s finding, see
Table 5). The LISA for each day in the i − th province can be
calculated as follows:

Li,354+h =
(P̂i,354+h − P̄ )

1
34

∑34
i=1(P̂i,354+h − P̄ )2

34∑
j=1

wij(P̂j,354+h − P̄ )

Based on the LISA calculations, the significant provinces in each
significant’s date are shown in Figure 8. The offered colors each
represent a different class for the four quadrants. The Low-Low
(LL), High-High (HH), High-Low (HL), and Low-High (LH) grades
are denoted by the colors green, red, yellow, and orange, respec-
tively. According to one possible interpretation of the significant
LISA value, the province exerts a significant level of influence over
the other provinces that are located in close proximity to it. For
instance, on day 355, five different provinces, Aceh (LL), West
Sumatera (LH), South Sumatera (HH), Lampung (LH) and North
Maluku (LH), had significant LISA score (p-value less than 5%).

5. Conclusion

The findings of the ARIMA modelling performed in each
location indicate that the mean does not exhibit stationary be-
haviour. Evenness is a characteristic of stationarity. This indi-
cates that when the data is not stationary, it is possible to draw
the conclusion that there are oscillations in the distribution of the
vaccine. This can be brought about by a variety of factors, such
as the progressive delivery of the vaccine, followed by the imple-
mentation of regulations that mandate vaccinations, and finally
the requirement for the vaccine itself. ARIMA modelling carried
out at each location reveals, among other things, the features of
each location, which are almost always distinct from one another.
This is demonstrated by the fact that the ARIMA models come in
a variety of orders; some contain simply the MA or AR models,
while others contain a combination of the two, denoted by the
acronym ARMA. The ARIMA models are used to make predictions
that are carried out three times further into the future at each
location. After that, these findings are utilised in the subsequent
geographical analysis, specifically the Moran Index and the LISA.

Moran’s index has the capability of determining whether
or not vaccination injections have a geographical influence on
the relationships that exist between provinces. For each loca-
tion, the projected results are used in the calculation of Moran’s
index, which is performed three times in advance. It was discov-
ered that the results gathered on days 365 and 366 contained
a significant Moran’s index. Following the completion of gen-
eral detection for all of the cases in which significance was dis-
covered, targeted detection was carried out in order to establish
which provinces had a major influence on increasing the quantity
of vaccines provided each day. As many as five provinces, namely
Aceh (LL), West Sumatra (LH), South Sumatra (HH), Lampung (LH),
and North Maluku (LH), have been able to contribute to a reduc-
tion in the number of cases of the Covid-19 virus as a result of
their participation in the Covid-19 killing programme. Four of
the five provinces are located on the island of Sumatra. The other
provinces are located on the other two islands. This suggests that
the island of Sumatra has made a significant contribution to the
suppression of the Covid-19 case through the implementation of
immunisation programmes. Specifically in the province of South
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Figure 8. LISA’s Map of Forecasting Result based on ARIMA and Moran Index

Sumatra, which can be found in the High-High quadrant. This
implies that it is placed in an area that has a high proportion of
vaccines and is located in closeness to other regions that also
have a high proportion of vaccinations. Calculations of spatial
autocorrelation that are based on these prediction results can be
used as a reference in the distribution of vaccines, particularly
for the purpose of determining which locations are appropriate
to focus on in suppressing Covid-19 cases, specifically locations
that are in the Low-Low quadrant of the map.

Author Contributions. Huda, N. M.: Conceived and designed the experi-
ments; Analyzed and interpreted the data; Contributed reagents, materi-
als, analysis tools or data; Wrote the paper. Imro’ah, N.: Conceived and
designed the experiments; Performed the experiments; Analyzed and
interpreted the data; Contributed reagents, materials, analysis tools or
data; Wrote the paper.

Acknowledgement. The authors are thankful the editors and reviewers
who have supported us in improving this manuscript and also to Ke-

menterian Kesehatan Indonesia for the data.

Funding. This research received no external funding

Conflict of interest. The authors declare no conflict of interest

Data availability. The data was available online daily at
https://vaksin.kemkes.go.id/#/vaccines

References
[1] Y. Chen, “An analytical process of spatial autocorrelation functions based

on moran’s index,” PLOS ONE, vol. 16, no. 4, p. e0249589, 2021.
DOI:10.1371/journal.pone.0249589

[2] Y. Chen, “Fractal analytical approach of urban form based on spatial cor-
relation function,” Chaos, Solitons & Fractals, vol. 49, pp. 47–60, 2013.
DOI:10.1016/j.chaos.2013.02.006

[3] D. Z. Sui, “Tobler’s first law of geography: A big idea for a small world?”
Annals of the Association of American Geographers, vol. 94, no. 2, pp. 269–277,
2004. DOI:10.1111/j.1467-8306.2004.09402003.x

[4] B. Zheng, X. Lin, D. Yin, and X. Qi, “Does tobler’s first law of geog-
raphy apply to internet attention? a case study of the asian elephant

JJBM | Jambura J. Biomath Volume 4 | Issue 2 | December 2023

https://vaksin.kemkes.go.id/{#}/vaccines
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0249589
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0249589
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0249589
https://www.sciencedirect.com/science/article/abs/pii/S0960077913000349
https://www.sciencedirect.com/science/article/abs/pii/S0960077913000349
https://www.sciencedirect.com/science/article/abs/pii/S0960077913000349
https://www.tandfonline.com/doi/abs/10.1111/j.1467-8306.2004.09402003.x
https://www.tandfonline.com/doi/abs/10.1111/j.1467-8306.2004.09402003.x
https://www.tandfonline.com/doi/abs/10.1111/j.1467-8306.2004.09402003.x
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0282474
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0282474
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0282474


N. M. Huda and N. Imro’ah – Hybrid ARIMA-Spatial Autocorrelation (Moran Index and LISA) for Covid-19 Vaccination in All Indonesian Provinces… 137

northern migration event,” PLOS ONE, vol. 18, no. 3, p. e0282474, 2023.
DOI:10.1371/journal.pone.0282474

[5] D. A. Griffith, “Spatial autocorrelation,” Encyclopedia of Social Measurement,
pp. 581–590, 2005. DOI:10.1016/B0-12-369398-5/00334-0

[6] A. Getis, “Spatial pattern analysis,”Encyclopedia of Social Measurement, pp.
627–632, 2005. DOI:10.1016/B0-12-369398-5/00336-4

[7] R. Haining, “Spatial autocorrelation,”International Encyclopedia of the Social
& Behavioral Sciences, pp. 14763–14768, 2001. DOI:10.1016/B0-08-043076-
7/02511-0

[8] S.-I. Lee, “Correlation and spatial autocorrelation,”Springer, 2017, pp. 360–
368. ISBN 978-3-319-17884-4. DOI:10.1007/978-3-319-17885-1_1524

[9] R. Westerholt, “Exploratory statistical analysis of spatial structures in urban
datasets,” Metropolitan Research: Methods and Approaches, pp. 37–62, 2022.
DOI:10.14361/9783839463109-003

[10] D. A. Griffith and G. Arbia, “Detecting negative spatial autocorrela-
tion in georeferenced random variables,” International Journal of Ge-
ographical Information Science, vol. 24, no. 3 pp. 417–437, 2010.
DOI:10.1080/13658810902832591

[11] Y. H. Chou, “Map resolution and spatial autocorrelation,” Geographi-
cal Analysis, vol. 23, no. 3, pp. 228–246, 1991. DOI:10.1111/j.1538-
4632.1991.tb00236.x

[12] M. Almeida-Neto and T. M. Lewinsohn, “Small-scale spatial autocorrela-
tion and the interpretation of relationships between phenological param-
eters,” Journal of Vegetation Science, vol. 15, no. 4, pp. 561–568, 2004.
DOI:10.1111/j.1654-1103.2004.tb02295.x

[13] G. W. Mueller-Warrant, G. W. Whittaker, and W. C. Young, “Gis analysis of
spatial clustering and temporal change in weeds of grass seed crops,” Weed
Science, vol. 56, no. 5, pp. 647–669, 2008. DOI:10.1614/WS-07-032.1

[14] A. Getis, “A history of the concept of spatial autocorrelation: A geogra-
pher’s perspective,” Geographical Analysis, vol. 40, no. 3, pp. 297–309, 2008.
DOI:10.1111/j.1538-4632.2008.00727.x

[15] L. M. Scott, “Spatial pattern, analysis of,” International Encyclopedia of
the Social & Behavioral Sciences (Second Edition), pp. 178–184, 2015.
DOI:10.1016/B978-0-08-097086-8.72064-2

[16] J. K. Ord and A. Getis, “Testing for local spatial autocorrelation in the pres-
ence of global autocorrelation,” Journal of Regional Science, vol. 41, no. 3, pp.
411–432, 2002. DOI:10.1111/0022-4146.00224

[17] A. Fotheringham and P. Rogerson, The SAGE Handbook of Spatial Analysis.
SAGE Publications, Ltd, 2009. ISBN 9781412910828

[18] A. R. Holt, M. Mears, L. Maltby, and P. Warren, “Understanding spatial pat-
terns in the production of multiple urban ecosystem services,” Ecosystem
Services, vol. 16, pp. 33–46, 2015. DOI:10.1016/j.ecoser.2015.08.007

[19] J. Dubé and D. Legros, “Spatial autocorrelation,” John Wiley & Sons, Ltd.,
Spatial Econometrics Using Microdata, 2014, pp. 59–91. ISBN 9781119008651.
DOI:10.1002/9781119008651.ch3

[20] A. Abdulhafedh, “A novel hybrid method for measuring the spatial auto-
correlation of vehicular crashes: Combining moran’s index and getis-ord
statistic,” Open Journal of Civil Engineering, vol. 07, no. 2, pp. 208–221, 2017.
DOI:10.4236/ojce.2017.72013

[21] A. Getis, “Reflections on spatial autocorrelation,” Regional Sci-
ence and Urban Economics, vol. 37, no. 4, pp. 491–496, 2007.
DOI:10.1016/j.regsciurbeco.2007.04.005

[22] L. Anselin, “Local indicators of spatial association-lisa,” Geographical Analysis,
vol. 27, no. 2, pp. 93–115, 1995. DOI:10.1111/j.1538-4632.1995.tb00338.x

[23] M. Osadebey, M. Pedersen, D. Arnold, and K. Wendel-Mitoraj, “Local in-
dicators of spatial autocorrelation (lisa): Application to blind noise-based
perceptual quality metric index for magnetic resonance images.” Journal of
imaging, vol. 5, no. 1, pp. 1–23, 2019. DOI:10.3390/jimaging5010020

[24] M. A. Oliver, “The variogram and kriging,” Springer, Berlin, Heidel-
berg, 2010, pp. 319–352. ISBN 978-3-642-03646-0. DOI:10.1007/978-3-642-

03647-7_17
[25] C. V. Deutsch, “Geostatistics,” Academic Press, 2003, pp. 697–707. ISBN 978-

0-12-227410-7. DOI:10.1016/B0-12-227410-5/00869-3
[26] P. Singh and P. Verma, “A comparative study of spatial interpolation tech-

nique (idw and kriging) for determining groundwater quality,” Elsevier,
2019, pp. 43–56. ISBN 978-0-12-815413-7. DOI:10.1016/B978-0-12-815413-
7.00005-5

[27] A. Soltani and S. Askari, “Exploring spatial autocorrelation of traffic
crashes based on severity,” Injury, vol. 48, no. 3, pp. 637–647, 2017.
DOI:10.1016/j.injury.2017.01.032

[28] A. Getis, “Reflections on spatial autocorrelation,” Regional Sci-
ence and Urban Economics, vol. 37, no. 4, pp. 491–496, 2007.
DOI:10.1016/j.regsciurbeco.2007.04.005

[29] N. M. Huda, N. Imro’ah, and R. Mailanda, “Spatial autocorrelation using
moran’s index to map the confirmed positive of covid-19 cases in java,” AIP
Conf. Proc., vol. 2588, no. 1, p. 050006, 2023. DOI:10.1063/5.0112014

[30] X. Zhou and H. Lin, “Geary’s c,” Springer, 2008, pp. 329–330. ISBN 978-0-
387-30858-6. DOI:10.1007/978-0-387-35973-1_446

[31] F. Rossi and G. Becker, “Creating forest management units with
hot spot analysis (getis-ord gi*) over a forest affected by mixed-
severity fires,” Australian Forestry, vol. 82, no. 4, pp. 166–175, 2019.
DOI:10.1080/00049158.2019.1678714

[32] D. R. S. Saputro, Y. Widyaningsih, P. Widyaningsih, Sutanto, and Widias-
tuti, “Spatio-temporal patterns of dengue hemorrhagic fever (dhf) cases
with local indicator of spatial association (lisa) and cluster map at areas risk
in java-bali indonesia,” AIP Conf. Proc., vol. 2326, no. 1, p. 020027, 2021.
DOI:10.1063/5.0040334

[33] N. M. Huda, U. Mukhaiyar, and U. S. Pasaribu, “Forecasting dengue fever
cases using autoregressive distributed lag model with outlier factor,” AIP
Conf. Proc., vol. 2268, no. 1, p. 020005, 2020. DOI:10.1063/5.0018450

[34] A. James and V. Tripathi, “Time series data analysis and arima modeling
to forecast the short-term trajectory of the acceleration of fatalities in
brazil caused by the corona virus (covid-19),” PeerJ, vol. 9, p. e11748, 2021.
DOI:10.7717/peerj.11748

[35] N. M. Huda and N. Imro’ah, “Determination of the best weight matrix for
the generalized space time autoregressive (gstar) model in the covid-19
case on java island, indonesia,” Spatial Statistics, vol. 54, p. 100734, 2023.
DOI:10.1016/j.spasta.2023.100734

[36] O. J. Watson, G. Barnsley, J. Toor, A. B. Hogan, P. Winskill, and A. C. Ghani,
“Global impact of the first year of covid-19 vaccination: amathematical mod-
elling study,” The Lancet Infectious Diseases, vol. 22, no 9, pp. 1293–1302,
2022. DOI:10.1016/S1473-3099(22)00320-6

[37] M. Manaqib, M. Mahmudi, and G. Prayoga, “Mathematical Model and Sim-
ulation of the Spread of COVID-19 with Vaccination, Implementation of
Health Protocols, and Treatment,” Jambura Journal of Biomathematics (JJBM),
vol. 4, no. 1, pp. 69–79, 2023. DOI:10.34312/jjbm.v4i1.19162

[38] F. Firmansyah and Y. M. Rangkuti, “Sensitivity Analysis and Optimal Control
of Covid 19 Model,” Jambura Journal of Biomathematics (JJBM), vol. 4, no. 1,
pp. 95–102, 2023. DOI:10.34312/jjbm.v4i1.19025

[39] S. O. S. P. Ahaya, E. Rahmi, and N. Nurwan, “Analisis dinamik model
SVEIR pada penyebaran penyakit campak,” Jambura Journal of Biomathematics
(JJBM), vol. 1, no. 2, pp. 57–64, 2020. DOI:10.34312/jjbm.v1i2.8482

[40] S. M. Moghadas, T. N. Vilches, K. Zhang, C. R. Wells, A. Shoukat, B. H.
Singer, L. A. Meyers, K. M. Neuzil, J. M. Langley, M. C. Fitzpatrick, and A. P.
Galvani, “The impact of vaccination on covid-19 outbreaks in the united
states.” Clinical Infectious Diseases, vol. 73, no. 12, pp. 2257–2264, 2021.
DOI:10.1093/cid/ciab079

[41] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, ”Time Series
Analysis: Forecasting and Control, 5th Edition,” Wiley, 2015, p. 712. ISBN
978-1-118-67491-8

JJBM | Jambura J. Biomath Volume 4 | Issue 2 | December 2023

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0282474
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0282474
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0282474
https://www.sciencedirect.com/science/article/abs/pii/B0123693985003340
https://www.sciencedirect.com/science/article/abs/pii/B0123693985003340
https://www.sciencedirect.com/science/article/abs/pii/B0123693985003364
https://www.sciencedirect.com/science/article/abs/pii/B0123693985003364
https://www.sciencedirect.com/science/article/abs/pii/B0080430767025110
https://www.sciencedirect.com/science/article/abs/pii/B0080430767025110
https://www.sciencedirect.com/science/article/abs/pii/B0080430767025110
https://link.springer.com/referenceworkentry/10.1007/978-3-319-17885-1_1524
https://link.springer.com/referenceworkentry/10.1007/978-3-319-17885-1_1524
https://www.transcript-open.de/doi/10.14361/9783839463109-003
https://www.transcript-open.de/doi/10.14361/9783839463109-003
https://www.transcript-open.de/doi/10.14361/9783839463109-003
https://www.tandfonline.com/doi/abs/10.1080/13658810902832591
https://www.tandfonline.com/doi/abs/10.1080/13658810902832591
https://www.tandfonline.com/doi/abs/10.1080/13658810902832591
https://www.tandfonline.com/doi/abs/10.1080/13658810902832591
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1538-4632.1991.tb00236.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1538-4632.1991.tb00236.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1538-4632.1991.tb00236.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1654-1103.2004.tb02295.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1654-1103.2004.tb02295.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1654-1103.2004.tb02295.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1654-1103.2004.tb02295.x
https://www.cambridge.org/core/journals/weed-science/article/abs/gis-analysis-of-spatial-clustering-and-temporal-change-in-weeds-of-grass-seed-crops/220DB12C1F5C44558D34DCEB8DF9C12A
https://www.cambridge.org/core/journals/weed-science/article/abs/gis-analysis-of-spatial-clustering-and-temporal-change-in-weeds-of-grass-seed-crops/220DB12C1F5C44558D34DCEB8DF9C12A
https://www.cambridge.org/core/journals/weed-science/article/abs/gis-analysis-of-spatial-clustering-and-temporal-change-in-weeds-of-grass-seed-crops/220DB12C1F5C44558D34DCEB8DF9C12A
https://onlinelibrary.wiley.com/doi/10.1111/j.1538-4632.2008.00727.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1538-4632.2008.00727.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1538-4632.2008.00727.x
https://www.sciencedirect.com/science/article/abs/pii/B9780080970868720642
https://www.sciencedirect.com/science/article/abs/pii/B9780080970868720642
https://www.sciencedirect.com/science/article/abs/pii/B9780080970868720642
https://onlinelibrary.wiley.com/doi/abs/10.1111/0022-4146.00224
https://onlinelibrary.wiley.com/doi/abs/10.1111/0022-4146.00224
https://onlinelibrary.wiley.com/doi/abs/10.1111/0022-4146.00224
https://uk.sagepub.com/en-gb/eur/the-sage-handbook-of-spatial-analysis/book227940
https://uk.sagepub.com/en-gb/eur/the-sage-handbook-of-spatial-analysis/book227940
https://www.sciencedirect.com/science/article/pii/S2212041615300243
https://www.sciencedirect.com/science/article/pii/S2212041615300243
https://www.sciencedirect.com/science/article/pii/S2212041615300243
https://onlinelibrary.wiley.com/doi/10.1002/9781119008651.ch3
https://onlinelibrary.wiley.com/doi/10.1002/9781119008651.ch3
https://onlinelibrary.wiley.com/doi/10.1002/9781119008651.ch3
https://www.scirp.org/journal/paperinformation?paperid=76722
https://www.scirp.org/journal/paperinformation?paperid=76722
https://www.scirp.org/journal/paperinformation?paperid=76722
https://www.scirp.org/journal/paperinformation?paperid=76722
https://www.sciencedirect.com/science/article/abs/pii/S0166046207000348
https://www.sciencedirect.com/science/article/abs/pii/S0166046207000348
https://www.sciencedirect.com/science/article/abs/pii/S0166046207000348
https://onlinelibrary.wiley.com/doi/10.1111/j.1538-4632.1995.tb00338.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1538-4632.1995.tb00338.x
https://www.mdpi.com/2313-433X/5/1/20
https://www.mdpi.com/2313-433X/5/1/20
https://www.mdpi.com/2313-433X/5/1/20
https://www.mdpi.com/2313-433X/5/1/20
https://link.springer.com/chapter/10.1007/978-3-642-03647-7_17
https://link.springer.com/chapter/10.1007/978-3-642-03647-7_17
https://link.springer.com/chapter/10.1007/978-3-642-03647-7_17
https://www.sciencedirect.com/science/article/abs/pii/B0122274105008693
https://www.sciencedirect.com/science/article/abs/pii/B0122274105008693
https://www.sciencedirect.com/science/article/abs/pii/B9780128154137000055
https://www.sciencedirect.com/science/article/abs/pii/B9780128154137000055
https://www.sciencedirect.com/science/article/abs/pii/B9780128154137000055
https://www.sciencedirect.com/science/article/abs/pii/B9780128154137000055
https://www.sciencedirect.com/science/article/abs/pii/S0020138317300311
https://www.sciencedirect.com/science/article/abs/pii/S0020138317300311
https://www.sciencedirect.com/science/article/abs/pii/S0020138317300311
https://www.sciencedirect.com/science/article/abs/pii/S0166046207000348
https://www.sciencedirect.com/science/article/abs/pii/S0166046207000348
https://www.sciencedirect.com/science/article/abs/pii/S0166046207000348
https://pubs.aip.org/aip/acp/article-abstract/2588/1/050006/2872250/Spatial-autocorrelation-using-Moran-s-Index-to-map?redirectedFrom=fulltext
https://pubs.aip.org/aip/acp/article-abstract/2588/1/050006/2872250/Spatial-autocorrelation-using-Moran-s-Index-to-map?redirectedFrom=fulltext
https://pubs.aip.org/aip/acp/article-abstract/2588/1/050006/2872250/Spatial-autocorrelation-using-Moran-s-Index-to-map?redirectedFrom=fulltext
https://link.springer.com/referenceworkentry/10.1007/978-0-387-35973-1_446
https://link.springer.com/referenceworkentry/10.1007/978-0-387-35973-1_446
https://www.tandfonline.com/doi/full/10.1080/00049158.2019.1678714
https://www.tandfonline.com/doi/full/10.1080/00049158.2019.1678714
https://www.tandfonline.com/doi/full/10.1080/00049158.2019.1678714
https://www.tandfonline.com/doi/full/10.1080/00049158.2019.1678714
https://pubs.aip.org/aip/acp/article-abstract/2326/1/020027/1000493/Spatio-temporal-patterns-of-dengue-hemorrhagic?redirectedFrom=PDF
https://pubs.aip.org/aip/acp/article-abstract/2326/1/020027/1000493/Spatio-temporal-patterns-of-dengue-hemorrhagic?redirectedFrom=PDF
https://pubs.aip.org/aip/acp/article-abstract/2326/1/020027/1000493/Spatio-temporal-patterns-of-dengue-hemorrhagic?redirectedFrom=PDF
https://pubs.aip.org/aip/acp/article-abstract/2326/1/020027/1000493/Spatio-temporal-patterns-of-dengue-hemorrhagic?redirectedFrom=PDF
https://pubs.aip.org/aip/acp/article-abstract/2326/1/020027/1000493/Spatio-temporal-patterns-of-dengue-hemorrhagic?redirectedFrom=PDF
https://pubs.aip.org/aip/acp/article-abstract/2268/1/020005/1002037/Forecasting-dengue-fever-cases-using?redirectedFrom=fulltext
https://pubs.aip.org/aip/acp/article-abstract/2268/1/020005/1002037/Forecasting-dengue-fever-cases-using?redirectedFrom=fulltext
https://pubs.aip.org/aip/acp/article-abstract/2268/1/020005/1002037/Forecasting-dengue-fever-cases-using?redirectedFrom=fulltext
https://peerj.com/articles/11748/
https://peerj.com/articles/11748/
https://peerj.com/articles/11748/
https://peerj.com/articles/11748/
https://www.sciencedirect.com/science/article/pii/S221167532300009X
https://www.sciencedirect.com/science/article/pii/S221167532300009X
https://www.sciencedirect.com/science/article/pii/S221167532300009X
https://www.sciencedirect.com/science/article/pii/S221167532300009X
https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(22)00320-6/fulltext
https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(22)00320-6/fulltext
https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(22)00320-6/fulltext
https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(22)00320-6/fulltext
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/19162
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/19162
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/19162
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/19162
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/19025
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/19025
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/19025
http://ejurnal.ung.ac.id/index.php/JJBM/article/view/8482
http://ejurnal.ung.ac.id/index.php/JJBM/article/view/8482
http://ejurnal.ung.ac.id/index.php/JJBM/article/view/8482
https://academic.oup.com/cid/article/73/12/2257/6124429?login=false
https://academic.oup.com/cid/article/73/12/2257/6124429?login=false
https://academic.oup.com/cid/article/73/12/2257/6124429?login=false
https://academic.oup.com/cid/article/73/12/2257/6124429?login=false
https://academic.oup.com/cid/article/73/12/2257/6124429?login=false
https://www.wiley.com/en-au/Time+Series+Analysis3A+Forecasting+and+Control2C+5th+Edition-p-9781118674918
https://www.wiley.com/en-au/Time+Series+Analysis3A+Forecasting+and+Control2C+5th+Edition-p-9781118674918
https://www.wiley.com/en-au/Time+Series+Analysis3A+Forecasting+and+Control2C+5th+Edition-p-9781118674918

	Introduction
	Weight Matrix in Spatial
	ARIMA - Spatial Autocorrelation (Moran Index and LISA)
	ARIMA
	Moran Index
	Local Indicator of Spatial Autocorrelation (LISA)

	Result and Discussion
	Descriptive Statistics
	ARIMA Model
	Spatial Autocorrelation - Moran Index and LISA
	Moran's Index
	LISA

	Conclusion

