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Prediction of the Change Rate of Tumor, Healthy Host, and
Effector Immune Cells in a Three-Dimensional Cancer Model
using Extended Kalman Filter

Nina Fitriyati1,∗, Salma Abidah Faizah2, and Taufik Edy Sutanto3

1,2,3Department of Mathematics, UIN Syarif Hidayatullah Jakarta, Banten, Indonesia

ABSTRACT. In this study, we develop and implement the Extended Kalman Filter (EKF) to forecast the rate of change
in tumor cells, healthy host cells, and effector immune cells within the Itik-Banks model. This novel application of
EKF in cancer dynamics modeling aims to provide precise real-time estimations of cellular interactions, especially in
constructing a new state space representation from the Itik-Banks model. We use a first-order Taylor series to linearize
the model. The numerical simulations were performed to analyze the accuracy of this new state space with data from
William Gilpin’s GitHub repository. The results show that the EKF predictions strongly align with actual data, i.e., in
the prior and posterior steps for tumor and healthy host cells, there is a strong agreement between the predictions
and the actual data. The EKF captures the oscillatory nature of the tumor and healthy host cell population well. The
peaks and troughs of the predictions align closely with the actual data, indicating the EKF’s effectiveness in modeling
the dynamic behavior of the tumor and healthy host cells. However, for effector immune cells, the oscillatory nature of
the data in these cells gives rise to slight deviations. This represents a significant challenge in the future for updating
the state space representations. Despite minor discrepancies, the EKF demonstrates a strong performance in both the
training and testing data, with the posterior step estimates significantly improving the prior step accuracy. This study
emphasizes the importance of data availability for accurate predictions, noting a symmetric Mean Absolute Percentage
Error (sMAPE) of 35.92% when data is unavailable. Prompt correction with new data is essential to maintain accuracy.
This research underscores the EKF’s potential for real-time monitoring and prediction in complex biological systems.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction

Cancer is one of the most deadly diseases despite advances
in science and medicine. This disease escalates due to changes
in the formation of DNA (mutations) of abnormal cells. Uncon-
trolled cell proliferation leads to tumors, and many mutated cells
occur daily in the human body. These mutated cells form cancer
cells. Cancer can also occur when the immune system or other
defense mechanisms fail to protect the human body from these
cells [1]. Cancer cells differ from normal cells in size, shape, num-
ber, differentiation, function, and ability to travel to distant tis-
sues and organ systems [1]. The immune system recognizes can-
cer cells and tumors based on their antigens [2]. This complex
biological phenomenon can be accurately described using math-
ematical modeling.

In current literature, effective mathematical modeling sig-
nificantly contributes to understanding and analyzing diseases,
including tumor growth. Therefore, it is crucial to study com-
putational models of how the immune system interacts with
other factors. One mathematical model that captures the in-
teraction between tumor growth and the immune system is the
three-dimensional cancer model studied by [3]. This model de-
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scribes the dynamics of three interacting cell populations: tumor,
healthy host, and effector immune cells. Itik and Banks [3] explain
the biological relevance and analyze the model’s equilibrium.

The rate of change of tumor cells, healthy host cells, and
effector immune cells is crucial in understanding and managing
cancer dynamics. Tumor growth is significantly influenced by the
type and state of the tissue, as well as environmental factors,
which can explain the varying prevalence of cancers in different
tissues [4]. The interaction between tumor cells and effector im-
mune cells is complex, with models showing that increased acti-
vation of effector cells can lead to chaotic dynamics and poten-
tially facilitate cancer clearance [5]. The immune system’s role is
further highlighted by the effectiveness of therapies that target
tumor stroma, where effector cells like CD8+ CTLs can inhibit tu-
mor growth by destroying immunosuppressive stromal cells [6].
Mathematical models, such as the NTIUNHDM, demonstrate that
a weak immune response can lead to the coexistence of normal
and abnormal cells, emphasizing the importance of early immune
system activation to reduce cancer risk [7].

Additionally, the stochastic nature of tumor-immune inter-
actions suggests that different noise intensities in the microenvi-
ronment can lead to varying outcomes, including tumor extinc-
tion or persistence [8]. The role of effector cells, including T lym-
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phocytes and dendritic cells, is critical in mediating anti-tumor
responses, with their activity being influenced by factors such
as diet and immune system strength [9, 10]. Furthermore, the
non-ischemic effects of treatments like flavone acetic acid (FAA)
are mediated by immune effector cells, indicating that immune
responses can significantly impact tumor cell dynamics indepen-
dent of blood flow [11]. Overall, the interplay between tumor
cells, healthy host cells, and effector immune cells is a dynamic
process influenced by various biological and environmental fac-
tors, and understanding these interactions is critical to develop-
ing effective cancer therapies [12, 13].

Several researchers have studied various technical and
computational aspects of the Itik-Banks model. Aqeel and Ah-
mad [14] modified the Itik-Banks model by incorporating three
delay parameters. Starkov and Coria [15] provide adequate con-
ditions on model and treatment parameters where all trajecto-
ries in the positive orthant tend towards tumor-free equilibrium
points. Wei and Lin [16] present a mathematical formulation of
tumor-immune interaction with pulsatile immunotherapy. López
et al. [17] applied an efficient partial control methodology to
avoid healthy tissue extinction. Valle et al. [18] investigate the
global dynamics of the Itik-Banks model using the localized com-
pact invariant set (LCIS) method and Lyapunov stability theory.
Khajanchi et al. [19] focus on the existence of Hopf bifurcations
corresponding to the Itik-Banks model. Ghanbari [20] discusses
the biological relevance of the model.

The Itik-Banks model is a nonlinear and chaotic dynamical
system [21]. One suitable method for estimating the state is the
Extended Kalman Filter (EKF) [22]. The Extended Kalman Filter
(EKF) offers several advantages over other estimation methods,
such as the Unscented Kalman Filter (UKF), Particle Filter (PF),
and Ensemble Kalman Filter (EnKF). One of the primary bene-
fits of the EKF is its ability to handle nonlinear systems by lin-
earizing them around the current estimate using the Taylor se-
ries expansion, which makes it computationally efficient and suit-
able for real-time applications [23]. While potentially introduc-
ing linearization errors, this linearization approach is often suf-
ficient for many practical applications, such as vehicle state esti-
mation and structural health monitoring, which have been vali-
dated through experiments [24, 25]. In contrast, the UKF, while
avoiding linearization by using sigma points to capture the mean
and covariance accurately, requires careful tuning of parameters,
which can be cumbersome [26]. The Particle Filter (PF), including
variants like the EnKS-MDEF, provides amore flexible approach by
approximating the state probability density function using multi-
ple conditional state pdfs. Still, it can suffer from particle degen-
eracy and is computationally intensive [26, 27].

Particle Filters (PF), including the Ensemble Kalman Filter
(EnKF) and the Ensemble Kalman Smoother Multiple Distribution
Estimation Filter (EnKS-MDEF), offer superior accuracy by repre-
senting the state probability density function with multiple sam-
ples or particles. Still, they require many samples, leading to high
computational costs and potential degeneracy issues [28, 29].
The EKF, despite its limitations in handling strong nonlineari-
ties, remains advantageous in scenarios where computational ef-
ficiency and simplicity are paramount, such as in satellite atti-
tude estimation and real-time control systems. Moreover, the
EKF’s ability to balance computational efficiency and estimation

accuracy makes it a preferred choice in many practical applica-
tions, including industrial systems and robotics, where real-time
performance is critical. Thus, while the UKF, PF, and EnKF offer
higher accuracy and robustness in certain conditions, the EKF’s
lower computational requirements and ease of implementation
provide significant advantages in resource-constrained environ-
ments [30, 31].

Based on several advantages of EKF, in this study, we seek
to develop and implement the Extended Kalman Filter (EKF)
method to forecast the rate of change in tumor cells, healthy
host cells, and effector immune cells within the Itik-Banks model.
To date, no research has employed the EKF method for this spe-
cific application, positioning this study as an innovative and novel
approach in the modeling of cancer dynamics. The application
of EKF is anticipated to yield more precise and real-time estima-
tions of the intricate cellular dynamics described by the Itik-Banks
model, thereby offering significant contributions to the compre-
hension and treatment of cancer. A state space is formed by
linearizing the Itik-Banks model using the first-order Taylor se-
ries. Numerical simulations are performed using data from 2000
rates of change in tumor, healthy host, and effector immune cells
sourced from William Gilpin’s GitHub repository. Predictions of
the three cell types are made when and when data is available.
This paper is organized as follows: section 2 describes the three-
dimensional cancer model and the EKF algorithm. Section 3 gives
the linearization of the Itik-Banks model, forming state space,
and simulation of the prediction tumor, healthy host, and effec-
tor immune cells for training and testing data, and section 4 con-
cludes.

2. Methods

2.1. Three-Dimensional Cancer Model

This article uses the three-dimensional cancer dynamical
model, i.e., the Itik and Banks model [3]. This model de-
scribes the dynamics of three interacting cell populations: tu-
mor, healthy host, and effector immune cells, namely cytotoxic
T lymphocytes CD8, CTL. Effector cells are active cells with rela-
tively short lifespans from the body’s immune system that defend
the body in immune responses. Similar to previous cancer mod-
els [32–37], this model depicts the competition dynamics among
the three types of interacting cells in a well-mixed system (e.g.,
liquid cancers like leukemia or multiple lymphomas). Among sev-
eral biologically significant assumptions (see [3]), this model as-
sumes that the anti-tumor effect of the immune system response
is carried out by cytotoxic T cells, i.e., thosemediated by adaptive
T cell-based groups. Alpha-beta T cells are activated after their
T cell Receptor (TCR) recognizes tumor-specific antigens on the
cell surface in small peptides presented in the context of major
histocompatibility complex (MHC) molecules. CD8 T cells are re-
sponsible for direct cell-mediated cytotoxicity after activation by
antigen-presenting cells (APCs) and are considered central play-
ers in anti-tumor immune responses. To achieve full activation,
signals from the TCR must be reinforced with messages sent by
costimulatory molecules such as CD28, which are also present on
the surface of T cells. Failure to engage costimulatory proteins,
activation of coinhibitory receptors such as CTLA-4 or PD-1, or
the presence of regulatory CD4 (TReg) T cells can lead to failure
of T cell activation or decreased regulation of immune responses.
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Uncovering these inhibitory mechanisms can lead to the reacti-
vation of anti-tumor immune responses and supraphysiological
levels of T cell activation, which is helpful in clinical management.

The Itik-Banks tumor model consists of three types of cell
populations: T(t) is the count of the number of tumor cells in
time t, H(t) is the number of healthy host cells in time t, and E(t)
is the number of effector immune cells in time t. The interac-
tion between these three cells follows the nonlinear differential
equation system [3]:

dT (τ)
dτ

= r′1T (τ)
(
1− T (τ)

k1

)
− a′12T (τ)H(τ) (1)

−a′13T (τ)E(τ),
dH(τ)
dτ

= r′2H(τ)
(
1− H(τ))

k2

)
− a′21H(τ)T (τ), (2)

dE(τ)
dτ

=
r3T (τ)E(τ)
T (τ) + k3

− a′31T (τ)E(τ)− d′3E(τ), (3)

subject to initial condition (T (0),H(0), E(0)) = (T0,H0, E0) ≥
0 and a′12, a

′
21, a

′
13, a

′
31, r

′
1, r

′
2, r3, d

′
3, k1, k2, and k3 are con-

stants. For simplicity of analysis, we non dimensionalize equa-
tions (1)-(3) by employing the definitions:

T (t) =
T (τ)
k1

, H(t) =
H(τ)
k2

, E(t) =
E(τ)
k3

, t = r1τ.

(4)
A new parameters following eq. (4) are

a31 =
a′31k1
r1

, a13 =
a′13k3
r1

, a12 =
a′12k2
r1

,

a31 =
a′31k1
r1

, r2 =
r′2
r1
, r3 =

r′3
r1
,

k3 =
k′3
k1
, d3 =

d′3
r1
.

(5)

Using eq. (4) and eq. (5), the dimensionless system of differential
equations for the Itik-Banks tumor is as follows [3]:

Ṫ (t) =
dT (t)

dt
= T (t)(1− T (t))− a12T (t)H(t) (6)

−a13T (t)E(t),

Ḣ(t) =
dH(t)

dt
= r2H(t)(1−H(t))− a21T (t)H(t), (7)

Ė(t) =
dE(t)

dt
=
r3T (t)E(t)

T (t) + k3
− a31T (t)E(t)− d3E(t).(8)

In equations (6) - (8), the parameter a12 is the rate of tumor cell
inactivation by healthy cells; a13 is the rate of tumor cell inacti-
vation by effector cells; r2 is the intrinsic growth rate of healthy
tissue cells; a21 is the rate of inactivation of healthy cells by tumor
cells; r3 corresponds to the activation rate of effector cells due to
the recognition of tumor cell antigens; a13 is the rate of effector
cell inactivation by tumor cells, and d3 is the density-dependent
effector cell death rate [3].

The last term in equation (6) indicates the inactivation rate
(or elimination) of tumor cells by the action of effector immune
cells assumed to be proportional to the number of effector im-
mune cells and does not consider saturation. The mechanism
of tumor cell elimination is provided through the release of cy-
totoxic granules by effector cells that damage or destroy tumor

cells. Effector cells can proliferate clonally after antigen recogni-
tion, so the model assumes these cells can be in excess if needed.
The activation of effector immune cells due to antigen recog-
nition used in the first term of equation (8) can be seen as a
functional response Holling-II, commonly used tomodel predator
feeding saturation in dynamic ecological systems. Holling Type
II functional response holds biological significance in stimulating
the immune response, as evidenced by various research papers. It
is utilized inmodels studying autoimmune disorders like Guillain-
Barre syndrome [38], predator-prey dynamics with diseases in
the predator population [39], and the impact of deforestation on
wildlife species [40]. The Holling Type II functional response is
particularly effective in describing the predation of susceptible
and infected predators and the interaction between wildlife and
forest resources. This functional response allows for a more ac-
curate representation of the dynamics of disease spread and re-
source utilization in ecological systems, making it a valuable tool
for understanding and controlling epidemics and ecosystem sta-
bility. For the above system, it is assumed that there is a slowing
down of the activation rate as the number of tumor cells increases
because the activation of effector immune cells is limited by the
need for these cells to recognize tumor antigens in the context
of Antigen Presenting Cells (APCs). Cell interaction processes and
receptor recognition are required between APCs and tumor cells
before activation. Thus, increasing the number of tumor cells
does not always imply an increase in effector cell activation [20].

The Itik and Banks model is a chaotic dynamic system [21].
A Chaotic dynamical system is a nonlinear dynamic system with
unique characteristics. The behavior of this system is sensitive
to initial conditions, and it is quite challenging to predict. Dy-
namic systems are often used to model complex systems’ behav-
ior, which is highly uncertain. We can use the maximum Lya-
punov exponent to determine whether a system is chaotic and
sample entropy to observe the system complexity [41].

Maksimum Lyapunov exponent, λ, is calculated using [42]:

λ =

(
1

n2

)∑
i

ln

(
D(i, j)

D

)
, (9)

where D = 1
n2

∑
||x(i) − x(j)|| is the average distance of all

pairs of points, D(i, j) is the distance between point x(i) and
x(j), and n is the time distance.

Assume we have a time-series data set of length
N = {x1, x2, ..., xN} with a constant time inter-
val τ define a template vector of length m, such that
Xm(i) = {xi, xi+1, xi+2, ..., xi+m−1} and the distance function
d[Xm(i), Xm(j)] for i ̸= j is to be the Chebyshev distance. The
sample entropy is calculated using the formula eq. (10) [43], and
the complexity classification based on SampEn values is shown
in Table 1 [44].

SampEn = −ln
(
d(m+ 1, r)

d(m, r)

)
, (10)

where r is a positive number that sets the tolerance level for
matching.

2.2. Data
We use data from William Gilpin’s GitHub repository, i.e.,

the Itik-Banks tumor. Gilpin provides 131 ordinary differen-
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Table 1. Complexity classification Based on SampEn Values

SampEn Values Complexity
< 0.5 Low
0.5− 1 Moderate
≥ 1 High

tial equation systems and their datasets. The datasets can be
accessed using the ”dysts” module in Python programming at
https://GitHub.com/williamgilpin/dysts. Within the ”dysts” mod-
ule are forms of equations and their parameters. We will split
data into training and testing sets in an 80:20 ratio. The training
data is used to set model parameters, and the testing data is used
to evaluate the model. Some of the data from this system can be
seen in Table 2. This table shows the rate of the cells T, H, and E
population. According to Gilpin [21], the data shows that within
the first 49.7 seconds, the number of tumor cells increased by
0.062447 units. Meanwhile, at 2000 × 49.7 seconds, the rate of
change of tumor cells decreased by 0.320312 units.

Table 2. The Change Rate of Tumor (T), Healthy Host (H), and
Effector Immune Cells (E) in Itik Banks Tumor Data

Index T H E
1 0.062447 0.176740 −0.440915
2 0.117306 0.120023 −0.433010
3 0.176890 0.058623 −0.422386
4 0.241105 −0.007472 −0.389482
...

...
...

...
1999 −0.342759 0.657271 −0,549372
2000 −0.320312 0.630896 −0.549453

3. Extended Kalman Filter
The equations (6)-(8) display a nonlinear relationship be-

tween the tumors, healthy hosts, and effector immune cells. This
system is chaotic [21]; hence, the Extended Kalman Filter (EKF)
is an appropriate model to estimate state [22]. The EKF adapts
the linear Kalman filter used for systems with nonlinear measure-
ments and state equations [45]. In the EKF algorithm, nonlin-
ear equations are transformed into linear equations through lin-
earization, which involves using a first-order Taylor series. This
leads to a linear system that can be used with the Kalman filter al-
gorithm [46]. The state-space representation in EKF is expressed
as follows:

xt = f(xt−1) + wt, (11)

zt = h(xt) + vt, (12)

equation (11) is called the state equation, and equation (12) is
called the measurement equation. The nonlinear functions f
and h define the state transition function and the relationship
between state and measurement. Vector xt and zt are the state
andmeasurement vector, respectively, andwt and vt are the state
error and measurement error, respectively. State error refers to
the difference between the true state of the system and the es-
timated state, and measurement error refers to the difference
between the actual measured output of the system and the true
output. State error helps in evaluating the accuracy of the state
estimation process [47]. Measurement error is important for

system identification and parameter estimation, significantly im-
pacting the accuracy and reliability of the results [48]. Assume
that E[wt] = 0, cov(wt) = Qt, E[vt] = 0 and cov(vt) = Rt.

The nonlinear functions f and h are linearized using a first-
order Taylor series as follows:

xt = Φt−1xt−1 + wt,

zt = Hxt + vt,

Φt−1 =
∂fi(xt−1)

∂xj
,

Ht =
∂hi(xt)

∂xj
,

where fi and hi are element ith from f and h, respectively,Φ and
H are state transition and measurement matrices, respectively.

Like the Kalman Filter, state estimation in the EKF algo-
rithm has two steps: forecast (prior) and update (posterior). The
forecast step is to predict the current state given the previous
state and the time that has passed since. The update step com-
bines the predicted state with an incoming measurement that in-
volves the Kalman gain, Kt. State and covariance in the forecast
step will be symbolized by x−t and P−

t , and state and covariance
in the update step will be symbolized by xt and Pt. The pseudo-
code from the EKF algorithm follows [46]:

Algorithm 1 Extended Kalman Filter

Input: xt−1, Pt−1, zt
Output: xt, Pt

Forecast/Prior Step
x−t ← Φt−1xt−1

P−
t ← ΦtPt−1Φ

t
t +Qt

Update/Posterior Step
Kt ← P−

t H
T
t (HtP

−
t H

T
t +Rt)

−1

xt ← x−t +Kt(zt −Htx
−
t )

Pt ← (I −KtHt)P
−
t

return xt, Pt.

The Extended Kalman Filter (EKF) is a powerful tool that
has been successfully implemented in various fields, including
radar-based object tracking [46, 49, 50], traffic [51–53], financial
market [54], stock price [55, 56], and robotic problem [57, 58].
Its versatility and efficiency make it an indispensable asset for
anyone needing accurate and reliable data analysis.

4. Results and Discussion
The Itik and Banks model describes the dynamics of three

interacting cell populations: tumors, healthy hosts, and effector
immune cells. Figure 1 shows the training data from the change
rate of these three cells. Figure 2 shows the correlation coef-
ficients between these three cells. From Figure 1, we see that
tumor and immune cells’ change rate patterns are similar. Still,
these two cells have almost no linear relationship because the
correlation coefficient value for both cells is very small. While
tumor cells have a fairly strong negative relationship with healthy
host cells, effector immune cells also have a fairly strong negative
relationship with healthy host cells.
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(a) (b)

(c)

Figure 1. Training data: (a) Tumor Cells, (b) Healthy Host Cell, (c) Effector Immune Cell

Figure 2. Correlation Coefficient between Tumor, Healthy Host, Effector Immune Cells.

Wewill analyze the system to ensure its chaoticity and com-
plexity. This was done by performing the maximum Lyapunov
exponent and sample entropy, and the results are presented in
Table 3. The table shows that the average of maximum Lyapunov
exponent value is positive, indicating a chaotic system. Addition-
ally, the average sample entropy value for the three variables is
less than 0.5, indicating the low complexity of the system. There-
fore, it can be concluded that the system can be predicted accu-
rately.

Linearization is key to accurately estimating the state using
EKF. We achieve this by using Taylor expansion linearization up

Table 3. The Maximum Lyapunov Exponent and Sample En-
tropy for Itik Banks Model

Variable
Maximum Lyapunov Sample Entropy

Exponent
T 0.05418 0.08273
H 0.04325 0.13738
E 0.06793 0.05774

Average 0,05512 0,09262

to the first order, from equations (6) - (8), which is as follows:

Ṫ = (T0 − T 2
0 − a12T0H0 − a13T0E0) + (1− 2T0 − a12H0
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−a13E0)(T − T0)− T0(H −H0)− a13T0(E − E0),

= (1− 2T0 − a12H0 − a13E0)T − T0H − a13T0E

+(T0 − T 2
0 − a12T0H0 − a13T0E0)− (1− 2T0 − a12H0

−a13E0)T0 + T0H0 + a13T0E0,

Ḣ = (r2H0(1−H0)− a21H0(T − T0)) + (r2 − 2r2H0

−a21T0)(H −H0),

= a21H0T + (r2 − 2r2H0 − a21T0)H + r2H0(1−H0)

−a21T0H0)− a21T0H0 − (r2 − 2r2H0 − a21T0)H0,

Ė =

(
r3k3E0

(T0 + k3)2

)
(T − T0) +

(
r3T0E0

T0 + k3
− a31T0E0

−d3E0) +

(
r3T0

T0 + k3
− a31T0 − d3

)
(E − E0),

=

(
r3k3E0

(T0 + k3)2
− a31E0

)
T +

(
r3T0

T0 + k3
− a31T0 − d3

)
E

+

(
r3T0E0

T0 + k3
− a31T0E0 − d3E0

)
−

(
r3k3E0

(T0 + k3)2

−a31E0)T0 −
(

r3T0

T0 + k3
− a31T0 − d3

)
E0.

(13)
The state-space representation from eq. (13) is

xt =

 Ṫ

Ḣ

Ė

 = Φ

T
H
E

+Bt + wt, (14)

zt =

1 0 0
0 1 0
0 0 1

xt + vt, (15)

where

Φ =

 ψ1 −T0 −a13T0
a21H0 ψ2 0
ψ3 0 ψ4

 ,

Bt =

ψ5 − ψ1T0 + T0H0 + a13T0E0

ψ6 − a21T0H0 − ψ7

ψ4 − ψ3T0 − ψ4

 ,

ψ1 = (1− 2T0 − a12H0 − a13E0) ,

ψ2 = (r2 − 2r2H0 − a21T0) ,

ψ3 =

(
r3k3E0

(T0 + k3)2
− a31E0

)
,

ψ4 =

(
r3T0E0

T0 + k3
− a31T0E0 − d3E0

)
,

ψ5 =
(
T0 − T 2

0 − a12T0H0 − a13T0E0

)
,

ψ6 = (r2H0 (1−H0)− a21T0H0) ,

ψ7 = (r2 − 2r2H0 − a21T0)H0.

In the numerical simulation, the Taylor series expansion of
eq. (13) is carried out around T0 = H0 = E0 = 0.01 and some
parameters used are a12 = 1, a21 = 1.5, a13 = 2.5, a31 = 0.2,
r2 = 0.6, r3 = 4.5, d3 = 0.5, and k3 = 1 [21]. The initial state
and covariance are

x0 =

0.01
0.01
0.01

 and P0 =

0.05 0 0
0 0.05 0
0 0 0.05

 ,

respectively. The covariance of state error and measurement er-
ror is

Q =

0.05 0 0
0 0.07 0
0 0 0.8

 and R =

0.01 0 0
0 0.01 0
0 0 0.01

 ,

respectively.
Figure 3 showcases the EKF prediction results for the Itik

Banks Tumor model/system. The figure consists of three subplots
illustrating the dynamics of tumor cells (T), healthy host cells (H),
and effector immune cells (E) over time. Each subplot compares
the actual data against the prior and posterior predictions gener-
ated by the EKF. Figure 3a for tumor cells shows a strong agree-
ment between the actual data and the prior and posterior predic-
tions. The EKF captures the oscillatory nature of the tumor cell
population well. The peaks and troughs of the predictions align
closely with the actual data, indicating the EKF’s effectiveness in
modeling the dynamic behavior of tumor cells. For healthy host
cells, Figure 3b, the EKF predictions also demonstrate good align-
ment with the actual data. The periodic fluctuations in the host
cell population are accurately mirrored by the prior and posterior
predictions. This suggests that the EKF can reliably predict the
interactions between healthy host cells and other components in
the system. Figure 3c for effector immune cells indicates that the
EKF predictions closely follow the actual data. The model suc-
cessfully captures the oscillatory behavior and the sharp peaks
characteristic of effector immune cell dynamics. The posterior
predictions (blue dashed line) show a slightly better fit than the
prior predictions (red solid line), demonstrating the EKF’s capa-
bility to refine predictions based on observed data. In the poste-
rior step, the estimation results from the prior step are updated
using actual data so that the estimation results of healthy host
cells in the posterior step will approach their actual data. This
correction is called data assimilation involving Kalman gain.

The estimation results of the rate of change of the three
cells in the testing data are displayed in Figure 4. Figure 4a il-
lustrates the EKF predictions for the tumor variable using test-
ing data. The tumor data (T-actual) in green shows significant
variations and peaks. The EKF prior (T-prior) and posterior
(T-posterior) predictions, in red and blue, respectively, closely
match the actual tumor data, demonstrating good predictive per-
formance on unseen data. Figure 4b reveals the EKF predictions
against testing data. While the EKF posterior (H-posterior) esti-
mates (blue) capture the general trend of the actual data (green),
there are some discrepancies, particularly at the troughs and
peaks. The EKF prior (H-prior) predictions (red) show a larger de-
viation from the actual data, indicating the importance of poste-
rior correction. Figure 4c shows the EKF predictions for the effec-
tor immune cells (E) with testing data. The actual data (E-actual)
in green shows distinct peaks and troughs. The EKF posterior
predictions (E-posterior) in blue track the actual data’s overall
trend, though some oscillatory patterns are not captured accu-
rately. The red EKF prior predictions (E-prior) exhibit more signif-
icant deviations, highlighting the improved accuracy of posterior
estimates.

For the training data, the EKF posterior estimates for all
three variables (Tumor, Healthy Host, and Effector Immune Cells)
closely match the data during the training phase, indicating the
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(a) (b)

(c)

Figure 3. The EKF Prediction for Training Data: (a) Tumor, (b) Healthy Host, (c) Effector Immune Cells.

(a) (b)

(c)

Figure 4. The EKF Prediction for Testing Data: (a) Tumor, (b) Healthy Host, (c) Effector Immune Cells.
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(a) (b)

(c)

Figure 5. The EKF Prediction (a) Tumor, (b) Healthy Host, (c) Effector Immune Cells.

filter’s effective adaptation to the known data patterns. Minor
discrepancies are present but are generally small, suggesting a
good fit to the training data. For the testing data, the EKF’s per-
formance on testing data shows a strong general trend capture
for all three variables, with posterior predictions often closely
following the actual data. However, the deviations are more pro-
nounced in the testing phase, especially for the Effector Immune
Cells (E), indicating potential areas for model improvement or
inherent unpredictability in the data. The posterior predictions
(blue) are more accurate in the training and testing phases than
the prior predictions (red). This difference emphasizes the im-
portance of the update step in the EKF, which corrects the prior
estimates using the actual observations. The oscillatory nature
of the data is a significant challenge for the EKF, as seen in the
Effector Immune Cells (E) variable. The EKF manages to capture
the overall pattern but struggles with high-frequency oscillations.
Despite some deviations, the EKF demonstrates robust perfor-
mance in predicting the dynamics of the tumor, healthy host,
and effector immune cells, making it a useful tool for such ap-
plications. In summary, the figures show that the EKF effectively
tracks and predicts the behavior of key biological variables during
both training and testing phases, with posterior estimates sig-
nificantly improving prediction accuracy. The performance high-
lights the EKF’s potential for real-time monitoring and prediction
in complex biological systems.

This study considers that data is available at each time step,
so the prior estimation correction is performed when data is
available. Therefore, the behavior of the three cells in the test-
ing data resembles the estimation results in the training data for
both the prior and posterior steps. The behavior of the estimated

change rate in the three cells aligns with the simulation results
conducted by [20]. However, when data is unavailable, the three
cells are estimated using eq. (14). These estimations, illustrated
in Figure 5, reveal certain insights into the prediction accuracy
and areas that require improvement. Figure 5a, the EKF predic-
tion (red dashed line) deviates from the actual test data (black
solid line). This indicates that while the EKF can capture the gen-
eral upward trend, it struggles with accurately predicting the in-
termediate fluctuations. Figure 5b, the prediction shows signif-
icant discrepancies, while the EKF prediction shows an upward
spike. This suggests that the EKF is less effective in capturing
sudden changes in the healthy host cell population, which may
be influenced by external factors not accounted for in the model.
Figure 5c, the EKF prediction shows large oscillations not present
in the actual data, which remains relatively stable around zero.
This indicates that the EKF struggles significantly with the effec-
tor immune cells, producing high-frequency oscillations that do
not match the actual dynamics. The overall prediction error, mea-
sured by symmetric Mean Absolute Percentage Error (sMAPE), is
35.92%. This high error rate underscores the need for immedi-
ate correction once new data becomes available. The large de-
viations in the EKF predictions, particularly for the healthy host
and effector immune cells, highlight areas for potential model
improvement. The significant prediction error suggests that the
EKF, in its current form, may not fully capture the system’s com-
plex interactions and dynamics.

The Extended Kalman Filter (EKF) shows promising results
in predicting the behavior of the tumor, healthy host, and ef-
fector immune cells in training and testing datasets. The poste-
rior estimates produced by the EKF closely align with the actual
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data during the training phase, indicating that the filter effec-
tively adapts to known data patterns. The minor discrepancies
observed are generally small, suggesting a good fit for the train-
ing data. In the testing phase, the EKF maintains its strong per-
formance by capturing the general trend for all three variables.
The posterior predictions (blue) typically follow the actual data
closely, although deviations are more pronounced compared to
the training phase, especially for the effector immune cells (E).
This suggests potential areas for model improvement or high-
lights inherent unpredictability in the data, consistent with find-
ings in the literature that underscore the complexity of tumor-
immune interactions and the challenge of modeling them accu-
rately [3, 16, 18].

The EKF’s ability to providemore accurate posterior predic-
tions (red) compared to prior predictions in both the training and
testing phases underscores the importance of the update step.
This step corrects the prior estimates using actual observations,
which is crucial for maintaining accuracy over time [20]. How-
ever, the oscillatory nature of the data, particularly for effector
immune cells, poses a significant challenge. The EKF manages to
capture the overall pattern but struggles with high-frequency os-
cillations. This aligns with previous studies that have highlighted
the chaotic and oscillatory behavior of cancer and immune sys-
tem dynamics, which can complicate prediction efforts [4, 14, 19].
Despite these challenges, the EKF demonstrates robust perfor-
mance in predicting the dynamics of the tumor, healthy host,
and effector immune cells. This makes it a valuable tool for real-
time monitoring and prediction in complex biological systems,
echoing similar applications of mathematical and computational
models in cancer research [6, 11, 21].

The study also highlights that the EKF’s performance de-
pends on data availability at each time step, allowing for prior
estimation correction when data is available. This leads to simi-
lar behavior in the testing data observed in the training data for
both prior and posterior steps. However, when data is unavail-
able, the estimation relies on pre-defined equations, which can
introduce variability due to random noise. As shown in Figure 5,
without the update step, the estimation of the three cells devi-
ates more significantly from the actual data, leading to a larger
prediction error. This necessitates prompt correction once new
data becomes available to maintain prediction accuracy [19, 59].

5. Conclusion

This article successfully predicted the change rate of the
tumor, healthy host, and effector immune cells using EKF. The
state-space model representation is formed by linearizing the
Itik-Banks tumor model. The EKF demonstrates strong perfor-
mance in forecasting the behavior of tumor, healthy host, and
effector immune cells within the Itik-Banks model. During the
training phase, the EKF’s posterior estimates closely match the
actual data, indicating effective adaptation to known data pat-
terns withminor discrepancies. In the testing phase, the EKF con-
tinues to capture the general trend of all three variables, with the
posterior predictions typically following the actual data closely.
However, deviations are more pronounced in the testing phase,
particularly for effector immune cells, suggesting areas for model
improvement or highlighting inherent data unpredictability. The
EKF’s ability to provide more accurate posterior predictions com-

pared to prior predictions underscores the crucial role of the up-
date step in correcting estimates using actual observations. De-
spite the challenges posed by the oscillatory nature of the data,
especially for effector immune cells, the EKF demonstrates ro-
bust predictive performance, making it a valuable tool for real-
time monitoring and prediction in complex biological systems.
The necessity for prompt correction when data becomes avail-
able is emphasized, especially given the larger prediction errors
observed when data is unavailable.

Future work should address the pronounced deviations ob-
served during the testing phase, particularly for effector immune
cells. This could involve enhancing the EKF’s capacity to handle
high-frequency oscillations and chaotic behavior inherent in can-
cer dynamics. Integrating more sophisticated data assimilation
techniques or hybrid modeling approaches may improve predic-
tion accuracy. Expanding the model to incorporate more biolog-
ical variables and external factors could provide a more compre-
hensive understanding of tumor-immune interactions. Investi-
gating the impact of different noise models and refining the EKF
parameters based on empirical data will also be crucial in enhanc-
ing the robustness and reliability of the prediction.

Author Contributions. Fitriyati, N.: A primary contributor to the draft-
ing of the manuscript, linearization of the system, conducting numerical
simulations for validation, and analysis of simulation results. Faizah, S.
A.: Conduct linearization of the system and numerical simulations to
validate and analyze simulation results. Sutanto, T. E.: Analysis and in-
terpretation of simulation results, critical article revision for important
intellectual content, and approved final manuscript.

Acknowledgement. The authors are grateful to the editor and reviewers
for their careful reading, valuable comments, and helpful suggestions,
which have helped them significantly improve this work’s excellence.

Funding. This research received no external funding.

Conflict of interest. The authors declare no conflicts of interest related
to this article.

Data availability. The data supporting the findings of this study are
available in the main references.

References
[1] L. Marsha, K. R. Conroy, and J. L. Davis, Atlas Pathophysiology. Lippincott

Williams & Wilkins, 2010.
[2] V. Kumar, A. K. Abbas, and J. C. Aster, Robbins and Cotran Pathologic Basis of

Disease. Canada: Elsevier, 2014.
[3] M. Itik and S. P. Banks, “Chaos in a three-dimensional cancer

model,” Internat. J. Bifurc. Chaos, vol. 20, no. 1, pp. 71–79, 2010.
DOI:10.1142/S0218127410025417

[4] C. Draghi et al., “How the Growth Rate of Host Cells Affects Cancer
Risk in a Deterministic Way,” Chaos, vol. 27, no. 9, p. 093101, 2017.
DOI:10.1063/1.5000713

[5] S. Kumar et al., “A chaos study of tumor and effector cells in fractional tumor-
immune model for cancer treatment,” Chaos, Solitons & Fractals, vol. 141, p.
110321, 2020. DOI:10.1016/j.chaos.2020.110321

[6] J. Sardanyés et al., “Activation of effector immune cells promotes
tumor stochastic extinction: A homotopy analysis approach,” Ap-
plied Mathematics and Computation, vol. 252, pp. 484–495, 2014.
DOI:10.1016/j.amc.2014.12.005

[7] B. Zhang et al., “Equilibrium between Host and Cancer Caused by Effector T
Cells Killing Tumor Stroma,” American Association for Cancer Research, vol. 68,
no. 5, pp. 1563–1571, 2008. DOI:10.1158/0008-5472.CAN-07-5324

JJBM | Jambura J. Biomath Volume 5 | Issue 1 | June 2024

https://shop.elsevier.com/books/robbins-and-cotran-pathologic-basis-of-disease/kumar/978-0-323-53113-9
https://shop.elsevier.com/books/robbins-and-cotran-pathologic-basis-of-disease/kumar/978-0-323-53113-9
https://www.worldscientific.com/doi/abs/10.1142/S0218127410025417
https://www.worldscientific.com/doi/abs/10.1142/S0218127410025417
https://www.worldscientific.com/doi/abs/10.1142/S0218127410025417
https://pubs.aip.org/aip/cha/article-abstract/27/9/093101/341926/How-the-growth-rate-of-host-cells-affects-cancer?redirectedFrom=fulltext
https://pubs.aip.org/aip/cha/article-abstract/27/9/093101/341926/How-the-growth-rate-of-host-cells-affects-cancer?redirectedFrom=fulltext
https://pubs.aip.org/aip/cha/article-abstract/27/9/093101/341926/How-the-growth-rate-of-host-cells-affects-cancer?redirectedFrom=fulltext
https://www.sciencedirect.com/science/article/pii/S0960077920307177
https://www.sciencedirect.com/science/article/pii/S0960077920307177
https://www.sciencedirect.com/science/article/pii/S0960077920307177
https://www.sciencedirect.com/science/article/abs/pii/S0096300314016506
https://www.sciencedirect.com/science/article/abs/pii/S0096300314016506
https://www.sciencedirect.com/science/article/abs/pii/S0096300314016506
https://www.sciencedirect.com/science/article/abs/pii/S0096300314016506
https://aacrjournals.org/cancerres/article/68/5/1563/543036/Equilibrium-between-Host-and-Cancer-Caused-by
https://aacrjournals.org/cancerres/article/68/5/1563/543036/Equilibrium-between-Host-and-Cancer-Caused-by
https://aacrjournals.org/cancerres/article/68/5/1563/543036/Equilibrium-between-Host-and-Cancer-Caused-by


N. Fitriyati, S. A. Faizah, and T. E. Sutanto – Prediction of the Change Rate of Tumor, Healthy Host, and Effector Immune Cells in… 36

[8] S. Mochrie and C. D. Grandi, Rates of Change: Drugs, Infections, and Weapons
of Mass Destruction. Springer International Publishing, 2023.

[9] L. J. Zwi et al., “The role of immune effector cells in flavone acetic acid-
induced injury to tumor cells in EMT6 spheroids,” Oncology Research, vol. 4,
no. 8–9, pp. 333–339, 1992.

[10] S. F. Slovin, 5 - Can Effector Cells Really “Effect” an Anti-Tumor Response as Cancer
Therapy? Academic Press, 2010.

[11] S. A. Alharbi and A. S. Rambely, “A NewODE-BasedModel for Tumor Cells and
Immune System Competition,” Mathematics, vol. 8, no. 8, pp. 1285, 2020.
DOI:10.3390/math8081285

[12] J. Wang and S. Liu, “Persistence and extinction of the tumor-immune
stochastic model with effector cells and cytokines,” Journal of Applied Analysis
& Computation, vol. 13, no. 2, pp. 655–670, 2023. DOI:10.11948/20210464

[13] K. C. Wang et al., “Effector and enhancing lymphoid cells in plasmacytoma-
bearing mice. II. Dynamic changes during tumor progression,” In-
ternational Journal of Cancer, vol. 25, no. 4, pp. 493–501, 1980.
DOI:10.1002/ijc.2910250411

[14] M. Aqeel and S. Ahmad, “Analytical and Numerical Study of Hopf Bifurcation
Scenario for a Three-Dimensional Chaotic System,” Nonlinear Dyn, vol. 84,
no. 2, pp. 755–765, 2016. DOI:10.1007/s11071-015-2525-z

[15] K. E. Starkov and L. N. Coria, “Global dynamics of the Kirschner–Panetta
model for the tumor immunotherapy,” Nonlinear Anal.: Real World Appl.,
vol. 14, no. 3, pp. 1425–1433, 2013. DOI:10.1016/j.nonrwa.2012.10.006

[16] H. C. Wei and J. T. Lin, “Periodically pulsed immunotherapy in a mathemat-
ical model of tumor-immune interaction,” Int. J. Bifurc. Chaos, vol. 23, no. 4,
p. 1350068, 2013. DOI:10.1142/S0218127413500685

[17] A. G. López et al., “Avoiding healthy cells extinction in a cancer model,” J.
Theor. Biol., vol. 349, pp. 74–81, 2014. DOI:0.1016/j.jtbi.2014.01.040

[18] P. A. Valle et al., “Bounding the dynamics of a chaotic-cancer mathe-
matical model,” Math. Probl. Eng., vol. 2018, no. 1, pp. 9787015, 2018.
DOI:10.1155/2018/9787015

[19] S. Khajanchi, M. Perc, and D. Ghosh, “The influence of time delay in a chaotic
cancer model,” Chaos, Interdiscip. J. Nonlinear Sci., vol. 28, no. 10, pp. 103101,
2018. DOI:10.1063/1.5052496

[20] B. Ghanbari, “On themodeling of the interaction between tumor growth and
the immune system using some new fractional and fractional-fractal opera-
tors,” Adv Differ Equ., vol. 2020, no. 1, pp. 585, 2020. DOI:10.1186/s13662-
020-03040-x

[21] W. Gilpin, “Chaos as an interpretable benchmark for forecasting and data-
driven modelling,” https://arxiv.org/abs/2110.05266, Accessed on
12 April 2023.

[22] S. Mejri, A. S. Tlili, and N. B. Braiek, “On the state estimation of chaotic
systems by a particle filter and an extended Kalman filter,” IEEE Xplore, pp.
1–6, 2014. DOI:10.1109/SSD.2014.6808891

[23] Q. Butler et al., “Generalizing the unscented Kalman filter for state estima-
tion,” SPIE, vol. 12547, pp. 13–26, 2023. DOI:10.1117/12.2664227

[24] A. S. Mendes et al., Extended Kalman Filter for a Monitoring System of the Guyed
Towers. IntechOpen eBooks, 2023.

[25] N. Ngatini, E. Apriliani, and H. Nurhadi, “Comparison of AUV Position Es-
timation Using Kalman Filter, Ensemble Kalman Filter and Fuzzy Kalman
Filter Algorithm in the Specified Trajectories,” InPrime: Indonesian Jour-
nal of Pure and Applied Mathematics, vol. 4, no. 1, pp. 1–18, 2022.
DOI:10.15408/inprime.v4i1.22912

[26] H. Singh, K. V. Mishra, and A. Chattopadhyay, “Inverse Unscented Kalman
Filter,” arXiv:2304.01698, 2023.

[27] J. Huang et al., “Extended Kalman Filter-Based Vehicle State Estimation
for Direct Yaw Moment Control Systems,” IEEE Xplore, pp. 6–10, 2023.
DOI:10.1109/RCAE56054.2022.9995854

[28] P. Setoodeh, S. Habibi, and S. Haykin, Kalman Filter. In Nonlinear Filters. Wiley
Online Library, 2022.

[29] S. Lee and M. I. Lee, “Effective Methods for Increasing Model Background
Error in the Ensemble Kalman Filtering in Aerosol Data Assimilation,” EGU
General Assembly 2023, Vienna, Austria, 24–28 Apr 202, pp. EGU23–11371,
2023. DOI:10.5194/egusphere-egu23-11371

[30] M. de Zhang, K. long Li, and B. qing Hu, “Modified Single Propagation Un-
scented Kalman Filter,” DEStech Transactions on Computer Science and Engineer-
ing, 2019. DOI:10.12783/dtcse/aicae2019/31500

[31] N. Fitriyati, G. Kusuma, and I. Fauziah, “Detection of Heat Conduction Dis-
turbance in Cylindrical-ShapedMetal Chip using Kalman Filter and Ensemble
Kalman Filter,” Proceedings of the International Conference on Mathematics and
Islam (ICMIs 2018), vol. 1, pp. 9–14, 2018. DOI:10.5220/0008516400090014

[32] V. A. Kuznetsov et al., “Nonlinear dynamics of immunogenic tumors: Parame-
ter estimation and global bifurcation analysis,” Bull. Math. Biol, vol. 56, no. 2,

pp. 295–321, 1994. DOI:10.1016/S0092-8240(05)80260-5
[33] L. G. de Pillis and A. Radunskaya, “The dynamics of an optimally controlled

tumor model: A case study,”Math. Comput. Modell, vol. 37, no. 11, pp. 1221–
1244, 2003. DOI:10.1016/S0895-7177(03)00133-X

[34] D. Kirschner and J. C. Panetta, “Modeling immunotherapy of the tumor-
immune interaction,” J. Math. Biol., vol. 37, no. 3, pp. 235–252, 1998.
DOI:10.1007/s002850050127

[35] Z. Bajzer, M. Marušić, and S. Vuk-Pavlović, “Conceptual frameworks for
mathematical modeling of tumor growth dynamics,” Math. Comput. Model,
vol. 23, no. 6, pp. 31–46, 1996. DOI:10.1016/0895-7177(96)00018-0

[36] M. Itik, M. U. Salamci, and S. P. Banks, “Optimal control of drug therapy in
cancer treatment,” Nonlin. Anal. Th. Meth. Appl., vol. 71, no. 12, pp. e1473–
e1486, 2009. DOI:10.1016/j.na.2009.01.214

[37] L. G. de Pillis, W. Gu, and A. E. Radunskaya, “Mixed immunotherapy
and chemotherapy of tumors: Modeling, applications and biological in-
terpretations,” J. Theoret. Biol., vol. 238, no. 4, pp. 841–862, 2006.
DOI:10.1016/j.jtbi.2005.06.037

[38] B. Günay et al., “A Fractional Approach to a Computational Eco-
Epidemiological Model with Holling Type-II Functional Response,” Symme-
try, vol. 13, no. 7, pp. 1159, 2021. DOI:10.3390/SYM13071159

[39] A. J. Kadhim and A. A. Majeed, “Epidemiological Model Involving Two Dis-
eases in Predator Population with Holling Type-II Functional Response,” In-
ternational Journal of Nonlinear Analysis and Applications, vol. 12, no. 2, pp.
2085–2107, 2021. DOI:10.22075/IJNAA.2021.5349

[40] L. R. Sari et al., “Mathematical model of Guillain-Barre syndromewith Holling
type II functional response,” Commun. Math. Biol. Neurosci., vol. 2020, pp. 1–
15, 2020. DOI:10.28919/cmbn/4805

[41] D. P. Feldman, Chaos and Dynamical Systems. Princeton University Press,
2019. DOI:10.2307/j.ctvc5pczn

[42] M. T. Rosenstein, J. J. Collins, and C. J. De Luca, “A practical method for cal-
culating largest Lyapunov exponents from small data sets,” Physica D, vol. 65,
no. 1–2, pp. 117–134, 1993. DOI:10.1016/0167-2789(93)90009-P

[43] J. S. Richman and J. R. Moorman, “Physiological time-series analysis us-
ing approximate and sample entropy,” American Journal of Physiology-
Heart and Circulatory Physiology, vol. 278, no. 6, p. H2039–H2049, 2000.
DOI:10.1152/ajpheart.2000.278.6.H2039

[44] A. Delgado-Bonal and A. Marshak, “Approximate Entropy and Sample En-
tropy: A Comprehensive Tutorial,” Entropy, vol. 21, no. 6, pp. 541, 2019.
DOI:10.3390/e21060541

[45] R. G. Gibbs, “Criteria for When the Extended Kalman Fil-
ter Works and Issues with Sigma Point Kalman Filters,” 2023.
DOI:10.13140/RG.2.2.30946.71367/1

[46] A. Jarrah, A.-K. Al-Tamimi, and T. Albashir, “Optimized Parallel Im-
plementation of Extended Kalman Filter Using FPGA,” Journal of Cir-
cuits, Systems, and Computers, vol. 27, no. 1, pp. 1850009, 2018.
DOI:10.1142/S0218126618500093

[47] L. Tarawneh et al., “The Accuracy Evaluation of State Estimation
in Smart Power Grids,” 2020 International Conference on Electrical,
Communication, and Computer Engineering (ICECCE), pp. 1–4, 2020.
DOI:10.1109/ICECCE49384.2020.9179352

[48] J. Fogelquist, Q. Lai, and X. Lin, “On the Error of Li-ion Battery Parameter
Estimation Subject to System Uncertainties,” Journal of The Electrochemical
Society, vol. 170, no. 3, pp. 030510, 2023. DOI:10.1149/1945-7111/acbc9c

[49] D. S. Inaibo et al., “Design of Extended Kalman Filter for Object Position
Tracking,” International Journal of Engineering Research & Technology (IJERT),
vol. 7, no. 7, pp. 427–435, 2018. DOI:10.17577/IJERTV7IS070025

[50] N. Piga, U. Pattacini, and L. Natale, “A Differentiable Extended Kalman Filter
for Object Tracking Under Sliding Regime,” Frontiers in Robotics and AI, vol. 8,
pp. 686447, 2021. DOI:10.3389/frobt.2021.686447

[51] S. Y. Chang, H.-C. Wu, and Y.-C. Kao, “Tensor Extended Kalman Fil-
ter and Its Application to Traffic Prediction,” IEEE Transactions on In-
telligent Transportation Systems, vol. 24, no. 12, pp. 13813–13829, 2023.
DOI:10.1109/TITS.2023.3299557

[52] A. S. M. Bakibillah et al., “Robust estimation of traffic density with missing
data using an adaptive-R extended Kalman filter,” Applied Mathematics and
Computation, vol. 421, pp. 126915, 2022. DOI:10.1016/j.amc.2022.126915

[53] C. Dong et al., “Freeway Traffic State Estimation Based on Extended Kalman
Filter,” in Conference: 15th COTA International Conference of Transportation Pro-
fessionals, pp. 420–430, 2015. DOI:10.1061/9780784479292.038

[54] G. Benrhmach et al., “Nonlinear Autoregressive Neural Network and Ex-
tended Kalman Filters for Prediction of Financial Time Series,” Jour-
nal of Applied Mathematics, vol. 2020, no. 1, pp. 5057801, 2020.
DOI:10.1155/2020/5057801

JJBM | Jambura J. Biomath Volume 5 | Issue 1 | June 2024

https://link.springer.com/chapter/10.1007/978-3-031-05808-0_7
https://link.springer.com/chapter/10.1007/978-3-031-05808-0_7
https://www.mdpi.com/2227-7390/8/8/1285
https://www.mdpi.com/2227-7390/8/8/1285
https://www.mdpi.com/2227-7390/8/8/1285
http://www.jaac-online.com/article/doi/10.11948/20210464
http://www.jaac-online.com/article/doi/10.11948/20210464
http://www.jaac-online.com/article/doi/10.11948/20210464
https://onlinelibrary.wiley.com/doi/10.1002/ijc.2910250411
https://onlinelibrary.wiley.com/doi/10.1002/ijc.2910250411
https://onlinelibrary.wiley.com/doi/10.1002/ijc.2910250411
https://onlinelibrary.wiley.com/doi/10.1002/ijc.2910250411
https://link.springer.com/article/10.1007/s11071-015-2525-zciteas
https://link.springer.com/article/10.1007/s11071-015-2525-zciteas
https://link.springer.com/article/10.1007/s11071-015-2525-zciteas
https://www.sciencedirect.com/science/article/abs/pii/S1468121812002246
https://www.sciencedirect.com/science/article/abs/pii/S1468121812002246
https://www.sciencedirect.com/science/article/abs/pii/S1468121812002246
https://www.worldscientific.com/doi/abs/10.1142/S0218127413500685
https://www.worldscientific.com/doi/abs/10.1142/S0218127413500685
https://www.worldscientific.com/doi/abs/10.1142/S0218127413500685
https://www.sciencedirect.com/science/article/abs/pii/S0022519314000599?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0022519314000599?via%3Dihub
https://onlinelibrary.wiley.com/doi/abs/10.1155/2018/9787015
https://onlinelibrary.wiley.com/doi/abs/10.1155/2018/9787015
https://onlinelibrary.wiley.com/doi/abs/10.1155/2018/9787015
https://pubs.aip.org/aip/cha/article-abstract/28/10/103101/856299/The-influence-of-time-delay-in-a-chaotic-cancer?redirectedFrom=fulltext
https://pubs.aip.org/aip/cha/article-abstract/28/10/103101/856299/The-influence-of-time-delay-in-a-chaotic-cancer?redirectedFrom=fulltext
https://pubs.aip.org/aip/cha/article-abstract/28/10/103101/856299/The-influence-of-time-delay-in-a-chaotic-cancer?redirectedFrom=fulltext
https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-03040-x
https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-03040-x
https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-03040-x
https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-03040-x
https://arxiv.org/abs/2110.05266
https://arxiv.org/abs/2110.05266
https://arxiv.org/abs/2110.05266
https://ieeexplore.ieee.org/document/6808891
https://ieeexplore.ieee.org/document/6808891
https://ieeexplore.ieee.org/document/6808891
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12547/2664227/Generalizing-the-unscented-Kalman-filter-for-state-estimation/10.1117/12.2664227.short?tab=ArticleLink
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12547/2664227/Generalizing-the-unscented-Kalman-filter-for-state-estimation/10.1117/12.2664227.short?tab=ArticleLink
https://books-google-co-id.translate.goog/books/about/Extended_Kalman_Filter_for_a_Monitoring.html?id=xfEd0AEACAAJ&redir_esc=y&_x_tr_sl=en&_x_tr_tl=id&_x_tr_hl=id&_x_tr_pto=sc
https://books-google-co-id.translate.goog/books/about/Extended_Kalman_Filter_for_a_Monitoring.html?id=xfEd0AEACAAJ&redir_esc=y&_x_tr_sl=en&_x_tr_tl=id&_x_tr_hl=id&_x_tr_pto=sc
https://journal.uinjkt.ac.id/index.php/inprime/article/view/22912
https://journal.uinjkt.ac.id/index.php/inprime/article/view/22912
https://journal.uinjkt.ac.id/index.php/inprime/article/view/22912
https://journal.uinjkt.ac.id/index.php/inprime/article/view/22912
https://journal.uinjkt.ac.id/index.php/inprime/article/view/22912
https://ieeexplore.ieee.org/document/9995854
https://ieeexplore.ieee.org/document/9995854
https://ieeexplore.ieee.org/document/9995854
https://meetingorganizer.copernicus.org/EGU23/EGU23-11371.html
https://meetingorganizer.copernicus.org/EGU23/EGU23-11371.html
https://meetingorganizer.copernicus.org/EGU23/EGU23-11371.html
https://meetingorganizer.copernicus.org/EGU23/EGU23-11371.html
https://dpi-journals.com/index.php/dtcse/article/view/31500
https://dpi-journals.com/index.php/dtcse/article/view/31500
https://dpi-journals.com/index.php/dtcse/article/view/31500
https://www.scitepress.org/PublicationsDetail.aspx?ID=1RQW+LKI360=&t=1
https://www.scitepress.org/PublicationsDetail.aspx?ID=1RQW+LKI360=&t=1
https://www.scitepress.org/PublicationsDetail.aspx?ID=1RQW+LKI360=&t=1
https://www.scitepress.org/PublicationsDetail.aspx?ID=1RQW+LKI360=&t=1
https://www.sciencedirect.com/science/article/abs/pii/S0092824005802605
https://www.sciencedirect.com/science/article/abs/pii/S0092824005802605
https://www.sciencedirect.com/science/article/abs/pii/S0092824005802605
https://www.sciencedirect.com/science/article/pii/S089571770300133X
https://www.sciencedirect.com/science/article/pii/S089571770300133X
https://www.sciencedirect.com/science/article/pii/S089571770300133X
https://link.springer.com/article/10.1007/s002850050127citeas
https://link.springer.com/article/10.1007/s002850050127citeas
https://link.springer.com/article/10.1007/s002850050127citeas
https://www.sciencedirect.com/science/article/pii/0895717796000180
https://www.sciencedirect.com/science/article/pii/0895717796000180
https://www.sciencedirect.com/science/article/pii/0895717796000180
https://www.sciencedirect.com/science/article/abs/pii/S0362546X09002077
https://www.sciencedirect.com/science/article/abs/pii/S0362546X09002077
https://www.sciencedirect.com/science/article/abs/pii/S0362546X09002077
https://www.sciencedirect.com/science/article/abs/pii/S0022519305002936?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0022519305002936?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0022519305002936?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0022519305002936?via%3Dihub
https://www.mdpi.com/2073-8994/13/7/1159
https://www.mdpi.com/2073-8994/13/7/1159
https://www.mdpi.com/2073-8994/13/7/1159
https://ijnaa.semnan.ac.ir/article_5349.html
https://ijnaa.semnan.ac.ir/article_5349.html
https://ijnaa.semnan.ac.ir/article_5349.html
https://ijnaa.semnan.ac.ir/article_5349.html
https://scik.org/index.php/cmbn/article/view/4805/2525
https://scik.org/index.php/cmbn/article/view/4805/2525
https://scik.org/index.php/cmbn/article/view/4805/2525
https://www.jstor.org/stable/j.ctvc5pczn
https://www.jstor.org/stable/j.ctvc5pczn
https://www.sciencedirect.com/science/article/abs/pii/016727899390009P
https://www.sciencedirect.com/science/article/abs/pii/016727899390009P
https://www.sciencedirect.com/science/article/abs/pii/016727899390009P
https://journals.physiology.org/doi/full/10.1152/ajpheart.2000.278.6.H2039
https://journals.physiology.org/doi/full/10.1152/ajpheart.2000.278.6.H2039
https://journals.physiology.org/doi/full/10.1152/ajpheart.2000.278.6.H2039
https://journals.physiology.org/doi/full/10.1152/ajpheart.2000.278.6.H2039
https://www.mdpi.com/1099-4300/21/6/541
https://www.mdpi.com/1099-4300/21/6/541
https://www.mdpi.com/1099-4300/21/6/541
https://www.researchgate.net/publication/373951177_Criteria_for_When_the_Extended_Kalman_Filter_Works_and_Issues_with_Sigma_Point_Kalman_Filters
https://www.researchgate.net/publication/373951177_Criteria_for_When_the_Extended_Kalman_Filter_Works_and_Issues_with_Sigma_Point_Kalman_Filters
https://www.researchgate.net/publication/373951177_Criteria_for_When_the_Extended_Kalman_Filter_Works_and_Issues_with_Sigma_Point_Kalman_Filters
https://www.worldscientific.com/doi/10.1142/S0218126618500093
https://www.worldscientific.com/doi/10.1142/S0218126618500093
https://www.worldscientific.com/doi/10.1142/S0218126618500093
https://www.worldscientific.com/doi/10.1142/S0218126618500093
https://ieeexplore.ieee.org/document/9179352
https://ieeexplore.ieee.org/document/9179352
https://ieeexplore.ieee.org/document/9179352
https://ieeexplore.ieee.org/document/9179352
https://iopscience.iop.org/article/10.1149/1945-7111/acbc9c/meta
https://iopscience.iop.org/article/10.1149/1945-7111/acbc9c/meta
https://iopscience.iop.org/article/10.1149/1945-7111/acbc9c/meta
https://www.ijert.org/design-of-extended-kalman-filter-for-object-position-tracking
https://www.ijert.org/design-of-extended-kalman-filter-for-object-position-tracking
https://www.ijert.org/design-of-extended-kalman-filter-for-object-position-tracking
https://www-frontiersin-org.translate.goog/articles/10.3389/frobt.2021.686447/full?_x_tr_sl=en&_x_tr_tl=id&_x_tr_hl=id&_x_tr_pto=sc
https://www-frontiersin-org.translate.goog/articles/10.3389/frobt.2021.686447/full?_x_tr_sl=en&_x_tr_tl=id&_x_tr_hl=id&_x_tr_pto=sc
https://www-frontiersin-org.translate.goog/articles/10.3389/frobt.2021.686447/full?_x_tr_sl=en&_x_tr_tl=id&_x_tr_hl=id&_x_tr_pto=sc
https://ieeexplore.ieee.org/document/10208113
https://ieeexplore.ieee.org/document/10208113
https://ieeexplore.ieee.org/document/10208113
https://ieeexplore.ieee.org/document/10208113
https://www.sciencedirect.com/science/article/abs/pii/S0096300322000017
https://www.sciencedirect.com/science/article/abs/pii/S0096300322000017
https://www.sciencedirect.com/science/article/abs/pii/S0096300322000017
https://ascelibrary.org/doi/10.1061/9780784479292.038
https://ascelibrary.org/doi/10.1061/9780784479292.038
https://ascelibrary.org/doi/10.1061/9780784479292.038
https://onlinelibrary.wiley.com/doi/10.1155/2020/5057801
https://onlinelibrary.wiley.com/doi/10.1155/2020/5057801
https://onlinelibrary.wiley.com/doi/10.1155/2020/5057801
https://onlinelibrary.wiley.com/doi/10.1155/2020/5057801


N. Fitriyati, S. A. Faizah, and T. E. Sutanto – Prediction of the Change Rate of Tumor, Healthy Host, and Effector Immune Cells in… 37

[55] I. H. Susanto et al., “Implementation Fuzzy and Extended Kalman Filter for
Estimation of High and Low Stock Price Travel Company,” Pattimura Inter-
national Journal of Mathematics (PIJMath), vol. 2, no. 1, pp. 17–24, 2023.
DOI:10.30598/pijmathvol2iss1pp17-24

[56] Ö. S. Alp, L. Özbek, and B. Canbaloglu, “An analysis of stock mar-
ket prices by using extended Kalman filter: The US and China
cases,” Investment Analysts Journal, vol. 52, no. 1, pp. 67–82, 2023.
DOI:10.1080/10293523.2023.2179160

[57] A. Jordana et al., “Risk-Sensitive Extended Kalman Filter,” 2023.

DOI:10.48550/arXiv.2305.11573
[58] G. R. Gopinath and M. B. Pudutha, “High Performance Control and Ex-

tended Kalman Filter Based Estimation of Sensorless Permanent Mag-
net Synchronous Motor Drive for Robotic Applications,” International Con-
ference on Human-Computer Interaction, vol. 14057, pp. 500-–512, 2023.
DOI:10.1007/978-3-031-48047-8_33

[59] N. Fitriyati et al., “EnKF Estimation: Comparison of Analytical and Numerical
Forecast Step,” Far East Journal of Theoretical Statistics, vol. 36, no. 1, pp.
117–128, 2011.

JJBM | Jambura J. Biomath Volume 5 | Issue 1 | June 2024

https://ojs3.unpatti.ac.id/index.php/pijmath/article/view/8350
https://ojs3.unpatti.ac.id/index.php/pijmath/article/view/8350
https://ojs3.unpatti.ac.id/index.php/pijmath/article/view/8350
https://ojs3.unpatti.ac.id/index.php/pijmath/article/view/8350
https://www.tandfonline.com/doi/full/10.1080/10293523.2023.2179160
https://www.tandfonline.com/doi/full/10.1080/10293523.2023.2179160
https://www.tandfonline.com/doi/full/10.1080/10293523.2023.2179160
https://www.tandfonline.com/doi/full/10.1080/10293523.2023.2179160
https://arxiv.org/abs/2305.11573
https://arxiv.org/abs/2305.11573
https://link.springer.com/chapter/10.1007/978-3-031-48047-8_33citeas
https://link.springer.com/chapter/10.1007/978-3-031-48047-8_33citeas
https://link.springer.com/chapter/10.1007/978-3-031-48047-8_33citeas
https://link.springer.com/chapter/10.1007/978-3-031-48047-8_33citeas
https://link.springer.com/chapter/10.1007/978-3-031-48047-8_33citeas

	Introduction
	Methods
	Three-Dimensional Cancer Model
	Data

	Extended Kalman Filter
	Results and Discussion
	Conclusion

