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Dynamical System for Tuberculosis Outbreak with Vaccination
Treatment and Different Interventions on the Burden of Drug
Resistance

Ratnah Kurniati MA1, Sigit Sugiarto2,∗, and Sugian Nurwijaya3

1,2,3Department of Mathematics Education, Study Program Outside the Main Campus (PSDKU), University of Pattimura, Ambon 97233,
Indonesia

ABSTRACT. Tuberculosis, a highly contagious and lethal infectious disease, remains a global health concern with
challenging treatment options. To combat its widespread impact, prevention strategies, such as vaccination, are im-
perative. This research focuses on developing a mathematical model with the addition of a vaccination compartment
to understand the dynamics of tuberculosis transmission with vaccination. Subsequently, the study proceeds to identify
the equilibrium points and calculate the basic reproduction number (ℜ0). Following this, a comprehensive stability
analysis is conducted, and a numerical simulation is executed to observe the population dynamics. Furthermore, pa-
rameter sensitivity analysis is undertaken to assess the extent to which these parameters impact ℜ0. Preliminary
analysis shows that the modified model has a solution that remains in the non-negative and bounded region. Further-
more, model analysis reveals two equilibrium points, namely the disease-free equilibrium and the endemic equilibrium.
It is established that the disease-free equilibrium exhibits local asymptotic stability when ℜ0 < 1. Remarkably, the
numerical simulation aligns with the analytical findings, reinforcing the robustness of the results. Analysis of the
sensitivity of the parameter to ℜ0 shows that the parameter of the proportion of susceptible population entering the
vaccination class has a significant effect on the value of ℜ0. The parameter of proportion of susceptible population
entering the vaccination class has a negative effect on the number of populations with infection.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction

Tuberculosis is a globally prevalent infectious disease char-
acterized by a high mortality rate [1–3]. Tuberculosis (TB) is a
persistent health condition triggered by the bacterium Mycobac-
terium tuberculosis [4–7] which is transmitted through direct
contact with patients with active Tuberculosis when coughing,
sneezing, screaming, or talking [8, 9]. The initial dynamics of tu-
berculosis infection is very difficult to detect andmost are asymp-
tomatic [10].

Tuberculosis remains a significant global threat to human
health as one of the primary infectious diseases [9]. This is be-
cause Tuberculosis is difficult to cure [4] and easily creates resis-
tance to multi-drugs [9]. In addition, the availability of TB drugs
is still very limited and the cost of treatment is still very high
[11, 12]. Therefore, it is important to take preventive and con-
trol measures against the transmission of tuberculosis such as
vaccination [13–15].

It is important to conduct research on the mathematical
modeling of the spread of Tuberculosis to determine the effect of
vaccination on the population dynamics of Tuberculosis. Mathe-
matical modeling of Tuberculosis itself has been carried out by
many experts, such as Das et al. [7] examined the transmis-
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sion model for the spread of Tuberculosis with time subordinate
boundaries. Avilov et al. [10] assess the dynamics of the ini-
tial phases of active pulmonary tuberculosis using contemporary
routine notification data.

Furthermore, Xu et al. [16] conducted research by divid-
ing the population into drug-sensitive and drug-resistant pop-
ulations. In this research, total population is divided into
seven compartments, namely Susceptible population (S), drug-
sensitive Exposed population (Es), drug-sensitive Infected pop-
ulation (Is), drug-sensitive Recovered population (Rs), drug-
resistant Exposed population (Er), drug-resistant Infected popu-
lation (Ir), and drug-resistant Recovered population (Rs). Mishra
and Srivastava [17] and Zhang et al. [9] who studied the effect of
vaccination on the population dynamics of tuberculosis.

2. Methods

In this section, the mathematical models of the spread of
Tuberculosis from previous researchers will be presented. Then
will be explained about the Mathematical model of the spread of
Tuberculosis disease used in this study.

2.1. Mathematical Models

The model in this study is the modified result of Xu et al.
[16] by adding the Vaccination compartment based on the Mishra
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Figure 1. Modified Tuberculosis Spread Model Scheme

and Srivastava [17] and Zhang et al. [9]. So that in this study a
model of the spread of Tuberculosis was obtained as can be seen
in Figure 1. In this research, a more complex model was obtained
compared to previous models. So that the model formed can bet-
ter describe the effect of vaccination on the population dynamics
of the spread of Tuberculosis. In this model, total population is
divided into eight compartments, namely Susceptible population
(S), Vaccinated population (V ), drug-sensitive Exposed popula-
tion (Es), drug-sensitive Infected population (Is), drug-sensitive
Recovered population (Rs), drug-resistant Exposed population
(Er), drug-resistant Infected population (Ir), and drug-resistant
Recovered population (Rs).

The diagram in Figure 1 corresponds to the following set
of non-linear differential equations, representing the model:

dS

dt
= Π+ ρV − βsIsS

N
− βrIrS

N
− σS − µS,

dV

dt
= σS − ρV − µV,

dEs

dt
=

βsIsS

N
− νEs − µEs,

dIs
dt

= νEs + wsRs − (1− r)cIs − rcsIs − δIs − µIs,

dRs

dt
= rcsIs − wsRs − µRs,

dEr

dt
=

βrIrS

N
− νEr − µEr,

dIr
dt

= νEr + wrRr + (1− r)cIs − crIr − δIr − µIr,

dRr

dt
= crIr − wrRr − µRr.

(1)

Parameter values used in this research can be seen in Table 1.

2.2. Positivity and Boundedness of Solutions
In this section, we will be proved that the model (1) has a

non-negative and bounded solution region.

Theorem 1. Set D =

{
(S, V,Es, Is, Rs, Er, Ir, Rr) ∈

R8
+ | 0 < N < Π

µ + N0

}
is the non-negative and bounded

solution region of the model (1) where N0 is the total population
at t = 0 and N = S + V + Es + Is +Rs + Er + Ir +Rr.

Proof. Let tf as in eq. (2) below:

tf = sup
{
t > 0 | S(t) > 0, V (t) > 0, Es(t) > 0, Is(t) > 0,

Rs(t) > 0, Er(t) > 0, Ir(t) > 0, Rr(t) > 0 ∈ [0, t]
}
.

(2)
Hence, tf > 0. The first equation in the model (1), can be

written as follows

dS

dt
= Π+ ρV − βsIsS

N
− βrIrS

N
≥ Π− βsIsS

N
− βrIrS

N
−σS − µS −σS − µS

or
dS

dt
≥ Π− φS, (3)

where

φ =
βsIs
N

+
βrIr
N

+ σ + µ.

By utilizing the integrating factor method [19, 20], eq. (3) can be
represented as:

d

dt

(
S(t) exp

[∫ t

0

φ(w)dw

])
≥ Π exp

[∫ t

0

φ(w)dw

]

Hence,

S(tf ) exp

[ ∫ tf
0 φ(w)dw

]
− S(0) ≥ Π

∫ tf
0

(
exp

[ ∫ θ
0 φ(w)dw

])
dθ
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Table 1. Parameter Values in Tuberculosis Infection Model

Parameter Description Value Source
Π Monthly births 1,379,167 [16]
βs DS-TB transmission rate 0.6356 [16]
βr DR-TB transmission rate 0.3458 [16]
σ The vaccination class receives a portion of the susceptible population 0 < σ < 1 Assumed

ρ
The rate at which individuals transition from the vaccination class to
the susceptible class

0 < ρ < 1 Assumed

ν Progression rate 7.99× 10−5 [16]
ws DS-TB relapse rate 3.90× 10−4 [16]
wr DR-TB relapse rate 1.96× 10−4 [16]
c DS-TB to DR-TB conversion rate 0.0376 [16]
cs Cure rate of DS-TB 0.1299 [16]
cr Cure rate of DR-TB 0.0493 [16]
r Proportion of DS-TB cured cases 0.85 [18]
δ Monthly mortality rate due to TB 4.17× 10−3 [18]
µ Monthly natural mortality rate 5.83× 10−4 [16]

so that

S(tf ) ≥ S(0) exp

[
−
∫ tf
0 φ(w)dw

]
+ Π exp

[
−
∫ tf
0 φ(w)dw

]
> 0.

×
∫ tf
0

(
exp
∫ θ
0
φ(w)dw

)
dθ

In the same way, the remaining state variables V (t) ≥ 0,Es(t) ≥
0,Is(t) ≥ 0,Rs(t) ≥ 0,Er(t) ≥ 0,Ir(t) ≥ 0, and Rr(t) ≥ 0
for all time t > 0. Hence, all the solutions of model (1) remain
positive for all non-negative initial conditions.

Then, let N = S + V + Es + Is + Rs + Er + Ir + Rr.
The initial values at t = 0 for each population are S(0) = S0,
V (0) = V0, Es(0) = Es0, Is(0) = Is0, Rs(0) = Rs0, Er(0) =
Er0, Ir(0) = Ir0, and Rr(0) = Rr0.

The sum of the equations in the model (1) gives the change
in the total population N over time t as follows:

dN

dt
= Π− µN − δ(Is + Ir). (4)

Since δ > 0 and Is(t), Ir(t) ≥ 0, then eq. (4) can be written as

dN

dt
≤ Π− µN,

dN

dt
+ µN ≤ Π.

Let c1 as a positive constant such that

dN

dt
+ µN = Π− c1.

By employing the integrating factor method with the initial value
N(0) = N0, is obtained as

N =
Π

µ
+N0e

−µt − Π

µ
e−µt − c1

µ
(1− e−µt).

Since 0 ≤ e−µt ≤ 1 for each t ≥ 0 and Π, µ, c1 > 0, is obtained
as

N ≤ Π

µ
+N0.

Since S(t),V (t),Es(t), Is(t),Rs(t),Er(t), Ir(t),Rr(t) ≥ 0, then
for each t ≥ 0 is obtained as

0 ≤ N ≤ Π

µ
+N0.

So, the solution region of the model (1) is non-negative and
bounded.

A non-negative and bounded solution region indicates that
the population number in each compartment at time t > 0 is
always non-negative and finite. This shows that the model that
has been established is biologically reasonable.

3. Results and Discussion
In this section, we will explain about equilibrium points,

basic reproduction number, equilibrium stability analysis, and pa-
rameter sensitivity analysis.

3.1. Equilibrium Points
Within the framework of the system defined in model (1),

two distinct types of equilibrium points emerge, specifically the
disease-free equilibrium, which is characterized by the condi-
tions where Es = Is = Er = Ir = 0 and the endemic equi-
librium, which is characterized by the conditions where Es ̸= 0,
Is ̸= 0, Er ̸= 0 and Ir ̸= 0.

The disease-free equilibrium signifies a scenario in which
all individuals within a specific population are in a healthy state,
indicating the absence of the disease within that population [21,
22]. From the model (1), a disease-free equilibrium is obtained

T 0(S, V,Es, Is, Rs, Er, Ir, Rr) = (S0, V 0, 0, 0, 0, 0, 0, 0)

where

S0 =
Π(µ+ ρ)

µ(µ+ ρ+ σ)
and V 0 =

Πσ

µ(µ+ ρ+ σ)
.

The endemic equilibrium represents a situation in which
there are still individuals within a given population who remain
infected, indicating that the disease has not been eradicated from
that population [21, 22]. From the model (1), the endemic equi-
librum is obtained

S∗ =
N(Π + ρV )

βrIr + βsIs +N(ρ+ µ)
,

V ∗ =
ρS

ρ+ µ
,

E∗
s =

βsSIs
N(ν + µ)

,

I∗s =
νEs + wsRs

(1− c)r + csr + δ + µ
,

JJBM | Jambura J. Biomath Volume 5 | Issue 1 | June 2024
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R∗
s =

csrIs
ws + µ

,

E∗
r =

βrSIr
N(ν + µ)

,

I∗r =
(1− r)cIs + νEr + wrRr

cr + δ + µ
,

R∗
r =

crIr
wr + µ

.

3.2. Basic Reproduction Number

The basic reproduction number, often denoted as (ℜ0),
quantifies the average number of new infections generated by a
single infected individual over a unit of time within a completely
susceptible population. The computation of this crucial epidemi-
ological metric involves employing the next generation matrix
method [23, 24]. The calculation of the basic reproduction num-
ber focuses exclusively on the sequence of subpopulations re-
sponsible for transmitting infections [25], namely Es, Is, Er and
Ir as follows:

dEs

dt
=

βsIsS

N
− νEs − µEs,

dIs
dt

= νEs + wsRs − (1− r)cIs − rcsIs − δIs − µIs,

dEr

dt
=

βrIrS

N
− νEr − µEr,

dIr
dt

= νEr + wrRr + (1− r)cIs − crIr − δIr − µIr.

(5)

Based on the system of eq. (5), we obtain vectors Fi and Vi ex-
pressing the production of new-infection in compartment and
transition part of the infectious compartment [17, 19], respec-
tively as follows:

Fi =


βsIsS

N
0

βrIrS

N
0

 ,

Vi =


νEs + µEs

−νEs − wsRs + (1− r)cIs + rcsIs + δIs + µIs
νEr + µEr

−νEr − wrRr − (1− r)cIs + crIr + δIr + µIr

 .

Next, to determine the basic reproduction number (ℜ0), a matrix
F and V is formed which is evaluated at the disease-free equilib-
rium T 0. So that the matrices F and V are obtained as follows:

F =


0 Ωβs 0 0
0 0 0 0
0 0 0 Ωβr

0 0 0 0

 ,

V =


k1 0 0 0
−ν k2 0 0
0 0 k3 0
0 −(1− r)c −ν k4

 .

where

Ω =
ρ+ µ

σ + ρ+ µ
,

k1 = ν + µ,
k2 = (1− r)c+ rcs + δ + µ,
k3 = k1 = ν + µ,
k4 = cr + δ + µ.

Then we get a matrix G, with G = FV −1 as follows:

G =


0 Ωβs 0 0

0 0 0 0

0 0 0 Ωβr

0 0 0 0

 ·



1

k1

0 0 0

ν

k1k2

1

k2

0 0

0 0
1

k3

0

(1 − r)cν

k1k2k4

(1 − r)c

k2k4

ν

k3k4

1

k4


,

G =



Ωνβs

k1k2

Ωβs

k2

0 0

0 0 0 0

(1 − r)cνΩβr

k1k2k4

(1 − r)cΩβr

k2k4

νΩβr

k3k4

Ωβr

k4

0 0 0 0


.

Based on the matrix G above, we get the spectral radius of a
matrix G, as follows:

ℜ0 =
√
ℜs

0 · ℜr
0 (6)

where

ℜs
0 =

Ωνβs

k1k2
and ℜr

0 =
Ωνβr

k3k4
.

3.3. Stability Analysis

In this section, we will present the proof of Theorem 2
which is the stability criterion for the disease-free equilibrium
T 0.

Theorem 2. If ℜ0 < 1 then the disease-free equilibrium T 0 for
the model (1) is locally asymtotically stable.

Proof. The stability property of
T 0(S, V,Es, Is, Rs, Er, Ir, Rr) = (S0, V 0, 0, 0, 0, 0, 0, 0)
can be known by conducting linearization on model (1) around
T 0, so that the Jacobian matrix for disease-free equilibrium T 0

is obtained as follows:

JT 0 =



J11 J12 0 J14 0 0 J17 0
J21 J22 0 0 0 0 0 0
0 0 J33 J34 0 0 0 0
0 0 J43 J44 J45 0 0 0
0 0 0 J54 J55 0 0 0
0 0 0 0 0 J66 J67 0
0 0 0 J74 0 J76 J77 J78
0 0 0 0 0 0 J87 J88


JJBM | Jambura J. Biomath Volume 5 | Issue 1 | June 2024
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where

J11 = −(σ + µ), J54 = rcs,
J12 = ρ, J55 = −(ws + µ),

J14 = −βs(ρ+ µ)

σ + ρ+ µ
, J66 = −k1 = −k3,

J17 = −βr(ρ+ µ)

σ + ρ+ µ
, J67 =

βr(ρ+ µ)

σ + ρ+ µ
,

J21 = σ, J74 = (1− r)c,
J22 = −(ρ+ µ), J76 = ν,
J33 = −k1 = −k3, J77 = −k4,

J34 =
βs(ρ+ µ)

σ + ρ+ µ
, J78 = wr,

J43 = ν, J87 = cr,
J44 = −k2, J88 = −(wr + µ).
J45 = ws,

Eigenvalues for disease-free equilibrium T 0 are obtained by
means

0 = |JT 0 − λI|,

0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

J11 J12 0 J14 0 0 J17 0
J21 J22 0 0 0 0 0 0
0 0 J33 J34 0 0 0 0
0 0 J43 J44 J45 0 0 0
0 0 0 J54 J55 0 0 0
0 0 0 0 0 J66 J67 0
0 0 0 J74 0 J76 J77 J78
0 0 0 0 0 0 J87 J88

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 0 0 0 0 0 0 0
0 λ 0 0 0 0 0 0
0 0 λ 0 0 0 0 0
0 0 0 λ 0 0 0 0
0 0 0 0 λ 0 0 0
0 0 0 0 0 λ 0 0
0 0 0 0 0 0 λ 0
0 0 0 0 0 0 0 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

so that the characteristic equation is obtained as follows:

J1 · J2 · J3 = 0

where

J1 = λ2 − (J11 + J22)λ+ (J11J22 − J21J22), (7)

J2 = λ3 − (J33 + J44 + J55)λ
2 + (J33J44 + J33J55

+J44J55 − J34J43 − J45J54)λ+ (J33J45J54

+J34J43J55 − J33J44J55), (8)

J3 = λ3 − (J66 + J77 + J88)λ
2 + (J66J77 + J66J88

+J77J88 − J67J76 − J78J87)λ+ (J66J78J87

+J67J76J88 − J66J77J88). (9)

Based on equation (7) is obtained λ1 +λ2 = J11 + J22 = −(σ+
ρ+2µ) and λ1∗λ2 = J11J22−J21J22 = (σ+µ)(ρ+µ)+σ(ρ+µ).
So it can be concluded that λ1 < 0 and λ2 < 0.

Furthermore, λ3, λ4 and λ5 are obtained by solving equa-
tion (8) as follows:

J2 = (λ3 + a1λ
2 + a2λ+ a3) = 0 (10)

where

a1 = −(J33 + J44 + J55)

= k1 + k2 + (ws + µ),

a2 = (J66J77 + J66J88 + J77J88 − J67J76 − J78J87)

= (k3 + k4)(wr + µ) + (1−ℜr
0)k3k4 − wrcr,

a3 = (J33J45J54 + J34J43J55 − J33J44J55)

= −k1wsrcs + (1−ℜs
0)k1k2(ws + µ).

Based on Routh-Hurwitz criterion [26], eq. (10) at equilibrium T 0

is stable if it satisfies the following stability conditions:

a1 > 0, a3 > 0, and a1a2 > a3

Since all parameters are positive, then the coefficient a1 is pos-
itive. The coefficient a3 will be positive when ℜs

0 < 1. Further-
more, to show a1a2 > a3, the parameter values in Table 1 are
used.

Furthermore, λ6, λ7 and λ8 are obtained by solving equa-
tion (9) as follows:

J3 = (λ3 + b1λ
2 + b2λ+ b3) = 0 (11)

where

b1 = J66J78J87 + J67J76J88 − J66J77J88

= −k1wrcr + (1−ℜr
0)k3k4(wr + µ),

b2 = (J66J77 + J66J88 + J77J88 − J67J76 − J78J87)

= (k3 + k4)(wr + µ) + (1−ℜr
0)k3k4 − wrcr,

b3 = −(J66 + J77 + J88)

= k3 + k4 + (wr + µ).

Based on Routh-Hurwitz criterion [26], eq. (11) at equilibrium T 0

is stable if it satisfies the following stability conditions:

b1 > 0, b3 > 0, and b1b2 > b3

Since all paramaters are positive, then the coefficient b3 is pos-
itive. The coefficient b1 will be positive when ℜr

0 < 1. Further-
more, to show b1b2 > b3, the parameter values in Table 1 are
used.

Since ℜs
0 < 1 and ℜr

0 < 1, it must be ℜ0 =
√

ℜs
0 · ℜr

0 < 1.
So, it is proved that the disease-free equilibrium T 0 for the model
(1) is locally asymtotically stable if ℜ0 < 1.

3.4. Numerical Simulations
Numerical simulations are conducted on the adjusted

model to illustrate its stability characteristics, with parameter
values taken from Table 1. Subsequently, additional numeri-
cal simulations are employed to investigate the dynamics of the
system and observe its behavior. The initial values used are
S(0) = 721, 500, 000, Es(0) = 404, 950, 000, Is(0) = 70, 000,
Er(0) = 173, 550, 000, Ir(0) = 30, 833 [16] and it is assumed
that V (0) = Rs(0) = Rr(0) = 0.

The model (1) when ℜ0 < 1 has one disease-free equilib-
rium which can be represented by a numerical solution. Disease-
free equilibrium is obtained by using the parameter values in Ta-
ble 1 with ℜ0 = 0.466331 < 1 and disease-free equilibrium
T 0(S = 1.5776 × 109, V = 7.88036 × 108, Es = 0, Is = 0,
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Figure 2. The Population Dynamics at Condition ℜ0 < 1

Rs = 0, Er = 0, Ir = 0, Rr = 0). Through linearization
and computation of the system described in model (1) around
the disease-free equilibrium, the Jacobian matrix and eigenval-
ues associated with this equilibrium are determined. The ob-
served outcome indicates the stability of the disease-free equi-
librium, as all eigenvalues exhibit negativity, ie λ1 = −0.900583,
λ2 = −0.121446, λ3 = −0.0545744, λ4 = −0.00083638,
λ5 = −0.0007444, λ6 = −0.000583, λ7 = −0.000176093 and
λ8 = −0.000161682.

Population dynamics with Susceptible population (S), Vac-
cinated population (V ), drug-sensitive Exposed population (Es),
drug-sensitive Infected population (Is), drug-sensitive Recov-
ered population (Rs), drug-resistant Exposed population (Er),
drug-resistant Infected population (Ir), and drug-resistant Re-
covered population (Rs) towards disease-free equilibrium T 0 as
can be seen in Figure 2. The simulation results are in accordance
with Theorem 2 that if ℜ0 < 1, the disease-free equilibrium is
locally asymtotically stable.

3.5. Sensitivity Analysis

The dynamics of tuberculosis transmission within a popu-
lation are significantly shaped by the values assigned to various
parameters. Alterations in these parameter values lead to corre-
sponding changes in simulation outcomes. However, the impact
of each parameter varies, contingent upon its sensitivity level.
Consequently, a thorough analysis of parameter sensitivity con-
cerning the basic reproduction number ℜ0 is imperative. The
objective of sensitivity analysis is to identify the parameters ex-
erting the most substantial influence on the value of ℜ0. This
analysis is executed by evaluating the parameter sensitivity in-
dex denoted as (γR0

p ).

The basic reproducibility number sensitivity index ℜ0 de-

pending on the parameter p is obtained by γR0
p =

∂ℜ0

∂p
× p

ℜ0
,

where ℜ0 is the eq. (6) which depends on the parameter models
[27, 28]. The parameter values used are the parameter values in
Table 1. So that the sensitivity index values are obtained which
can be seen in Table 2.

Table 2. Sensitivity Indices of the Model

Parameter Sensitivity Index
Π 0
βs 0.5
βr 0.5
σ -0.333118
ρ 0.332794
ν 0.879469
ws 0
wr 0
c -0.0233428
cs -0.456985
cr -0.456034
r -0.324709
δ -0.055832
µ -0.886951

Based on Table 2, it can be concluded that the parameters
that have the greatest influence are βs, βr, ν, and µ respectively
DS-TB transmission rate, DR-TB transmission rate, progression
rate, and monthly natural mortality rate. A positive sign in the
sensitivity index signifies that an increase in the parameter value
will result in a corresponding increase in the ℜ0 value. Con-
versely, a negative sign in the sensitivity index indicates that an
increase in the parameter value will lead to a decrease in the ℜ0

value. For a comprehensive overview of these sensitivity index
values for model parameters, please refer to Figure 3.

In addition, it can be seen that the parameters σ and ρ have
a considerable influence. Next, a numerical simulation will be
carried out to show the effect of the parameters σ and ρ on pop-
ulations with Tuberculosis infection.

The effect of proportion of vaccination class receives a por-
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Figure 3. Sensitivity Indices of the Model

Figure 4. Population Dynamics with Variations in σ Values

tion of the susceptible population (σ) on population dynamics is
known using the following equation:

∂ℜ0

∂σ
= −

Ων

√
βsβr

k1k2k3k4
(σ + ρ+ µ)

(12)

Based on eq. (12),
∂ℜ0

∂σ
< 0 means that if vaccination class re-

ceives a portion of the susceptible population (σ) increases while
the other parameters are held constant, the basic reproduction
number ℜ0 will decrease. Changes in the value of (σ) that cause
changes in the value of ℜ0 can be seen in Table 3.

Figure 4 shows that if the vaccination class receives a
portion of the susceptible population (σ) is increase, the to-
tal population of drug-sensitive Exposed population (Es), drug-
sensitive Infected population (Is), drug-resistant Exposed popu-
lation (Er), and drug-resistant Infected population (Ir) will de-
crease.

The effect of rate at which individuals transition from the

Table 3. The Effect of Vaccination Class Receives a Portion of
the Susceptible Population (σ) on the Basic Repro-
duction Number

Parameter σ Basic Reproduction Number
σ = 0.3 ℜ0 = 0.466331
σ = 0.6 ℜ0 = 0.349805
σ = 0.9 ℜ0 = 0.279871

vaccination class to the susceptible class (ρ) on population dy-
namics is known using the following equation:

∂ℜ0

∂ρ
=

σν

√
βsβr

k1k2k3k4
(σ + ρ+ µ)2

(13)

Based on eq. (13),
∂ℜ0

∂ρ
> 0 means that if rate at which individ-

uals transition from the vaccination class to the susceptible class
(ρ) increases while the other parameters are held constant, the
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Figure 5. Population Dynamics with Variations in ρ Values

basic reproduction numberℜ0 will increase. Changes in the value
of ρ that cause changes in the value of ℜ0 can be seen in Table 4.

Table 4. The Effect of Rate at Which Individuals Transition
from the Vaccination Class to the Susceptible Class
(ρ) on the Basic Reproduction Number

Parameter ρ Basic Reproduction Number
ρ = 0.3 ℜ0 = 0.349975
ρ = 0.6 ℜ0 = 0.466331
ρ = 0.9 ℜ0 = 0.524538

Figure 5 shows that if the value of the rate at which individ-
uals transition from the vaccination class to the susceptible class
(ρ) is increase, the total population of drug-sensitive Exposed
population (Es), drug-sensitive Infected population (Is), drug-
resistant Exposed population (Er), and drug-resistant Infected
population (Ir) will increase.

4. Conclusion
This study involves the adaptation of an existing mathe-

matical model for tuberculosis transmission, incorporating vacci-
nation for susceptible individuals. The resultant model success-
fully characterizes the tuberculosis spread dynamics. The anal-
ysis conducted on this modified model reveals the presence of
two equilibrium points, namely the disease-free equilibrium and
the endemic equilibrium. Notably, the disease-free equilibrium is
proven to be asymptotically stable when the basic reproduction
number is less than one. Furthermore, the numerical simulations
of population dynamics consistently corroborate the stability of
the disease-free equilibrium.

Sensitivity analysis produces parameters βs, βr, ν, and µ
with the highest absolute value of the sensitivity index. Then
a numerical simulation is carried out on parameter σ and pa-
rameter ρ. Proportion of vaccination class receives a portion of

the susceptible population (σ) has a significant effect on the to-
tal population of drug-sensitive Exposed population (Es), drug-
sensitive Infected population (Is), drug-resistant Exposed pop-
ulation (Er), and drug-resistant Infected population (Ir). If
the value of σ is increased, then the total population of drug-
sensitive Exposed population (Es), drug-sensitive Infected pop-
ulation (Is), drug-resistant Exposed population (Er), and drug-
resistant Infected population (Ir) will decrease.

Author Contributions. MA, R. K.: Investigation, resources, data
curation, project administration, funding acquisition. Sugiarto, S.:
Conceptualization, methodology, software, validation, formal analysis,
writing—original draft preparation, visualization, funding acquisition.
Nurwijaya, S.: Resources, writing—review and editing, supervision,
funding acquisition.

Acknowledgement. The authors are thankful the editors and reviewers
who have supported us in improving this manuscript.

Funding. This research received no external funding.

Conflict of interest. The authors declare no conflict of interest.

Data availability. Not applicable.

References
[1] A. C. Bohrer et al., “Rapid GPR183-mediated recruitment of eosinophils to

the lung after Mycobacterium tuberculosis infection,” Cell Reports, vol. 40,
no. 4, pp. 1–23, 2022. DOI:10.1016/j.celrep.2022.111144

[2] Y. A. Melsew et al., “Heterogeneous infectiousness in mathematical models
of tuberculosis: A systematic review,” Epidemics, vol. 30, no. 100374, pp.
1–10, 2020. DOI:10.1016/j.epidem.2019.100374

[3] M. Kubjane et al., “Heterogeneous infectiousness in mathematical models of
tuberculosis: A systematic review,” International Journal of Infectious Diseases,
vol. 122, pp. 811–819, 2022.

[4] D. Iskandar et al., “Articles Clinical and economic burden of drug-
susceptible tuberculosis in Indonesia : national trends 2017-19,” The Lancet

JJBM | Jambura J. Biomath Volume 5 | Issue 1 | June 2024

https://www.cell.com/cell-reports/fulltext/S2211-1247(22)00953-6?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2211124722009536%3Fshowall%3Dtrue
https://www.cell.com/cell-reports/fulltext/S2211-1247(22)00953-6?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2211124722009536%3Fshowall%3Dtrue
https://www.cell.com/cell-reports/fulltext/S2211-1247(22)00953-6?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2211124722009536%3Fshowall%3Dtrue
https://www.sciencedirect.com/science/article/pii/S1755436519301070?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1755436519301070?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1755436519301070?via%3Dihub
https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(22)00455-7/fulltext
https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(22)00455-7/fulltext
https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(22)00455-7/fulltext


R. K. MA, S. Sugiarto, and S. Nurwijaya – Dynamical System for Tuberculosis Outbreak with Vaccination Treatment and Different Interventions… 18

Global Health, vol. 11, no. 1, pp. e117–e125, 2023. DOI:10.1016/S2214-
109X(22)00455-7

[5] M. L. Olaosebikan, M. K. Kolawole, and K. A. Bashiru, “Transmis-
sion Dynamics of Tuberculosis Model with Control Strategies,” Jam-
bura Journal of Biomathematics (JJBM), vol. 4, no. 2, pp. 110–118, 2023.
DOI:10.37905/jjbm.v4i2.21043

[6] E. M. D. Moya, A. Pietrus, and S. M. Oliva, “Mathematical model with frac-
tional order derivatives for Tuberculosis taking into account its relationship
with HIV/AIDS and Diabetes,” Jambura Journal of Biomathematics (JJBM), vol. 2,
no. 2, pp. 80–95, 2021. DOI:10.34312/jjbm.v2i2.11553

[7] K. Das et al., “Mathematical transmission analysis of SEIR tuberculo-
sis disease model,” Sensors International, vol. 2, pp. 100120, 2021.
DOI:10.1016/j.sintl.2021.100120

[8] K. G. Mekonen and L. L. Obsu, “Mathematical modeling and analysis for the
co-infection of COVID-19 and tuberculosis,” Heliyon, vol. 8, no. 10, pp. 1–11,
2022. DOI:10.1016/j.heliyon.2022.e11195

[9] Z. Zhang et al., “Dynamical aspects of a tuberculosis transmission model
incorporating vaccination and time delay,” Alexandria Engineering Journal,
vol. 66, pp. 287–300, 2023. DOI:10.1016/j.aej.2022.11.010

[10] K. K. Avilov et al., “Mathematical modelling of the progression of active
tuberculosis: Insights from fluorography data,” Infectious Disease Modelling,
vol. 7, no. 3, pp. 374–386, 2022. DOI:10.1016/j.idm.2022.06.007

[11] G. Günther et al., “Availability and costs of medicines for the treatment of
tuberculosis in Europe,” Clinical Microbiology and Infection, vol. 29, no. 1, pp.
77–84, 2023. DOI:10.1016/j.cmi.2022.07.026

[12] J. A. Gullón-Blanco et al., “[Translated article] Tuberculosis contacts tracing
in Spain: Cost analysis,” Archivos de Bronconeumología, vol. 58, no. 5, pp.
T448–T450, 2022. DOI:10.1016/j.arbres.2021.09.021

[13] W. Huang et al., “The effect of BCG vaccination and risk factors for
latent tuberculosis infection among college freshmen in China, ”In-
ternational Journal of Infectious Diseases, vol. 122, pp. 321–326, 2022.
DOI:10.1016/j.ijid.2022.06.010

[14] Q. Liao et al., “Effectiveness of Bacillus Calmette-Guérin vaccination against
severe childhood tuberculosis in China: a case-based, multicenter retrospec-
tive study,” International Journal of Infectious Diseases, vol. 121, pp. 113–119,
2022. DOI:10.1016/j.ijid.2022.04.023

[15] L. Martinez et al., “Infant BCG vaccination and risk of pulmonary and extra-
pulmonary tuberculosis throughout the life course: a systematic review and
individual participant data meta-analysis,” The Lancet Global Health, vol. 10,
no. 9, pp. E1307-E1316, 2022. DOI:10.1016/S2214-109X(22)00283-2

[16] A. Xu et al., “Prediction of different interventions on the burden
of drug-resistant tuberculosis in China: a dynamic modelling study,”

Journal of Global Antimicrobial Resistance, vol. 29, pp. 323–330, 2022.
DOI:10.1016/j.jgar.2022.03.018

[17] B. K. Mishra and J. Srivastava, “Mathematical model on pulmonary
and multidrug-resistant tuberculosis patients with vaccination,” Journal
of the Egyptian Mathematical Society, vol. 22, no. 2, pp. 311–316, 2014.
DOI:10.1016/j.joems.2013.07.006

[18] W. H. Organization, “Global tuberculosis report 2019,” Institutional Repository
for Information SHaring, pp. 1–297, 2019.

[19] P. Samui, J. Mondal, and S. Khajanchi, “A mathematical model for covid-19
transmission dynamics with a case study of india,” Chaos, Solitons & Fractals,
vol. 140, p. 110173, 2020. DOI:10.1016/j.chaos.2020.110173

[20] M. M. Ojo and E. F. D. Goufo, “Modeling, analyzing and simulating the dy-
namics of Lassa fever in Nigeria,” Journal of the Egyptian Mathematical Society,
vol. 30, no. 1, pp. 1–31, 2022. DOI:10.1186/s42787-022-00138-x

[21] S. Sugiarto, R. MA, and S. Nurwijaya, “Dynamical system for covid-
19 outbreak within vaccination treatment,” BAREKENG: Jurnal Ilmu
Matematika dan Terapan, vol. 17, no. 2, pp. 0919–0930, 2023.
DOI:10.30598/barekengvol17iss2pp0919-0930

[22] S. Sugiarto and A. Alam, “Analisis Kestabilan Model Penyebaran Penyakit
Antraks Tipe SVEIQR pada Ternak,” Jurnal Sains Matematika dan Statistika,
vol. 9, no. 2, pp. 41–52, 2023. DOI:10.24014/jsms.v9i2.21529

[23] P. Van Den Driessche and J. Watmough, “Reproduction numbers and sub-
threshold endemic equilibria for compartmental models of disease trans-
mission,” Mathematical Biosciences, vol. 180, no. 1–2, pp. 29–48, 2002.
DOI:10.1016/S0025-5564(02)00108-6

[24] S. Nurwijaya, R. MA, and S. Sugiarto, “Dynamical system for ebola out-
break within quarantine and vaccination treatments,” BAREKENG: Jur-
nal Ilmu Matematika dan Terapan, vol. 17, no. 2, pp. 0615–0624, 2023.
DOI:10.30598/barekengvol17iss2pp0615-0624

[25] A. Alam and S. Sugiarto, “Analisis Sensitivitas Model Matematika Penyebaran
Penyakit Antraks pada Ternak dengan Vaksinasi, Karantina dan Pengobatan,”
Jurnal Ilmiah Matematika Dan Terapan, vol. 19, no. 2, pp. 180–191, 2022.
DOI:10.22487/2540766X.2022.v19.i2.16017

[26] S. F. AL-Azzawi, “Stability and bifurcation of pan chaotic system by using
Routh-Hurwitz and gardan methods,” Applied Mathematics and Computation,
vol. 219, no. 3, pp. 1144–1152, 2012. DOI:10.1016/j.amc.2012.07.022

[27] S. R. Bandekar and M. Ghosh, “A co-infection model on tb - covid-19 with
optimal control and sensitivity analysis,” Mathematics and Computers in Sim-
ulation, vol. 200, pp. 1–31, 2022. DOI:10.1016/j.matcom.2022.04.001

[28] A. Malik et al., “Sensitivity analysis of covid-19 with quarantine and vacci-
nation: A fractal-fractional model,” Alexandria Engineering Journal, vol. 61,
no. 11, pp. 8859–8874, 2022. DOI:10.1016/j.aej.2022.02.024

JJBM | Jambura J. Biomath Volume 5 | Issue 1 | June 2024

https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(22)00455-7/fulltext
https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(22)00455-7/fulltext
https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(22)00455-7/fulltext
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/21043
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/21043
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/21043
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/21043
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/11553
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/11553
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/11553
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/11553
https://www.sciencedirect.com/science/article/pii/S2666351121000413
https://www.sciencedirect.com/science/article/pii/S2666351121000413
https://www.sciencedirect.com/science/article/pii/S2666351121000413
https://www.cell.com/heliyon/fulltext/S2405-8440(22)02483-5?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2405844022024835%3Fshowall%3Dtrue
https://www.cell.com/heliyon/fulltext/S2405-8440(22)02483-5?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2405844022024835%3Fshowall%3Dtrue
https://www.cell.com/heliyon/fulltext/S2405-8440(22)02483-5?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2405844022024835%3Fshowall%3Dtrue
https://www.sciencedirect.com/science/article/pii/S1110016822007438
https://www.sciencedirect.com/science/article/pii/S1110016822007438
https://www.sciencedirect.com/science/article/pii/S1110016822007438
https://www.sciencedirect.com/science/article/pii/S2468042722000495?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2468042722000495?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2468042722000495?via%3Dihub
https://www.clinicalmicrobiologyandinfection.com/article/S1198-743X(22)00394-9/fulltext
https://www.clinicalmicrobiologyandinfection.com/article/S1198-743X(22)00394-9/fulltext
https://www.clinicalmicrobiologyandinfection.com/article/S1198-743X(22)00394-9/fulltext
https://www.archbronconeumol.org/en-translated-article-tuberculosis-contacts-tracing-articulo-S0300289622000953
https://www.archbronconeumol.org/en-translated-article-tuberculosis-contacts-tracing-articulo-S0300289622000953
https://www.archbronconeumol.org/en-translated-article-tuberculosis-contacts-tracing-articulo-S0300289622000953
https://www.sciencedirect.com/science/article/pii/S1201971222003459
https://www.sciencedirect.com/science/article/pii/S1201971222003459
https://www.sciencedirect.com/science/article/pii/S1201971222003459
https://www.sciencedirect.com/science/article/pii/S1201971222003459
https://www.ijidonline.com/article/S1201-9712(22)00220-X/fulltext
https://www.ijidonline.com/article/S1201-9712(22)00220-X/fulltext
https://www.ijidonline.com/article/S1201-9712(22)00220-X/fulltext
https://www.ijidonline.com/article/S1201-9712(22)00220-X/fulltext
https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(22)00283-2/fulltext
https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(22)00283-2/fulltext
https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(22)00283-2/fulltext
https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(22)00283-2/fulltext
https://www.sciencedirect.com/science/article/pii/S221371652200073X
https://www.sciencedirect.com/science/article/pii/S221371652200073X
https://www.sciencedirect.com/science/article/pii/S221371652200073X
https://www.sciencedirect.com/science/article/pii/S221371652200073X
https://www.sciencedirect.com/science/article/pii/S1110256X13000965
https://www.sciencedirect.com/science/article/pii/S1110256X13000965
https://www.sciencedirect.com/science/article/pii/S1110256X13000965
https://www.sciencedirect.com/science/article/pii/S1110256X13000965
https://apps.who.int/iris/handle/10665/329368
https://apps.who.int/iris/handle/10665/329368
https://www.sciencedirect.com/science/article/pii/S0960077920305695
https://www.sciencedirect.com/science/article/pii/S0960077920305695
https://www.sciencedirect.com/science/article/pii/S0960077920305695
https://joems.springeropen.com/articles/10.1186/s42787-022-00138-x
https://joems.springeropen.com/articles/10.1186/s42787-022-00138-x
https://joems.springeropen.com/articles/10.1186/s42787-022-00138-x
https://ojs3.unpatti.ac.id/index.php/barekeng/article/view/7958
https://ojs3.unpatti.ac.id/index.php/barekeng/article/view/7958
https://ojs3.unpatti.ac.id/index.php/barekeng/article/view/7958
https://ojs3.unpatti.ac.id/index.php/barekeng/article/view/7958
https://ejournal.uin-suska.ac.id/index.php/JSMS/article/view/21529
https://ejournal.uin-suska.ac.id/index.php/JSMS/article/view/21529
https://ejournal.uin-suska.ac.id/index.php/JSMS/article/view/21529
https://www.sciencedirect.com/science/article/pii/S0025556402001086
https://www.sciencedirect.com/science/article/pii/S0025556402001086
https://www.sciencedirect.com/science/article/pii/S0025556402001086
https://www.sciencedirect.com/science/article/pii/S0025556402001086
https://ojs3.unpatti.ac.id/index.php/barekeng/article/view/6677
https://ojs3.unpatti.ac.id/index.php/barekeng/article/view/6677
https://ojs3.unpatti.ac.id/index.php/barekeng/article/view/6677
https://ojs3.unpatti.ac.id/index.php/barekeng/article/view/6677
https://bestjournal.untad.ac.id/index.php/JIMT/article/view/16017
https://bestjournal.untad.ac.id/index.php/JIMT/article/view/16017
https://bestjournal.untad.ac.id/index.php/JIMT/article/view/16017
https://bestjournal.untad.ac.id/index.php/JIMT/article/view/16017
https://www.sciencedirect.com/science/article/pii/S0096300312007229
https://www.sciencedirect.com/science/article/pii/S0096300312007229
https://www.sciencedirect.com/science/article/pii/S0096300312007229
https://www.sciencedirect.com/science/article/pii/S0378475422001392
https://www.sciencedirect.com/science/article/pii/S0378475422001392
https://www.sciencedirect.com/science/article/pii/S0378475422001392
https://www.sciencedirect.com/science/article/pii/S1110016822001120
https://www.sciencedirect.com/science/article/pii/S1110016822001120
https://www.sciencedirect.com/science/article/pii/S1110016822001120

	Introduction
	Methods
	Mathematical Models
	Positivity and Boundedness of Solutions

	Results and Discussion
	Equilibrium Points
	Basic Reproduction Number
	Stability Analysis
	Numerical Simulations
	Sensitivity Analysis

	Conclusion

