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ABSTRACT. Tuberculosis, a highly contagious and lethal infectious disease, remains a global health concern with
challenging treatment options. To combat its widespread impact, prevention strategies, such as vaccination, are im-
perative. This research focuses on developing a mathematical model with the addition of a vaccination compartment
to understand the dynamics of tuberculosis transmission with vaccination. Subsequently, the study proceeds to identify
the equilibrium points and calculate the basic reproduction number (Ro). Following this, a comprehensive stability
analysis is conducted, and a numerical simulation is executed to observe the population dynamics. Furthermore, pa-
rameter sensitivity analysis is undertaken to assess the extent to which these parameters impact Ro. Preliminary
analysis shows that the modified model has a solution that remains in the non-negative and bounded region. Further-
more, model analysis reveals two equilibrium points, namely the disease-free equilibrium and the endemic equilibrium.
It is established that the disease-free equilibrium exhibits local asymptotic stability when Ro < 1. Remarkably, the
numerical simulation aligns with the analytical findings, reinforcing the robustness of the results. Analysis of the
sensitivity of the parameter to o shows that the parameter of the proportion of susceptible population entering the
vaccination class has a significant effect on the value of Ro. The parameter of proportion of susceptible population

entering the vaccination class has a negative effect on the number of populations with infection.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of [JBM: Department of Mathematics, Uni-
By _NC versitas Negeri Gorontalo, JIn. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction

Tuberculosis is a globally prevalent infectious disease char-
acterized by a high mortality rate [1-3]. Tuberculosis (TB) is a
persistent health condition triggered by the bacterium Mycobac-
terium tuberculosis [4-7] which is transmitted through direct
contact with patients with active Tuberculosis when coughing,
sneezing, screaming, or talking [8, 9]. The initial dynamics of tu-
berculosis infection is very difficult to detect and most are asymp-
tomatic [10].

Tuberculosis remains a significant global threat to human
health as one of the primary infectious diseases [9]. This is be-
cause Tuberculosis is difficult to cure [4] and easily creates resis-
tance to multi-drugs [9]. In addition, the availability of TB drugs
is still very limited and the cost of treatment is still very high
[11, 12]. Therefore, it is important to take preventive and con-
trol measures against the transmission of tuberculosis such as
vaccination [13-15].

It is important to conduct research on the mathematical
modeling of the spread of Tuberculosis to determine the effect of
vaccination on the population dynamics of Tuberculosis. Mathe-
matical modeling of Tuberculosis itself has been carried out by
many experts, such as Das et al. [7] examined the transmis-
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sion model for the spread of Tuberculosis with time subordinate
boundaries. Avilov et al. [10] assess the dynamics of the ini-
tial phases of active pulmonary tuberculosis using contemporary
routine notification data.

Furthermore, Xu et al. [16] conducted research by divid-
ing the population into drug-sensitive and drug-resistant pop-
ulations. In this research, total population is divided into
seven compartments, namely Susceptible population (.5), drug-
sensitive Exposed population (FE), drug-sensitive Infected pop-
ulation (I;), drug-sensitive Recovered population (R;), drug-
resistant Exposed population (E,.), drug-resistant Infected popu-
lation (I,.), and drug-resistant Recovered population (R). Mishra
and Srivastava [17] and Zhang et al. [9] who studied the effect of
vaccination on the population dynamics of tuberculosis.

2. Methods

In this section, the mathematical models of the spread of
Tuberculosis from previous researchers will be presented. Then
will be explained about the Mathematical model of the spread of
Tuberculosis disease used in this study.

2.1. Mathematical Models

The model in this study is the modified result of Xu et al.
[16] by adding the Vaccination compartment based on the Mishra
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Figure 1. Modified Tuberculosis Spread Model Scheme

and Srivastava [17] and Zhang et al. [9]. So that in this study a
model of the spread of Tuberculosis was obtained as can be seen
in Figure 1. In this research, a more complex model was obtained
compared to previous models. So that the model formed can bet-
ter describe the effect of vaccination on the population dynamics
of the spread of Tuberculosis. In this model, total population is
divided into eight compartments, namely Susceptible population
(.S), Vaccinated population (V), drug-sensitive Exposed popula-
tion (F;), drug-sensitive Infected population (I;), drug-sensitive
Recovered population (R;), drug-resistant Exposed population
(E,), drug-resistant Infected population (/,.), and drug-resistant
Recovered population (Ry).

The diagram in Figure 1 corresponds to the following set
of non-linear differential equations, representing the model:

ds BslsS Bl S

R | _ sisy  Eriro _

7 +pV N N oS — S,

dv

— =05 —pV —uV,

o = oSV —uV,
dE;  (Bs1,5

=——— —vE,—ukE

dt N Vivg — plus,

dI

= vEs +wsRs — (1 —r)cly — resls — 615 — uls,
IR (1)
dts =rcsls —ws R — MRsv
dE,  (B.1.S

=——— —VvE, — uFE

dt N VEyp — Loy,

dI,

T vE, +w.R. + (1 —r)cls — ¢, I, — 61, — ul,,
dR,

T el —wr R, — uR,.

Parameter values used in this research can be seen in Table 1.

2.2. Positivity and Boundedness of Solutions

In this section, we will be proved that the model (1) has a
non-negative and bounded solution region.

| Jambura J. Biomath

Theorem 1. Set D

{(57‘/7ES7IS)RS7ET7IT7RT) E

R |0 <N < % + Ny ¢ is the non-negative and bounded

solution region of the model (1) where Ny is the total population
att=0and N =S+V +E;,+I,+ Rs+E,.+ I, +R,.

Proof. Letty as in eq. (2) below:

ty = Sup{t >0]8(t) > 0,V(t) >0, E(t) > 0,I,(t) > 0,

Ry(t) > 0,E.(t) > 0,1,(t) > 0, R(t) > 0 € [O,t]}.
(2
Hence, ty > 0. The first equation in the model (1), can be
written as follows

ds BslsS  BrIS BslsS  BrlyS

g | _ _ _
dt VST N =I5 N
—0S — uS —0S — uS
or is
— > 11— S 3
7= »S, 3)
where 8.1 81
p= N + N + o+ p.

By utilizing the integrating factor method [19, 20], eq. (3) can be

represented as:
t
| etwraw
0

i(s(t) exp [ /0 so(w)de = Ilexp

Hence,

S(ts)exp [fotf Lp(w)dw} —50) > Ty’ <exp {f()%(w)dw )de

Volume 5 | Issue 1 | June 2024
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Table 1. Parameter Values in Tuberculosis Infection Model

Parameter Description Value Source
II Monthly births 1,379,167 [16]
Bs DS-TB transmission rate 0.6356 [16]
Br DR-TB transmission rate 0.3458 [16]
o The vaccination class receives a portion of the susceptible population 0<o <1 Assumed
The rate at which individuals transition from the vaccination class to
p . 0<p<l1 Assumed
the susceptible class
v Progression rate 7.99 x 10~° [16]
ws DS-TB relapse rate 3.90 x 10—4 [16]
Wy DR-TB relapse rate 1.96 x 10~4 [16]
c DS-TB to DR-TB conversion rate 0.0376 [16]
Cs Cure rate of DS-TB 0.1299 [16]
cr Cure rate of DR-TB 0.0493 [16]
T Proportion of DS-TB cured cases 0.85 (18]
1) Monthly mortality rate due to TB 417 x 1073 (18]
Monthly natural mortality rate 5.83 x 10~4 [16]

so that

S(t;) > S(0)exp [7 s <p(w)dw:| 4 Mexp [7 1! @(w)dw:| > 0.

X jotf <exp fne @(w)dw) do

In the same way, the remaining state variables V'(¢) > 0,E(t) >
0,I5(t) > 0,Rs(t) > 0,E.(t) > 0,I.(t) > 0,and R,.(t) > 0
for all time ¢ > 0. Hence, all the solutions of model (1) remain
positive for all non-negative initial conditions.

Then,let N = S+ V +FE;+ I, + R + E. + 1. + R,.
The initial values at ¢ = 0 for each population are S(0) = Sy,
V(O) = va ES(O) = Es()v IS(O) = Is()’ RS(O) = RS()v ET(O) =
Ero, IT(O) = 1,0, and RT(O) = Rro.

The sum of the equations in the model (1) gives the change
in the total population N over time t as follows:

dN
E :H*/U'Nfé(ls +Ir)~ (4)
Since 6 > 0 and I4(t), I.(t) > 0, then eq. (4) can be written as
dN
— < II—uN,
AN dt
— N < 1L
i tu <
Let ¢y as a positive constant such that
dN
— N =11 — ¢;.
at TH “l

By employing the integrating factor method with the initial value
N(0) = Ny, is obtained as

II II
N = — + Nge ™ #t — —e™Ht 6—1(1 — e H).
7 7 1

Since 0 < e™#* < 1foreacht > 0andIl, i, c; > 0, is obtained
as

11
N < — + Np.
i

Since S(t),V(t),Es(t), Is(t),Rs(t),Er(t), I-(t),R.(t) > 0, then
for each ¢t > 0 is obtained as

Il
0< N < —+N,.
"

So, the solution region of the model (1) is non-negative and
bounded. O

| Jambura J. Biomath

A non-negative and bounded solution region indicates that
the population number in each compartment at time ¢ > 0 is
always non-negative and finite. This shows that the model that
has been established is biologically reasonable.

3. Results and Discussion

In this section, we will explain about equilibrium points,
basic reproduction number, equilibrium stability analysis, and pa-
rameter sensitivity analysis.

3.1.  Equilibrium Points

Within the framework of the system defined in model (1),
two distinct types of equilibrium points emerge, specifically the
disease-free equilibrium, which is characterized by the condi-
tions where £, = I, = E, = I, = 0 and the endemic equi-
librium, which is characterized by the conditions where E # 0,
I, #0,FE.#0and I. # 0.

The disease-free equilibrium signifies a scenario in which
all individuals within a specific population are in a healthy state,
indicating the absence of the disease within that population [21,
22]. From the model (1), a disease-free equilibrium is obtained

T°(S,V, Es, I, Ry, E,, I, R,) = (5°,V°,0,0,0,0,0,0)

where

Ilo

p(p+p+o)

= and V' =
p(p+p+o)

The endemic equilibrium represents a situation in which
there are still individuals within a given population who remain
infected, indicating that the disease has not been eradicated from
that population [21, 22]. From the model (1), the endemic equi-
librum is obtained

o N(II+ pV)
Brdy + Bsls + N(p+ )’
S
V* — L’
P+
E;k — BSSIS ;
N+ p)
I vEs + ws Ry

S (l=or+cer+d+u’

Volume 5 | Issue 1 | June 2024
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R = csrl 7
Ws + W
E’;‘j: ﬁT‘SIT ,
N+ p)
I (1—-r)els + vE, + w. R,
T cr+ 04 p ’
TI’I‘
R =T
Wy + 4

3.2. Basic Reproduction Number

The basic reproduction number, often denoted as (Ry),
quantifies the average number of new infections generated by a
single infected individual over a unit of time within a completely
susceptible population. The computation of this crucial epidemi-
ological metric involves employing the next generation matrix
method [23, 24]. The calculation of the basic reproduction num-
ber focuses exclusively on the sequence of subpopulations re-
sponsible for transmitting infections [25], namely E;, I, E, and
1I,. as follows:

dEs  Bs1sS

TR

dl,

pri vEs + wsRs — (1 —r)cls —resds — 01 — uls,
A, _6LS . )
i N Vi — ULy,

dl,

pra vE, +w.R, + (1 —r)cls — ¢, 1, — 01, — ul,.

Based on the system of eq. (5), we obtain vectors F; and V; ex-
pressing the production of new-infection in compartment and
transition part of the infectious compartment [17, 19], respec-
tively as follows:

BslsS
N
0
Fi = BTI’I‘S )
N
0
vEs +MES
V. - —vEs —wsRs + (1 —r)cls + resls + 61s + puls
v vE, +MET
—vEr —wrRr — (1 —1r)cls + e Ir + 61r + plr

Next, to determine the basic reproduction number (%), a matrix
F and V is formed which is evaluated at the disease-free equilib-
rium 7°. So that the matrices F' and V' are obtained as follows:

0 Q8. 0 0
0 0 0 O
E="10 0o o sl
0O 0 0 O
k1 0 0 O
o ke 0 0
Vo= 0 0 ks 0
0 —(1-r)c —v kg

| Jambura J. Biomath

where
0 = u’
o+p+pu
ki = v+p,
ka = (1—r)ct+res+9+p,
kg = kl =V —l—,u,
ks = ¢ +6+pu.

Then we get a matrix G, with G = F'V 1 as follows:

0 98, 0 O ky 0 0 0
s v 1
e - |0 0 o o T1ka oa 0 ’
0 0 0 QB 0 0 = 0
0 0 0 0 1-r)ev (1-r) v 1
kikokq koky kaks  ka
Qufs QBs o 0
kiko ko
0 0 0 0
G = 1-r)evQp, (1—7)eQBr  vQB, QB
kikaky kokq kska ka
0 0 0 0

Based on the matrix G above, we get the spectral radius of a
matrix G, as follows:

Ro = /Ry - R (6)

where

Qups
k1ko

Qup,

RS = s

and Ry =

3.3. Stability Analysis

In this section, we will present the proof of Theorem 2
which is the stability criterion for the disease-free equilibrium
TO.

Theorem 2. If R < 1 then the disease-free equilibrium T° for
the model (1) is locally asymtotically stable.

Proof. The stability property of
T°(S,V,Es, I, R, By, I, R,.) = (5°,v°,0,0,0,0,0,0)
can be known by conducting linearization on model (1) around
T9, so that the Jacobian matrix for disease-free equilibrium 7°
is obtained as follows:

Jll J12 0 J14 0 0 J17 0
Joyg Js 0O O O 0 0 0
0 0 Jg3 Ju O O 0O 0O
g |0 0 s Ju Js 000
=10 0 0 Jsu Jss 0 0 0
0 0 0 0 0 Jsg Jor O
0 0 0 Ju 0 Jg Jrr Jug
0 0 0 0 0 0 Jgr Jss

Volume 5 | Issue 1 | June 2024
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where
Jii = —(o+p), J54 = 1Cs,
Ji2 = p, Jss = —(ws + 1),
S +
Jia = Blot i) ,u)7 Jog = —k1 = —ks,
o+p+tu
T, = _Brlotn) _ Belptp)
o+p+u o+p+p
J21 = 0, J74 = (1 — ’I")C,
Jo2 = —(p+ ), Jre = v,
J33 = —k(1 = —;63, Jrr = —ky,
Bs(p+ 1
J3g = ———=, Jrz = wy,
4 oct+pt+pu =W
Jaz = v, Jsr = ¢,
Jaa = —ko, Jgg = —(wp + ).
Ju5 = ws,

Eigenvalues for disease-free equilibrium 7 are obtained by
means

0 = |Jpo — A,
Ju Jiz 0 Jyg 0 0 Jir 0
Jor Jog O 0 0 0 0 0
0 0 Jsz3 J3u O 0 0 0
0 = 0 0 Jaz3 Jaua Jus O 0 0
0 0 0 Jsgu Js5 O 0 0
0 0 0 0 0 Jeg Jegr O
0 0 0 Ju 0 Jw Jm Jis
0 0 0 0 0 0 Jgr Jss
A0 0 0 0 0 0 O
0O A0 0 0 0 0 O
0O 0A 0 O O0 O0 O
0 0 0OANO O OO
000 0N 0 0 0
00 00O X OO
0O 0 00O 0O X O
0O 00 0 0 0 0 A

so that the characteristic equation is obtained as follows:

Ji-Ja-J3=0
where
Ji = A= (Ji1 + Jaa)A + (J11J2a — Jo1Ja2), (7)
Jo = N — (a3 + Jag + J55) N + (J33Jaa + Ja3J55
+Jaa 55 — J3aJag — Jas J5a) A + (J33Ja5J54
+J34 4355 — J33J4a55), (8)
Js = N — (Joe + J7r + Jss) A + (Jes 77 + JooJss

+J77dss — JerJre — JrsJst) A + (JeeJrsJsr
+Je7J76J38 — JeeJr7Js8)- 9

Based on equation (7) is obtained A\ + Ay = Jy1 + Jog = — (0 +
p+2p) and Ay x Ao = Ji1Jag—JarJas = (0+p)(p+p)+o(p+p).
So it can be concluded that A\; < 0 and A < 0.

Furthermore, A3, A4 and A5 are obtained by solving equa-
tion (8) as follows:

Jo = (A 4+ a1 )? + ag) +a3) =0 (10)

| Jambura J. Biomath

where
ar = —(Js3+ Jaa + Js5)
= k14 ko + (ws + ),
as = (JegJr7 + JocJss + Jrrdss — Jerd76 — JrsJs7)
= (kg + ka)(w, + p) + (1 — R ksky — wycp,
a3 = (JszJusJsa + JsaJugIss — J33JuaJss5)

= —kwsres + (1 — R k1ka(ws + ).

Based on Routh-Hurwitz criterion [26], eq. (10) at equilibrium 7°
is stable if it satisfies the following stability conditions:

ar >0, a3 >0, and ajas > as

Since all parameters are positive, then the coefficient a; is pos-
itive. The coefficient az will be positive when R < 1. Further-
more, to show a,as > as, the parameter values in Table 1 are
used.

Furthermore, Ag, A7 and \g are obtained by solving equa-
tion (9) as follows:

J3 = (A3 + b1 A% + oA +b3) =0 (11)

where
b1 = JeeJrsJsr + JerJr6Jss — JooJr7Jss
= —kiwee, + (1 = Rp)kska(w, + p),
by = (JesJrr + JeeJss + Jrrdss — JerJre — JrsJsr)
= (ks + kg)(wp 4+ p) + (1 = Rp)ksky — wyc,,
by = —(Jo6 + Jrr + Jss)

= k3+k4+(wr+,u)

Based on Routh-Hurwitz criterion [26], eq. (11) at equilibrium 7°°
is stable if it satisfies the following stability conditions:

by >0, b3 >0, and b1by > b3

Since all paramaters are positive, then the coefficient b3 is pos-
itive. The coefficient b; will be positive when 3tj < 1. Further-
more, to show b1by > b3, the parameter values in Table 1 are
used.

Since it < 1and G < 1, it must be Ry = /R§ - RN; < 1.
So, it is proved that the disease-free equilibrium 7°° for the model
(1) is locally asymtotically stable if ¢, < 1. O

3.4. Numerical Simulations

Numerical simulations are conducted on the adjusted
model to illustrate its stability characteristics, with parameter
values taken from Table 1. Subsequently, additional numeri-
cal simulations are employed to investigate the dynamics of the
system and observe its behavior. The initial values used are
S(0) = 721,500,000, E5(0) = 404,950,000, I5(0) = 70,000,
E.(0) = 173,550,000, I.(0) = 30,833 [16] and it is assumed
that V(0) = Rs(0) = R,.(0) = 0.

The model (1) when ¢y < 1 has one disease-free equilib-
rium which can be represented by a numerical solution. Disease-
free equilibrium is obtained by using the parameter values in Ta-
ble 1 with g = 0.466331 < 1 and disease-free equilibrium
TO(S = 1.5776 x 10°, V = 7.88036 x 108, Es, = 0, I, = 0,

Volume 5 | Issue 1 | June 2024
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Figure 2. The Population Dynamics at Condition $p < 1

R; =0,E. =0,I. = 0, R. = 0). Through linearization
and computation of the system described in model (1) around
the disease-free equilibrium, the Jacobian matrix and eigenval-
ues associated with this equilibrium are determined. The ob-
served outcome indicates the stability of the disease-free equi-
librium, as all eigenvalues exhibit negativity, ie A\; = —0.900583,
Ao —0.121446, A3 —0.0545744, A4 —0.00083638,
As = —0.0007444, A\¢ = —0.000583, A7 = —0.000176093 and
As = —0.000161682.

Population dynamics with Susceptible population (S), Vac-
cinated population (V'), drug-sensitive Exposed population (E;),
drug-sensitive Infected population (I), drug-sensitive Recov-
ered population (R;), drug-resistant Exposed population (E,),
drug-resistant Infected population (I,.), and drug-resistant Re-
covered population (R,) towards disease-free equilibrium 7° as
can be seen in Figure 2. The simulation results are in accordance
with Theorem 2 that if Ry < 1, the disease-free equilibrium is
locally asymtotically stable.

3.5.  Sensitivity Analysis

The dynamics of tuberculosis transmission within a popu-
lation are significantly shaped by the values assigned to various
parameters. Alterations in these parameter values lead to corre-
sponding changes in simulation outcomes. However, the impact
of each parameter varies, contingent upon its sensitivity level.
Consequently, a thorough analysis of parameter sensitivity con-
cerning the basic reproduction number R, is imperative. The
objective of sensitivity analysis is to identify the parameters ex-
erting the most substantial influence on the value of Ry. This
analysis is executed by evaluating the parameter sensitivity in-
dex denoted as (v}%).

The basic reproducibility number sensitivity index ty de-
pending on the parameter p is obtained by fy;f“ = % X ﬁ,

p R

| Jambura J. Biomath

where Ry is the eq. (6) which depends on the parameter models
[27, 28]. The parameter values used are the parameter values in
Table 1. So that the sensitivity index values are obtained which
can be seen in Table 2.

Table 2. Sensitivity Indices of the Model

Parameter Sensitivity Index
II 0
Bs 0.5
Br 0.5
e -0.333118
p 0.332794
v 0.879469
Wy 0
Wy 0
c -0.0233428
Cs -0.456985
Cr -0.456034
r -0.324709
1 -0.055832
“w -0.886951

Based on Table 2, it can be concluded that the parameters
that have the greatest influence are S, 3,, v, and u respectively
DS-TB transmission rate, DR-TB transmission rate, progression
rate, and monthly natural mortality rate. A positive sign in the
sensitivity index signifies that an increase in the parameter value
will result in a corresponding increase in the ¥, value. Con-
versely, a negative sign in the sensitivity index indicates that an
increase in the parameter value will lead to a decrease in the R
value. For a comprehensive overview of these sensitivity index
values for model parameters, please refer to Figure 3.

In addition, it can be seen that the parameters o and p have
a considerable influence. Next, a numerical simulation will be
carried out to show the effect of the parameters ¢ and p on pop-
ulations with Tuberculosis infection.

The effect of proportion of vaccination class receives a por-
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tion of the susceptible population (o) on population dynamics is
known using the following equation:

BsBr
Q _merr
"\ Ferkakska

(0+p+n)

R

o

(12)

Ry

Based on eq. (12), Do < 0 means that if vaccination class re-

ceives a portion oftheasusceptible population (o) increases while
the other parameters are held constant, the basic reproduction
number $( will decrease. Changes in the value of (o) that cause
changes in the value of §y can be seen in Table 3.

Figure 4 shows that if the vaccination class receives a
portion of the susceptible population (o) is increase, the to-
tal population of drug-sensitive Exposed population (E;), drug-
sensitive Infected population (I;), drug-resistant Exposed popu-
lation (E,.), and drug-resistant Infected population (I,.) will de-
crease.

The effect of rate at which individuals transition from the

| Jambura J. Biomath

Table 3. The Effect of Vaccination Class Receives a Portion of
the Susceptible Population (o) on the Basic Repro-
duction Number

Parameter o Basic Reproduction Number

=03 Ro = 0.466331
oc=20.6 o = 0.349805
o=20.9 Ro = 0.279871

vaccination class to the susceptible class (p) on population dy-
namics is known using the following equation:

o [ BB
8§R0 _ kikoksky

p  (o+p+p)? (13

% > 0 means that if rate at which individ-

dp
uals transition from the vaccination class to the susceptible class
(p) increases while the other parameters are held constant, the

Based on eq. (13),
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basic reproduction number $; will increase. Changes in the value
of p that cause changes in the value of Ry can be seen in Table 4.

Table 4. The Effect of Rate at Which Individuals Transition
from the Vaccination Class to the Susceptible Class
(p) on the Basic Reproduction Number

Parameter p

Basic Reproduction Number

p=0.3
p=0.6
p=0.9

Ro = 0.349975
Ro = 0.466331
Ro = 0.524538

Figure 5 shows that if the value of the rate at which individ-
uals transition from the vaccination class to the susceptible class
(p) is increase, the total population of drug-sensitive Exposed
population (E), drug-sensitive Infected population (I;), drug-
resistant Exposed population (E,.), and drug-resistant Infected
population (I,.) will increase.

4. Conclusion

This study involves the adaptation of an existing mathe-
matical model for tuberculosis transmission, incorporating vacci-
nation for susceptible individuals. The resultant model success-
fully characterizes the tuberculosis spread dynamics. The anal-
ysis conducted on this modified model reveals the presence of
two equilibrium points, namely the disease-free equilibrium and
the endemic equilibrium. Notably, the disease-free equilibrium is
proven to be asymptotically stable when the basic reproduction
number is less than one. Furthermore, the numerical simulations
of population dynamics consistently corroborate the stability of
the disease-free equilibrium.

Sensitivity analysis produces parameters S, 3., v, and u
with the highest absolute value of the sensitivity index. Then
a numerical simulation is carried out on parameter ¢ and pa-
rameter p. Proportion of vaccination class receives a portion of

| Jambura J. Biomath

the susceptible population (o) has a significant effect on the to-
tal population of drug-sensitive Exposed population (Ey), drug-
sensitive Infected population (I;), drug-resistant Exposed pop-
ulation (E,), and drug-resistant Infected population (I,.). If
the value of ¢ is increased, then the total population of drug-
sensitive Exposed population (Ey), drug-sensitive Infected pop-
ulation (1), drug-resistant Exposed population (E,.), and drug-
resistant Infected population (I,.) will decrease.
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