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The Dynamics of a Predator-Prey Model Involving Disease
Spread In Prey and Predator Cannibalism

Nurul Imamah Ah1,∗, Wuryansari Muharini Kusumawinahyu2, Agus Suryanto3, and
Trisilowati 4

1,2,3,4Department of Mathematics, University of Brawijaya, Jl. Veteran, Ketawanggede, Lowokwaru, Malang, Jawa Timur 65145, Indonesia.
1Department of Mathematics Education, Muhammadiyah University of Jember, Jl. Karimata 49 Jember, Jawa Timur 68171, Indonesia.

ABSTRACT. In this article, dynamics of predator prey model with infection spread in prey and cannibalism in preda-
tor is analyzed. The model has three populations, namely susceptible prey, infected prey, and predator. It is assumed
that there is no migration in both prey and predator populations. The dynamical analysis shows that the model has
six equilibria, namely the trivial equilibrium point, the prey extinction point, the disease free and predator extinction
equilibrium point, the disease-free equilibrium point, the predator extinction equilibrium point, and the coexistence
equilibrium point. The first equilibrium is unstable, and the other equilibria conditionally local asymptotically stable.
The positivity and boundedness of the solution are also shown. The analytical result is supported by numerical simu-
lation. It is shown that in such a high cannibalization the coexistence equilibrium is locally asymptotically stable.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction
The relationship between predator and prey species,

known as predation, is one of the interactions between species in
an ecosystem. A mathematical model of predation was first pro-
posed by Lotka and Volterra [1–3]. In the Lotka-Volterra model, it
is assumed that both prey and predator are healthy. In fact, there
is an interesting possibility of disease spreading among them and
may influence the existence of prey and predators. As a result,
Kermack et al [4] were among the first who used mathemati-
cal models to explore the spread of diseases or eco epidemio-
logical models. Meanwhile, several researchers have discussed
the eco-epidemiological model of predator prey with infected
prey population [5–13]. Chattopadhyay et al [14] consider eco-
epidemiological model which the transmission rate among the
susceptible populations and the infected prey populations fol-
lows the simple law of mass action. The disease is spread among
the prey population is not genetically inherited. And the infected
populations do not become immune. The predator populations
here use the type I Holling functional response. Furthermore,
the ecoepidemiological model proposed by Biswas et al [15] im-
plies that infected prey cannot become susceptible prey and that
predators are harvested. Maisaroh et al [16] also analyzed the
model of predator-prey with disease and proportional harvesting
in predator.

Cannibalism is also a biological phenomenon which may
influence the existence of predator-prey. Kang et al [17] stud-
ied a single-species cannibalism model with stage structure. The
model studied is a dynamical system of one population with an
age structure that divides the population into two classes, namely
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eggs and adult class. Deng et al [18] considered the dynamic
behaviors of Lotka–Volterra predator–prey model incorporating
predator cannibalism and show that cannibalism has both posi-
tive and negative effects on the stability of the system, it depends
on the dynamic behaviors of the original system. Biswas et al
[19] also analyzed a predator-prey model with disease in both
prey and predator populations. They consider that the predator
population is cannibalistic in nature and the disease spread in
the predator population through cannibalism. Rayungsari et al
[20] also developed a cannibalism of eco-epidemiological mod-
els in predator population. They examine that cannibalism acts
as a self-regulatory mechanism and controls the disease transmis-
sion among the predators by stabilizing the predator prey oscilla-
tions. Zhang et al [21] developed an eco-epidemiological model
with stage structure and cannibalism in predators, resulting in
a three-dimensional dynamical model. The predator population
is separated into two subpopulations in Zhang’s model, namely
juvenile and adult predators. The juvenile predator birth rate
is proportional to the number of adult predators, and it follows
Malthus growth model. Adult predators hunt on prey and juve-
nile predators in the rate represented by the type I Holling func-
tional response.

Different from previous research, the formulation of the
model in this paper combines Chattopadhyay et al [15] and Deng
et al [18] in which predators attack suceptible prey and infected
prey. It is assumed that predatorprey interactions follow canni-
balism behaviour in predator. Shrimp and crab are the example
of this ecoepidemiological model. Shrimp disease including the
white spot syndrome virus (WSSV) can be caused by poor environ-
mental quality and condition of shrimp. The goals of this research
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are to recreate the predator-prey model which is accounting for
the existence of disease spread in the prey population, to find
the equilibrium point, to examine the stability of the equilibrium
point, and to perform numerical simulations to illustrate analyt-
ical result.

2. Formulation of the Model
The formulation of the model in this paper is inspired by

Chattopadhyay et al [15] who developed a predator prey model
with disease in the prey as follows.

dxs

dt
= r(xs + xi)

(
1− xs + xi

k

)
− cxsxi − aixsy,

dxi

dt
= cxsxi − a2xiy − δxi,

dy

dt
= d1xsy + d2xiy − µy.

(1)

In this paper, we introduce the simple predator prey model
involving disease spread in prey and cannibalism predator. We
are assuming that:
1. The formulation of this model includes susceptible and in-

fected prey. The susceptible prey population with intrinsic
growth rate r and environmental carrying capacity k.

2. The infected prey does not return to susceptible.
3. Predators are cannibalistic.
4. There is natural mortality in infected prey and predators.
5. There is no migration of both prey and predators.

Based on those assumptions, we formulate the model as
follows.

dxs

dt
= rxs

(
1− xs + xi

k

)
− cxsxi − aixsy = 0,

dxi

dt
= cxsxi − a2xiy − δxi = 0,

dy

dt
= d1xsy + d2xiy + γy − βy2

q + y
− µy = 0.

(2)

where xs, xi, and y respectively represent susceptible, infected
prey and predator, with the following initial conditions.

xs(0) > 0, xi(0) > 0, y(0) > 0.

All parameters considered are positive, which is defined in
Table 1.

2.1. Positivity and boundedness.
In this section, positivity, and boundedness of solutions of

model (2) have been investigated.

Theorem 1. All solutions of model (2) with initial values xs(0),
xi(0), y(0) ∈ R3

+ are non-negative [20].

Proof. First, we proof that if xs(0) ≥ 0, xi(0) ≥ 0, and y(0) ≥ 0,
then xs(t) ≥ 0, xi(t) ≥ 0, and y(t) ≥ 0 for t > 0. If xs(0) = 0,
then

xs

dt
= 0, at t = 0.

It means that the prey population density xs does not change
from the beginning to the next. Hence, it is assumed thatxs(0) >

0. If xs(0) ≥ 0 for every t ≥ 0 is not true, then there is t1 > 0
such that xs(t) > 0 for 0 < t < t1, xs(t) = 0, for t = t1 and
xs(t) < 0 for t > t1, From model (2) we obtain:

xs

dt
= 0, at t = t1.

Thus, there is no change in the population density of xs when
t = t1. This contradicts the statement that xs(t) < 0 for
t > t1. Therefore, the previous assumption is false, which means
xs(0) ≥ 0 for every t > 0. In the same way, it can be proof that
xi(0) ≥ 0 and y(0) ≥ 0 for every t > 0.

Theorem 2. All solutions of model (2) in the region Ω = (xs +

xi + y) <
ω

ρ
∈ R3

+ are uniformly bounded.

Proof. Choose a function defined by v(t) = xs(t) + xi(t) + y(t),
where xs > 0, xi > 0, y > 0.

dv

dt
+ ρv = rxs

(
1− xs + xi

k

)
− a1xsy − cxsxi + cxsxi

−a2xiy − δxi − µy + d1xsy + d2xiy −
βy2

q + y
+γy + ρ(xs + xi + y),

if d1 < a1, d2 < a2, Then

dv

dt
+ ρv ≤ rxs

(
1− xs + xi

k

)
− δxi − µy − βy2

q + y
+ γy

+ρxs + ρxi + ρy,

≤ rxs

(
1− xs + xi

k

)
+ (ρ− δ)xi + (ρ+ γ − µ)y

− βy2

q + y
+ ρxs.

choose ρ < min{δ, µ− γ}, then.
dv

dt
+ ρv ≤ rxs

(
1 −

xs + xi

k

)
+ ρxs,

≤ rxs −
rx2

s

k
+ ρxs,

= (r + ρ)xs −
rx2

s

k
,

= −
r

k

[
x2
s −

(r + ρ)k

2r
xs +

(
(r + ρ)k

2r

)2

−
(

(r + ρ)k

2r

)2
]
,

= −
r

k

(
xs −

(r + ρ)k

2r

)2

+
r

k

(
(r + ρ)2k2

4r2

)
,

≤
(r + ρ)2k

4r
.

We get.
dv

dt
+ ρv(t) ≤ w

with w =
(r + ρ)2k

4r
.

eρt
(
dv

dt
+ ρv(t)

)
≤ eρtw,

d(eρtv)

dt
≤ eρtw,

eρtv ≤
∫
eρtwdt,

v ≤ e−ρtw

(
eρt

ρ
+ c

)
,

v ≤
(
w

ρ
+ ce−ρtw

)
.

JJBM | Jambura J. Biomath Volume 4 | Issue 2 | December 2023



N. I. Ah et al. – The Dynamics of a Predator-Prey Model Involving Disease Spread In Prey … 121

Table 1. Definiton Parameter and Ecological Meaning

Parameter Ecological Meaning
r Intrinsic per capita growth rate of prey population
k Carrying capacity of susceptible prey population
a1 Maximum consumption rate of predator population
c Disease transmission rate in prey population
a2 Attack rate of infected prey
δ Natural death rate of infected prey
µ Natural death rate of predator population
d1 Conversion rate of susceptible prey
d2 Conversion rate of infected prey
γ Conversion of cannibalism into predator birth
q Half saturation constant of predator cannibalism
β Predator cannibalism rate

with C = cw by subtitution t = 0 to

v(t) ≤ w

ρ
+ Ce−ρt.

We get.
C = v(0)− w

ρ
,

then

v(t) ≤ w

ρ
+

(
v(0)− w

ρ

)
e−ρt,

if v(0) ≤ w
ρ , then v < w

ρ , If v(0) > w
ρ , then

w
ρ < v(t) <

v(0) because lim
t→∞

v(t) = w
ρ . Therefore all solution are uniformly

bounded.

3. Equilibrium Points and Stability Analysis
3.1. Equilibrium Points

We find an equilibrium points of equation by equating the
derivatives on the left-hand side to zero, namely.

xs

[
r

(
1− xs + xi

k

)
− a1y − cxi

]
= 0,

xi[cxs − a2 − δ] = 0, ,

y

[
−µ+ d1xs + d2xi −

βy

q + y
+ γ

]
= 0

(3)

1. The trivial equilibrium point E0 = (0, 0, 0), that always ex-
ists R3

+.
2. The prey extinction equilibrium point

E1 = (0, 0, ŷ) .

where ŷ = µq−γq
γ−µ−β . Equilibrium point E1 exists in R3

+, if
γ − β < µ < γ. This condition shows that even though
suspectible and infected prey is extinct, predator still sur-
vives the rate of cannibalism greater than natural death rate
of predator population.

3. The disease free and predator extinction equilibrium point

E2 = (k, 0, 0).

Equilibrium points E2 always exists in R3
+.

4. The disease-free equilibrium point.

E3 = (x̃s, 0, ỹ) .

where ỹ = rk−rx̃s

a1k
. Equilibrium points of E3 exists in R3

+,
if x̃s < k.

5. The predator extinction equilibrium point.

E4 =

(
δ

c
,
r(ck − δ)

c(ck + r)
, 0

)
.

Equilibrium points E4 exists in R3
+, if ck > δ.

6. The coexistence equilibrium point E5 = (x∗
s, x

∗
i , y

∗) with

x∗
s =

φ2 ±
√
φ2
2 − 4φ1φ3

2φ1
,

x∗
i =

a2kr + δa1k − (a2r + a1ck)x
∗
s

a2(r + ck)
,

y∗ =
cx∗

s − δ

a2
.

Where:

φ1 = d2P − d1Q,
φ2 = a2R− a2S + d2T,
φ3 = a2U − V +W,
P = a1kc

2 + a22rc,
Q = a2c

2k + ca2r,
R = µrc+ µc2k + d1ckδ + a2d2rq + a1d2ckq

+a1d2ckq + βcr + βc2k,
S = a2d1qr + d1δr + a2d1ckq + γc2k + d2ckr,
T = a1δck + a1δck,
U = a2µqr + µa2ckq + δµck + δγr + δγck + δd2kr

+βδck,
V = δµr + γa2qr + γcr + γa2ckq + δa2d2kq ∓ δ2k

+a2d2kqr + βδr,
W = δd2rk

Let’s D = φ2
2 − 4φ1φ3 the following conditions are met.

• if D = 0, then x∗
s = −φ2

2φ1
, this equation has a positive

root, when φ1 < 0 and φ2 > 0, or φ1 > 0 and φ2 < 0.
• for D > 0:

(a) if φ2

φ1
> 0 and φ1φ3 < 0, then one fixed point is

obtained.
(b) if φ2

φ1
< 0 and φ1φ3 < 0, then one fixed point is

obtained.
(c) if φ2

φ1
< 0 and 0 < 4φ1φ3 < φ2, then two fixed

point are obtained.
Equilibrium point E5 exists if δ

c < x∗
s < k(a2r+δa1)

a2r+a1ck
.
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3.2. Local Stability
Here we examine the eigen value by Jacobian matrix.

J =

 j11 j12 j13
j21 j22 j23
j31 j32 j33

 ,

where

j11 = r − 2rxs

k
− rxi

k
− a1y − cxi,

j12 =
2rxs

k
− cxs,

j13 = −a1xs,
j21 = cxi,
j22 = cxs − a2y − δ,
j23 = −a2xi,
j31 = d1y,
j32 = d2y,

j33 = −µ+ d1xs + d2xi + γ − 2β(q + y)− βy

(q + y)2
.

The stability of the equilibrium points of the model (2) are deter-
mined by the eigenvalues of the Jacobian matrix and the result is
obtained in the following theorem.

Theorem 3. The local stability of the equilibrium points of the
model is as follows.

i. The equilibrium E0 = (0, 0, 0) is always unstable.
ii. E1 = (0, 0, ŷ) is locally asymptotically stable if r < a1ŷ

and unstable if r > a1ŷ.
iii. E2 = (k, 0, 0) is locally asymptotically stable if k <

min{ δ
c ,

µ−γ
d1

} and unstable if k > min{ δ
c ,

µ−γ
d1

}.
iv. E3 = (x̃s, 0, ỹ) is locally asymptotically stable if cx̃s <

a2ỹ + δ.
v. E4 =

(
δ
c ,

r(ck−δ)
c(ck+r) , 0

)
is locally asymptotically stable if

µ > γ + d1
(
δ
c

)
+ d2

(
ckr−δr
c2k+r

)
.

vi. E5 = (x∗
s, x

∗
i , y

∗) is locally asymptotically stable if ρ1 > 0,
ρ3 > 0, and ρ1ρ2 − ρ3 > 0.

Proof. 1. By substituting E0 = (0, 0, 0) to the model (1), we
have

J(E0) =

 r 0 0
0 −δ 0
0 0 −µ+ γ

 ,

Then we get eigen values λ1 = r, λ2 = −δ, and λ3 =
−µ+ γ. Since λ1 positive, equilibrium point E0 = (0, 0, 0)
is always unstable.

2. From eq. (3), E1 = (0, 0, ŷ) complete the equation −µ +
d1xs + d2xi + γ − βy

q+y = 0, then we have the Jacobian
matrix for E1 is

J(E1) =

 r − a1ŷ 0 0
0 −a2ŷ − δ 0

d1ŷ d2ŷ
βŷ2(q+ŷ)−2βqŷ−βŷ2

(q+ŷ)2

 ,

The eigen values for J(E1) are λ1 = r−a1ŷ, λ2 = −a2ŷ−δ,
and λ3 = −βqŷ

(q+ŷ)2 . E1 is locally asymptotically stable if r <

a1ŷ.

3. The Jacobian matrix for E2 = (k, 0, 0)

J(E2) =

 r kr − ck −a1k
0 ck − δ 0
0 0 −µ+ d1k + γ

 ,

has λ1 = −r, λ2 = ck − δ, and λ3 = d1k + γ − µ < 0
then k < µ−γ

d1
. E2 locally asymptotically stable if k <

min
{

δ
c ,

µ−γ
d1

}
, otherwise, if k > min

{
δ
c ,

µ−γ
d1

}
, E2 be-

comes unstable.
4. From eq. (3) we get r − rxs

k − rxi

k − a1y − cxi = 0, and

−µ + d1xs + d2xi −
βy

q + y
+ γ = 0, then the Jacobian

matrix for infected prey extinction point is

J(E3) =

 j̃11 j̃12 j̃13
j̃21 j̃22 ˜j23
j̃31 j̃32 j̃33

 .

where

j̃11 = −rx̃s

k
, j̃22 = cx̃s − a2ỹ − δ,

j̃12 =
rx̃s

k
− cx̃s, j̃23 = 0,

j̃13 = −a1x̃s, j̃31 = d1ỹ,

j̃21 = 0, j̃32 = d2ỹ,

j̃33 =
−βqỹ

(q + ỹ)2
.

So that the eigen values are λ1 = cx̃s − a2ỹ− δ, and λ2, λ3

is the eigen values of

J1(E3) =

[
j̃11 j̃13
j̃31 j̃33

]
.

E3 is locally asimtotically stable if det J1(E3) = j̃11j̃33 −
j̃13j̃31 > 0 and traceJ1(E3) = j̃11 + j̃33 < 0. The deter-
minant and the trace of the matrix J1(E3) are respectively,
given by

det J1(E3) = j̃11j̃33 − j̃13j̃31,

=

(
βqrx̃sỹ

k(q + ỹ)2

)
+ (d1ỹa1x̃s) > 0, and

traceJ1(E3) = j̃11 + j̃33,

= −rx̃s

k
− βqỹ

(q + ỹ)2
< 0.

Then E3 is locally asimtotically stable if cx̃s < a2ỹ + δ.
5. Based on eq. (3),E4 complete r− rxs

k − rxi

k −a1y−cxi = 0,

then by substituting E4 =
(

δ
c ,

r(ck−δ)
c(ck+r) , 0

)
to the Jacobian

matrix, obtained

J(E4) =

 j̄11 j̄12 j̄13
j̄21 j̄22 j̄23
j̄31 j̄32 j̄33

 .
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Table 2. Parameter Value

Parameter Simulation Simulation 2 Simulation 3 Simulation 4 Simulation 5
r 0.2 0.2 5 0.2 2
k 1 0.5 0.5 0.5 1
a1 0.5 0.5 5 0.5 0.5
c 0.5 0.1 1 0.5 0.4
a2 0.2 0.2 5 0.2 0.5
δ 0.1 0.5 0.5 0.1 0.01
d1 0.3 0.1 3 0.3 1
d2 1 1 1 1 1
β 0.2 0.3 0.3 0.3 1
q 1 1 0.5 1 1
γ 0.2 0.5 0.5 0.5 0.5
µ 0.1 1 0.5 1 1

where

j̄11 = −rδ

ck
, j̄22 = 0,

j̄12 =
δ(r − ck)

ck
, j̄23 = −a2

(
r(ck − δ)

c(ck + r)

)
,

j̄13 =
−a1δ

c
, j̄31 = 0,

j̄21 = −r(ck − δ)

(ck + r)
, j̄32 = 0,

j̄33 = −µ+ d1xs + d2xi + γ.

So that the eigen values λ1 = γ−µ+d1
(
δ
c

)
+d2

(
ckr−δr
c2k+r

)
,

and λ2,3 fulfill

J1(E4) =

[
j̄11 j̄12
j̄21 j̄22

]
,

E4 asymptotically local stable if det J1(E4) = j̄11j̄22 −
j̄12j̄21 > 0 and trace J1(E4) = j̄11 + j̄22 < 0. Respec-

tively det J(E4) = −
(

δ(r−ck)
ck

)(
− r(ck−δ)

(ck+r)

)
> 0 and trace

J1(E4) = −rδ

ck
< 0, then E4 is locally asimtotically stable

if γ + d1
(
δ
c

)
+ d2

(
ckr−δr
c2k+r

)
< µ.

6. From eq. (3), E5 complete the equation r − rxs

k − rxi

k −

a1y−cxi = 0, and−µ+d1xs+d2xi−
βy

q + y
+γ = 0, then

by substitutingE5 = (x∗
s, x

∗
i , y

∗) to the Jacobian matrix, we
get

J(E5) =

 j∗11 j∗12 j∗13
j∗21 j∗22 j∗23
j∗31 j∗32 j∗33

 , or

|J(E5)− λI| =

 j∗11 − λ j∗12 j∗13
j∗21 j∗22 − λ j∗23
j∗31 j∗32 j∗33 − λ

 ,

det |J(E5)− λI| = (j∗11 − λ)(j∗22 − λ)(j∗33 − λ) +A8

+A9 − (j∗11 − λ)A3 − (j∗22 − λ)A1

−(j∗33 − λ)A2,

= −λ3 + (j∗11 + j∗22 + j∗33)λ
2

+(A1 +A2 +A3 −A4 −A5 −A6)λ

+A7 +A8 +A9 −A10 −A11 −A12,

= −λ3 + ρ̃1λ
2 + ρ̃2λ+ ρ̃3.

where

j∗11 = −rx∗
s

k
, j∗22 = cx∗

s − a2y
∗ − δ,

j∗12 =
rx∗

s

k
− cx∗

s , j∗23 = −a2x
∗
i ,

j∗13 = −a1x
∗
s , j∗31 = d1y

∗,

j∗21 = cx∗
i , j∗32 = d2y

∗,

j∗33 =
−βqy∗

(q + y∗)2
, ρ1 = j∗11 + j∗22 + j∗33,

A1 = j∗13j
∗
31, ρ2 = A1 +A2 +A3 −A4 −A5 −A6,

A2 = j∗12j
∗
21, ρ3 = A7 +A8 +A9 −A10 −A11 −A12,

A3 = j∗23j
∗
32, A8 = j∗12j

∗
23j

∗
31,

A4 = j∗11j
∗
22, A9 = j∗13j

∗
21j

∗
32,

A5 = j∗22j
∗
33, A10 = A3j

∗
11,

A6 = j∗11j
∗
33, A11 = A1j

∗
22,

A7 = A4j
∗
33, A12 = A2j

∗
33.

The characteristic equation from J(E5) is λ3+ρ1λ
2+ρ2λ+

ρ3 = 0, with ρ1 = −ρ̃1, ρ2 = −ρ̃2, and ρ3 = ρ̃3.
To find the local stability of eq. (2) we use Routh Hurwitz
criterion. E5 is locally asymptotically stable if:

• ρ1 > 0,
• ρ1ρ2 − ρ3 > 0, and
• ρ3 > 0.

Because ρ1ρ2 − ρ3 is too complex and difficult, so the sta-
bility of E5 is evaluated numerically.

4. Numerical Simulation
In this section, we give some flow of solutions to demon-

strate the stability around the equilibrium points that are asso-
ciated with the previous theoretical result. We use Runge-Kutta
4th order as the numerical methods, the numerical simulations
of the model (2) are illustrated with a various condition based on
[15–19] as given in Table 2 as follows.

For parameter value in Table 2 for simulation 1, E1 exists
i.e. [0, 0, 0.5] and it is asymptotically local stable. Since it is satis-
fying stability condition in Theorem 3 that r < a1ŷ. The density
of susceptible and infected prey goes to extinction, and the den-
sity of predator population exists. Its condition was shown in
Figure 1a. E1 shows that there are no shrimps, but crabs are ex-
ist. By using the parameter value in in Table 2 for simulation
2, E2 exists i.e. [0.5, 0, 0] and it is asymtotically local stable,
Since Theorem 3 is fulfilled k < min{ δ

c ,
µ−γ
d1

}. This is consistent
with the analytical result since the Jacobian matrix eigenvalues
are negative numbers. The density of suceptible prey population
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(a) E1 (b) E2

(c) E3 (d) E4

(e) E5

Figure 1. The figure depics the solution of the model (1) for equilibrium point:
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is existed, but the density of infected prey and predator tends to
extinction. Figure 1b depicts its current condition. E2 demon-
strates that shrimp are present but crabs are not.Numerical simu-
lation around the equilibrium pointE3 using a parameter value in
Table 2 simulation 3, E3 is exists i.e., [0.06, 0, 0.9] and it is asym-
totically local stable, the stability conditions is fulfilled according
to the Theorem 3 with the stability condition cx̃s = 0, 0048 <
a2ỹ + δ = 5.5421. The density of susceptible prey and predator
population exists, but the density of infected prey is heading to
extinction. This condition was shown in Figure 1c. E3 shows that
there isn’t a healthy shrimp, but both sick shrimps and crabs ex-
ist. Figure 1d use the parameter value in Table 2 simulation 4,E4

exists i.e., [0.2, 0.1, 0] and it is asymtotically local stable, this is
consistent with the analytical result in Theorem 3 and satisfy the
condition γ+d1

(
δ
c

)
+d2

(
rck−rδ
c2k+r

)
= 0.7378 < µ = 1. The den-

sity of predators is heading to extinction, but the density of sus-
ceptible prey and infected prey exists. E4 illustrates that there
are both healthy and sick shrimp, but no crabs. Figure 1e use the
selected parameter value in Table 2 simulation 5, E5 exists, i.e.,
[0.7, 0.2, 0.5] and it is asymtotically local stable, and satisfy sta-
bility condition using Routh Hourwitz criterion, ρ1 = 1.485 > 0,
ρ3 = 0.2048 > 0, and ρ1ρ2 − ρ3 = 0.3391 > 0. This is consis-
tent with the analytical result in Theorem 3, so the density of all
spesies shrimps and crabs exists.

5. Conclusion
We have formulated a model to describe an interaction of

prey species and predator cannibalism. we show the dynamics of
the system, especially the behaviour of solutions around the equi-
librium point. There are six equilibria in this model, namely the
trivial equilibrium point, the prey extinction point, the disease
free and predator extinction equilibrium point, the disease-free
equilibrium point, the predator extinction equilibrium point, and
the coexistence equilibrium point. The first equilibrium is unsta-
ble, and the other equilibria is asymptotically stable with condi-
tionally stable. All the result are based on numerical simulations
by Runge Kutta method.
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