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Comparison of Fractional-Order Monkeypox Model with
Singular and Non-Singular Kernels

Raqqasyi Rahmatullah Musafir1,∗, Agus Suryanto2, Isnani Darti3, and Trisilowati4

1,2,3,4Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Jl. Veteran Malang 65145,
Indonesia

ABSTRACT. The singularity of the kernel of the Caputo fractional derivative has become an issue, leading many
researchers to consider the Atangana-Baleanu-Caputo (ABC) fractional derivative in epidemic models where the kernel
is non-singular. In this context, the objective of this study is to compare the calibration and forecasting performance
of fractional-order monkeypox models with singular and nonsingular kernels, represented by the model with respect to
the Caputo operator and the ABC operator, respectively. We have proposed a monkeypox epidemic model with respect
to the ABC operator (MPXABC), where the model with respect to the Caputo derivative (MPXC) has been proposed
in previous research. We have analyzed the existence and uniqueness of the solution. Three equilibrium points of the
model are endemic, human endemic, and monkeypox-free, and their global stability has been investigated. The global
dynamics of the MPXABC are the same as those of the MPXC. In evaluating the performance, we collected secondary
data on weekly monkeypox cases from June 1 to November 23, 2022, in the USA. Parameter estimation has been
performed using the least squares method, while the solutions of the model have been determined numerically using
a predictor-corrector scheme. The benchmark for performance has been determined based on the root mean square
error. Data calibration and forecasting indicate that the MPXC generally has the best performance for each value of
the derivative order. For certain values of derivative order, the MPXABC performs better than the corresponding first-
order model. However, generally, the corresponding first-order model performs better than the MPXABC. Depending
on the data trends and the specified orders, the MPXC outperforms the MPXABC. Thus, the singularity issue of the
Caputo derivative does not always have a negative impact on model fitting to data.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction
The global attention on the monkeypox outbreak has per-

sisted since early 2022. This infectious illness is caused by the
infection of the monkeypox virus, initially detected in humans
in the Democratic Republic of the Congo in 1970 [1]. An out-
break occurred in Africa in 2003, followed by dormancy [2]. In
2022, monkeypox spread rapidly and extensively across numer-
ous countries worldwide. From May 1 to the end of 2022, a total
of 84,045 monkeypox cases were recorded, resulting in 74 fatali-
ties [3]. Despite its low mortality rate, the rapid spread led to the
World Health Organization declaring monkeypox a global health
emergency [4]. Understanding the dynamics of monkeypox dis-
ease is crucial to preventing worst-case scenarios.

Mathematical modeling can provide insights into the dy-
namics of disease transmission [5, 6]. Mathematical models have
been widely used to observe transmission phenomena involving
calibration and forecasting [7–13]. For instance, Trisilowati et
al. [8] employed a fractional-order SEIQRD model to forecast the
COVID-19 cases in Indonesia; Chowell et al. [9] used a multiple-
wave logistic model for SARS; and Qureshi and Yusuf [10] utilized
an MSEIR model for calibrating chickenpox cases. The first mon-
keypox epidemic model was proposed based on the SIR mech-
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anism by Bhunu and Mushayabasa [14]. Subsequently, some re-
searchers considered some interventions, i.e., quarantine, vacci-
nation, and hospitalization [15–17]. In addition to intervention
models, some researchers also consider fractional-order deriva-
tives in monkeypox models.

Fractional-order models are interesting to study due to the
presence of fractional-order derivatives, which involve mathe-
matical terms that represent memory effects [8]. This means
that future conditions are influenced by all previous informa-
tion [18]. This also relates to the epidemiology of diseases,
where all cases in the previous period exhibited increasing or de-
creasing behaviours, thus affecting the number of current cases.
Implemented fractional-order derivatives in models including
Riemann-Liouville, Caputo, and Atangana-Baleanu-Caputo deriva-
tives [19–21]. The Riemann-Liouville derivative is rarely used in
models due to its non-local initial value [22]. Meanwhile, the
Caputo derivative is more applicable because it involves a local
initial value similar to first-order models [8]. However, in 2016,
Atangana and Baleanu raised concerns about the singular kernel
of the Caputo derivative [23]. Therefore, they [23] proposed a
new fractional derivative operator with local initial value and a
Mittag-Leffler kernel, which is a nonsingular kernel. This is com-
monly referred to as the Atangana-Baleanu-Caputo (ABC) deriva-
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tive.
Recently, Musafir et al. [20] proposed a fractional-order

monkeypox model with respect to the Caputo derivative incor-
porating quarantine and hospitalization. The effect of the Ca-
puto fractional derivative on their model was explored through
dynamic analysis, parameter estimation, sensitivity analysis, fore-
casting of monkeypox cases, and examination from an epidemio-
logical perspective. Vaccination program is not considered in the
model because vaccination is recommended as a control for mon-
keypox outbreak by the World Health Organization (WHO). [24].
For this reason, Musafir et al. [25] performed optimal control of
vaccination and rodent culling in the fractional-order monkeypox
epidemic model.

The singularity issue of the Caputo derivative leads some
researchers to consider the ABC derivative operator, which has
a non-singular kernel [21, 26–28]. For example, the first-order
monkeypox model constructed by Peter et al. [29] was modi-
fied by El-Mesady et al. [30] considering the Caputo operator.
Qurashi et al. [28] issued the clarity objective of the kernel sin-
gularity; thus, they modified the model constructed by Peter et
al. [29] with respect to the ABC operator. The question is how
the singularity kernel problem affects the calibration and fore-
casting performance of the data. Based on this question, we aim
to investigate the performance of a fractional-order monkeypox
epidemic model with singular and non-singular kernels in the cal-
ibration and forecasting of data. We modify the fractional-order
monkeypox model proposed by Musafir et al. [20] by considering
the ABC derivative. Models with respect to the Caputo and ABC
derivatives are fitted to the weekly monkeypox data in the USA.
The model fitting is followed by determining the RMSE values as
benchmarks for comparing the models.

We begin the study by providing preliminary definitions
and the fractional-order monkeypox epidemic model. The ex-
istence and uniqueness of the solution are analyzed in Section 3.
We investigate the existence of equilibrium points and their
global stability in Section 4. In Section 5, the considered models
are calibrated against data, and existing phenomena are exam-
ined. Finally, we emphasize the conclusions in Section 6.

2. Model Formulation
There are several definitions as preliminaries for the study

of fractional order models. We first introduce the Riemann-
Liouville fractional integral. This is followed by the Caputo frac-
tional derivative.

Definition 1. [22] Define Lp as the p–norm Lebesgue space.
Let t be the independent time variable on [0, T ], and f be
a time-dependent function. The definition of the Riemann-
Liouville fractional integral of f(t) with order α > 0 is

RL
0 Iα

t f(t) =
1

Γ(n)

∫ t

0

(t− s)α−1f(s)ds,

with RL
0 Iα

t f(t) ∈ L1([0, T ]).

Definition 2. [22] Let α ∈ (0, 1), t be the independent time
variable on [0, T ], and f be a time-dependent function with
a continuous first derivative. The definition of the Caputo
fractional derivative of f(t) with order α is

C
0 D

α
t f(t) =

1

Γ(1− α)

∫ t

0

(t− s)−αf ′(s)ds.

Notice that the kernel (t− s)−α is singular, which is unde-
fined as s = t. Hence, we consider the Atangana-Baleanu-Caputo
(ABC) derivative, which has a nonsingular kernel in the form of
the Mittag-Leffler kernel. The ABC fractional derivative and its
integral are defined as follows.

Definition 3. [23] Let α ∈ (0, 1), t be the independent time
variable on [0, T ], and f be a time-dependent function with
a continuous first derivative. The definition of the Atangana-
Baleanu fractional derivative in Caputo sense (ABC) of f(t)
with order α is

ABC
0 Dα

t f(t) =
N(α)

(1− α)

∫ t

0

Eα
[
− α

1− α
(t− s)α

]
f ′(s)ds,

where N(α) is a normalization function satisfied N(0) =
N(1) = 1 and Eα(·) is the Mittag-Leffler function with pa-
rameter α. Then, its fractional integral is

ABC
0 Iα

t f(t) =
1− α

N(α)
f(t)+

α

Γ(α)N(α)

∫ t

0

(t−s)α−1f(s)ds,

with ABC
0 Iα

t f(t) ∈ L1([0, T ]).

The fractional-order monkeypox epidemic model with re-
spect to the Caputo derivative proposed by Musafir et al. [20]
involves compartments Sh (susceptible human subpopulation),
Eh (exposed human subpopulation), Ih (infected human subpop-
ulation), Qh (quarantined human subpopulation), Hh (hospital-
ized human subpopulation), Sn (susceptible nonhuman subpopu-
lation), En (exposed nonhuman subpopulation), and In (infected
nonhuman subpopulation). The model with respect to the Ca-
puto operator (MPXC) proposed byMusafir et al. [20] is expressed
as

C
0 D

α
t Sh = Πh − (β1Ih + β2In)Sh − µhSh,

C
0 D

α
t Eh = (β1Ih + β2In)Sh − (νh + µh)Eh,

C
0 D

α
t Ih = νhEh − (σh1 + ρh + γh1 + δh1 + µh)Ih,

C
0 D

α
t Qh = ρhIh − (σh2 + γh2 + δh2 + µh)Qh,

C
0 D

α
t Hh = σh1Ih + σh2Qh − (γh3 + δh3 + µh)Hh,

C
0 D

α
t Sn = Πn − β3InSn − µnSn,

C
0 D

α
t En = β3InSn − (νn + µn)En,

C
0 D

α
t In = νnEn − (δn + µn)In,

(1)

where the description of variables and parameters is listed in Ta-
ble 1.
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Table 1. Definition of the parameters of the model.

Parameter Definition Unit
Πh Recruitment rate of human human

(week)α

Πn Recruitment rate of nonhuman nonhuman
(week)α

µh, µn Natural death rates of human and nonhuman, respectively 1
(week)α

β1 Infection rate from human-to-human contact 1
(human)×(week)α

β2 Infection rate from nonhuman-to-human contact 1
(nonhuman)×(week)α

β3 Infection rate from nonhuman-to-nonhuman contact 1
(nonhuman)×(week)α

νh, νn Incubation rates for Eh and En, respectively 1
(week)α

ρh Quarantine rate for Ih 1
(week)α

σh1, σh2 Hospitalization rate for Ih and Qh, respectively 1
(week)α

γh1, γh2, γh3 Recovery rates for Ih, Qh, and Hh, respectively 1
(week)α

δh1, δh2, δh3, δn Mortality rates for Ih, Qh, Hh, and In, respectively 1
(week)α

Model (1) represents a fractional-order monkeypox model
with a singular kernel. Since the singularity of the kernel is an is-
sue, we consider implementing the ABC operator into model (1)
to propose a model with a nonsingular kernel. The transmission
mechanisms involved in the model are similar to model (1). Here,
we investigate the basic properties and analyze the global sta-
bility of the equilibrium points of the model with respect to the
ABC derivative. Then, we implement model (1) and our proposed
model into the monkeypox data. Our proposed model with re-
spect to the ABC operator (MPXABC) is expressed as

ABC
0 Dα

t Sh = Πh − (β1Ih + β2In)Sh − µhSh,
ABC
0 Dα

t Eh = (β1Ih + β2In)Sh − k1Eh,
ABC
0 Dα

t Ih = νhEh − k2Ih,
ABC
0 Dα

t Qh = ρhIh − k3Qh,
ABC
0 Dα

t Hh = σh1Ih + σh2Qh − k4Hh,
ABC
0 Dα

t Sn = Πn − β3InSn − µnSn,
ABC
0 Dα

t En = β3InSn − k5En,
ABC
0 Dα

t In = νnEn − k6In,

(2)

where k1 = (νh + µh), k2 = (σh1 + ρh + γh1 + δh1 + µh), k3 =
(σh2 + γh2 + δh2 +µh), k4 = (γh3 + δh3 +µh), k5 = (νn +µn),
and k6 = (δn + µn).

3. Existence and Uniqueness of Solution

In order to show the existence and uniqueness of the solu-
tion of model (2), we first observe that each kernel satisfies the
Lipschitz condition. The existence and uniqueness of solutions
for model (2) are investigated as follows. Consider the following
kernel functions:

F1(t, Sh) = Πh − (β1Ih + β2In)Sh − µhSh,

F2(t, Eh) = (β1Ih + β2In)Sh − k1Eh,

F3(t, Ih) = νhEh − k2Ih,

F4(t,Qh) = ρhIh − k3Qh,

F5(t,Hh) = σh1Ih + σh2Qh − k4Hh,

F6(t, Sn) = Πn − β3InSn − µnSn,

F7(t, En) = β3InSn − k5En,

F8(t, In) = νnEn − k6In.

Suppose that X⃗ = (Sh, Eh, Ih, Qh,Hh, Sn, En, In) and X⃗ =
(S̄h, Ēh, Īh, Q̄h, H̄h, S̄n, Ēn, Īn) are bounded solutions of model
(2). Hence, ∥Ih∥ ≤ K and ∥In∥ ≤ K∗ for some positive con-
stantsK andK∗. For kernel F1 with respect to variables Sh and
S̄h, we obtain

∥F1(t, Sh)− F1(t, S̄h)∥ = ∥Πh − (β1Ih + β2In)Sh − µhSh

−Πh + (β1Ih + β2In)S̄h + µhS̄h∥
= ∥(β1Ih + β2In + µ)(Sh − S̄h)∥
= ∥β1Ih + β2In + µ∥∥Sh − S̄h∥
≤ (β1∥Ih∥+ β2∥In∥+ µ) ∥Sh − S̄h∥
≤ c1∥Sh − S̄h∥,

where c1 = β1K +β2K
∗ +µh. Hence, F1 satisfies the Lipschitz

condition. Similarly, we can show that

∥F2(t, Eh)− F2(t, Ēh)∥ ≤ c2∥Eh − Ēh∥,
∥F3(t, Ih)− F3(t, Īh)∥ ≤ c3∥Ih − Īh∥,

∥F4(t,Qh)− F4(t, Q̄h)∥ ≤ c4∥Qh − Q̄h∥,
∥F5(t,Hh)− F5(t, H̄h)∥ ≤ c5∥Hh − H̄h∥,
∥F6(t, Sn)− F6(t, S̄n)∥ ≤ c6∥Sn − S̄n∥,
∥F7(t, En)− F7(t, Ēn)∥ ≤ c7∥En − Ēn∥,
∥F8(t, In)− F8(t, Īn)∥ ≤ c8∥In − Īn∥,

where c2 = k1, c3 = k2, c4 = k3, c5 = k4, c6 = β3K
∗ + µn,

c7 = k5, and c8 = k6. Hence, Fk satisfy the Lipschitz condition
for all k = 2, 3, . . . , 8. In addition, if 0 < ci < 1 for all i =
1, 2, . . . , 8, then all kernels Fk are contracted.

Let X⃗ = (X1, X2, X3, X4, X5, X6, X7, X8) =
(Sh, Eh, Ih, Qh,Hh, Sn, En, In). According to the fractional
integral in Definition 3, the solution of model (2) is expressed by
the Volterra function:

Xi(t) = Xi(0) + (1− α)
1

N(α)
Fi(t,Xi)

+α
1

Γ(α)N(α)

∫ t

0
(t− s)α−1Fi(s,Xi)ds,

(3)

for i = 1, 2, . . . , 8. From which, we have the iterative scheme:

Xi,n(t) = Xi(0) + (1− α) 1
N(α)Fi(t,Xi,n−1)

+α 1
Γ(α)N(α)

∫ t

0
(t− s)α−1Fi(s,Xi,n−1)ds,

(4)
for i = 1, 2, . . . , 8. Notice that the solution of model (2) can be
approximated by scheme (4) as n → ∞ with the initial guess

JJBM | Jambura J. Biomath Volume 5 | Issue 1 | June 2024
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X1,0 = Sh(0), X2,0 = Eh(0), X3,0 = Ih(0), X4,0 = Qh(0),
X5,0 = Hh(0),X6,0 = Sn(0),X7,0 = En(0), andX8,0 = In(0).
We next define the difference between successive terms

Φi,n = Xi,n − Xi,n−1

= (1 − α)
1

N(α)
[Fi(t,Xi,n−1) − Fi(t,Xi,n−2)]

+α
1

Γ(α)N(α)

∫ t

0
(t − s)α−1 [Fi(s,Xi,n−1) − Fi(s,Xi,n−2)] ds,

for i = 1, 2, . . . , 8. By using the fact thatFk satisfies the Lipschitz
condition for k = 1, 2, . . . , 8, we have

∥Φi,n∥ ≤ (1− α) 1
N(α)ci∥Φi,n−1∥

+α 1
Γ(α)N(α)ci

∫ t

0
∥Φi,n−1∥(t− s)α−1ds,

(5)

for i = 1, 2, . . . , 8. If the difference of successive terms in (5) is
approximated by an iterative process, then we get

∥Φi,n∥ ≤ Xi,0

(
(1− α)

1

N(α)
ci +

tα

Γ(α)N(α)
ci

)n

,

for all i = 1, 2, . . . , 8.
If we assume that there is t = t∗ > 0 such that(

(1− α) 1
N(α)ci +

tα

Γ(α)N(α)ci

)
< 1 for all i = 1, 2, . . . , 8, then

we have ∥Φk,n∥ = 0 as n → ∞ for all k = 1, 2, . . . , 8. Hence, if
the assumption is satisfied, then model (2) has a solution, which
is expressed by eq. (3).

We next show that the solution of model (2) is unique.
Suppose the contrary, so that there is another solution of
model (2), that is, Z⃗ = (Ẑ1, Ẑ2, Ẑ3, Ẑ4, Ẑ5, Ẑ6, Ẑ7, Ẑ8) =
(Ŝh, Êh, Îh, Q̂h, Ĥh, Ŝn, Ên, În). Then, for i = 1, 2, . . . , 8, we
get

∥Xi − Ẑi∥ = (1 − α)
1

N(α)

∥∥Fi(t,Xi) − Fi(t, Ẑi)
∥∥

+α
1

Γ(α)N(α)

∥∥∫ t

0
(t − s)α−1

[
Fi(s,Xi) − Fi(s, Ẑi)

]
ds

∥∥
≤ (1 − α)

1

N(α)
ci∥Xi − Ẑi∥

+α
1

Γ(α)N(α)
ci

∫ t

0
∥Xi − Ẑi∥(t − s)α−1ds

≤ ∥Xi − Ẑi∥
(
(1 − α)

1

N(α)
ci +

tα

Γ(α)N(α)
ci

)n

.

If t = t∗, we have ∥Xi − Ẑi∥ ≤ 0 for i = 1, 2, . . . , 8. Hence, we
strictly obtain ∥Xi − Ẑi∥ = 0, which implies Xi = Ẑi for i =
1, 2, . . . , 8. This leads to a contradiction. Therefore, model (2)
has a unique solution if the assumption is satisfied. The following
theorem has been obtained:

Theorem 1. Model (2) has a unique solution if there is t∗ > 0
such that

(1− α)ci
N(α)

+
cit

α
∗

Γ(α)N(α)
< 1,

for all i = 1, 2, . . . , 8, where c1 = β1K+β2K
∗+µh, c2 = k1,

c3 = k2, c4 = k3, c5 = k4, c6 = β3K
∗ + µn, c7 = k5, and

c8 = k6.

4. Existence and Global Stability of Equilibrium Points
In this section, we provide the equilibrium points and their

stability of model (2). The equilibrium points of model (2) are

obtained by solving system (2) where the left-hand sides of the
equations are equal to zero [31]. Thus, the system obtained is
the same as that in Musafir et al. [20]. The equilibrium points of
model (2), as determined by Musafir et al. [20], are as follows:

1. Monkeypox-free equilibrium X1 =
(

Πh

µh
, 0, 0, 0, 0, Πn

µn
, 0, 0

)
,

which always exists.
2. Human-endemic equilibrium X2 =

(
S̃h, Ẽh, Ĩh, Q̃h, H̃h,

S̃n, 0, 0
)
where

S̃h =
k1k2
β1νh

,

Ẽh =
µhk2 (R0h − 1)

β1νh
,

Ĩh =
µh (R0h − 1)

β1
,

Q̃h =
ρhµh (R0h − 1)

β1k3
,

H̃h =
µh (σh1k3 + σh2ρh) (R0h − 1)

β1k3k4
,

S̃n =
Πn

µn
,

and R0h = Πhβ1νh

µhk1k2
is the basic reproduction number for

human-to-human transmission. X2 exists if R0h > 1.
3. Endemic equilibrium X3 =

(
S∗
h, E

∗
h, I

∗
h, Q

∗
h, H

∗
h, S

∗
n, E

∗
n,

I∗n

)
where

S∗
h =

Πhνh − k1k2I∗h
µhνh

,

E∗
h =

k2I∗h
νh

,

I∗h =
1

2

[
β1Πhνh − k1k2 (β2I∗n + µn)

β1k1k2

+

√(
β1Πhνh − k1k2 (β2I∗n + µn)

β1k1k2

)2

+
4β2ΠhνhI

∗
n

β1k1k2

 ,

Q∗
h =

ρhI
∗
h

k3
,

H∗
h =

(σh1k3 + σh2ρh) I
∗
h

k3k4
,

S∗
n =

k5k6

β3νn
,

E∗
n =

µnk6 (R0n − 1)

β3νn
,

I∗n =
νn (R0n − 1)

β3
,

and R0n = Πnβ3νn

µnk5k6
is the basic reproduction number of

nonhuman-to-nonhuman transmission. X3 exists if R0n >
1.
The stability of the equilibrium points of model (1) with

respect to the Caputo operator has been analyzed by Musafir et
al. [20], both locally and globally. If R0h < 1 and R0n < 1, then
equilibrium X1 is asymptotically stable. IfR0h > 1 andR0n < 1,
then equilibrium X2 exists and is asymptotically stable. IfR0n >
1, then equilibrium X3 exists and is always asymptotically stable.

In 2020, Taneco-Hernández and Vargas-De-León [31] pro-
posed the inequality properties of the fractional-order derivative
with respect to the ABC operator. Let X(t) ∈ R+ be a continu-
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Table 2. The estimated parameter values of model (2) for α = 0.84, 0.87, 0.9, 0.94, and 0.97.

Parameter
Derivative order

α = 0.84 α = 0.87 α = 0.9 α = 0.94 α = 0.97

Πh 4.7916× 105 4.9526× 105 4.9366× 105 5.7152× 105 1.1994× 106

Πn 1.5770× 105 1.6292× 105 1.6681× 105 1.7921× 105 4.4915× 105

µh 0.2517 0.2361 0.2112 0.2014 0.1770
µn 0.4574 0.4429 0.4281 0.4076 0.3876
β1 5.2436× 10−14 4.9630× 10−14 5.1062× 10−14 5.1230× 10−10 5.5844× 10−9

β2 1.4414× 10−10 1.4650× 10−10 1.5619× 10−10 1.5580× 10−10 1.4895× 10−10

β3 4.1440× 10−7 4.3040× 10−7 4.4046× 10−7 4.7967× 10−7 4.8430× 10−7

νh 0.2046 0.2068 0.2112 0.2051 0.1951
νn 0.3191 0.3288 0.3362 0.3580 0.3642
ρh 0.3613 0.3457 0.3120 0.3326 0.3296
σh1 0.3613 0.3457 0.3120 0.3326 0.3296
σh2 0.0300 0.0300 0.0300 0.0300 0.0300
γh1 0.3989 0.3842 0.3525 0.3718 0.3695
γh2 0.0300 0.0300 0.0300 0.0300 0.0300
γh3 0.0300 0.0300 0.0300 0.0300 0.0300
δh1 0.2489 0.2306 0.1909 0.2151 0.2103
δh2 0.0004 0.0004 0.0004 0.0004 0.0004
δh3 0.0004 0.0004 0.0004 0.0004 0.0004
δn 0.6536 0.6428 0.6333 0.6152 0.6127

ous and derivable time-dependent function. For any t ≥ 0,

ABC
0 Dα

t

[
X(t)−X∗ −X∗ ln

(
X(t)

X∗

)]
≤

(
1−

X∗

X(t)

)
ABC
0 Dα

t X(t),

(6)
for some positive constant X∗. Ine quality (6) is exactly used
to show the global stability of the equilibrium points of model
(1) with respect to the Caputo operator. Furthermore, Taneco-
Hernández and Vargas-De-León [31] proposed LaSalle’s invari-
ance principle for the global stability of equilibrium points in the
model with respect to the ABC operator, which also resembles
that of the model with respect to the Caputo operator. Simi-
larly, the following theorems are obtained. Readers interested in
studying the proofs of these theorems can refer to Musafir et al.
[20].

Theorem 2. Monkeypox-free equilibrium X1 of model (2) is glob-
ally asymptotically stable if both R0h < 1 and R0n < 1.

Theorem 3. Let human-endemic equilibrium X2 of model (2) ex-
ists. That equilibrium is globally asymptotically stable if R0n <
1.

Theorem 4. Let endemic equilibrium X3 of model (2) exists. That
equilibrium is always globally asymptotically stable.

5. Implementation to Data

In this section, we compare fractional-order monkeypox
models with singular and non-singular kernel. The model with a
singular kernel is represented by model (1), which is a model with
respect to the Caputo operator (MPXC). Meanwhile, the model
with a nonsingular kernel is represented by model (2), which is a
model with respect to the ABC operator (MPXABC). For this pur-

pose, we collect weekly monkeypox data taken from the web-
site ourworldindata.org/monkeypox for the period from June 1
to November 23, 2022, in the United States [3]. The data is de-
picted in Figure 1, which spans 25 weeks. It can be observed
that the trend of the data collection tends to follow a normal
distribution. We perform parameter estimation of the model on
the data with an 18-week calibration period and a 7-week fore-
cast period. To evaluate the performance of each operator in
the model, we determine the value of the root mean square er-
ror (RMSE). Let (t, Ih(t)) be the solution of the variable Ih and
(tdata, Idata(tdata)) be the N -sized time-dependent data collec-
tion. The formulation of RMSE is

RMSE =

√∑N
i=1

(
Ih(tdatai )− Idata(tdatai )

)
N

.

Model calibration to the data is performed via parameter
estimation using the least squares method. We employ the built-
in lsqcurvefit MATLAB program for parameter estimation. At the
same time, we employ the predictor-corrector schemes to de-
termine the numerical solution of models (1) and (2) [32, 33].
The initial values of the model for parameter estimation are
(333 133 413,30,25,10,5,100 000 000,2,10). We consider the
population and monkeypox cases in the United States as of June
1, 2022, to be 333 133 413 and 25 humans, respectively [20]. The
initial guesses for the parameters were as follows:

706.36 ≤ Πh ≤ 706 358 490.56,

211.53 ≤ Πn ≤ 211 538 461.54,

0 ≤ β1, β2, β3 ≤ 0.01,

0 ≤ µh, νh, σh1, ρh, γh1, δh1, δh2, δh3, σh2, γh2, γh3, µn, νn, δn ≤ 1.

The values of α used in Musafir et al. [20] for parameter estima-
tion are 0.8, 0.84, 0.87, 0.9, 0.94, and 0.97. In their study, the cal-
ibration of the MPXC has the best performance when α = 0.97.
Meanwhile, the forecasting of the MPXC has the best perfor-
mance when α = 0.94. In our study, the considered values of
α for both derivatives are 0.84, 0.87, 0.9, 0.94, 0.97, and 1. The
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Figure 1. The profile of weekly monkeypox case data from June 1 to November 23, 2022, in the USA.

Figure 2. The fitted solution curve of model (1) (MPXC) and different values of α, namely 1, 0.97, 0.94, 0.9, 0.87, 0.84. The red dots
represent the time-dependent monkeypox data for calibration. The blue dots represent the time-dependent monkeypox data
for forecasting.
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Figure 3. The fitted solution curve of model (2) (MPXABC) and different values of α, namely 1, 0.97, 0.94, 0.9, 0.87, 0.84. The red dots
represent the time-dependent monkeypox data for calibration. The blue dots represent the time-dependent monkeypox data
for forecasting.

estimated values of each parameter in model (1) for each α are
provided in the study by Musafir et al. [20]. Meanwhile, the esti-
mated values of each parameter in model (2) for each α, except
α = 1, are listed in Table 2.

The solution curves of the MPXC and the estimated param-
eter values are depicted in Figure 2. It is observed that the so-
lution curves provide good calibration to the data trend for each
value of α. Changes in the value of the derivative order result in
systematic calibration, with higher orders leading to higher epi-
demic peaks, except for α = 0.97. The first-order model calibra-
tion is further from the data compared to the MPXC. Additionally,
it can be seen that the solution curves for α = 0.97, 0.94, 0.90
provide better forecasting results compared to other curves.

The solution curves of the MPXABC and the estimated pa-
rameter values are depicted in Figure 3. It is observed that the
influence of the ABC operator compared to the Caputo operator
shows that the estimated curves are irregular for each α. The
solution curves for α = 0.87, 0.84 provide the furthest calibra-
tion compared to the others, although the solution curves are
still relevant to the data trend. Meanwhile, the calibrations for
α = 0.97, 0.94 provide curves that are relatively close to the
data trend. For other values of α, the model calibration produces
good curves, but not as well as the solution curves of calibrations
for α = 0.97, 0.94. The solution curves for α = 0.97, 0.94 pro-
vide forecasts that are quite close to the data trend. Meanwhile,
the curves for α = 0.84 provide the furthest forecasts from the
data trend.

To provide precise results, we have calculated the RMSE
for each parameter estimation in the calibration and forecasting.

The RMSE values for each parameter estimation in the calibration
are listed in Table 3, while the RMSE values for parameter estima-
tion in the forecasting are listed in Table 4. Specifically, the MPXC
calibration for α = 0.97 has the minimum RMSE, followed by
α = 0.90, 0.94, 0.87. This confirms the solution curves depicted
in Figure 2, which show that the curves for α = 0.97, 0.94, 0.90
of the MPXC have relatively good calibration to the data. Gen-
erally, the MPXC calibration is better than MPXABC calibration,
except for α = 0.96. On the other hand, the best MPXABC
calibration is when α = 0.97. This also confirms the solution
curve for α = 0.97 depicted in Figure 3, which shows that its
calibration provides relatively good results compared to the data
trend. Furthermore, the RMSE of theMPXABC is relatively greater
than that of the corresponding first-order model, especially for
α = 0.94, 0.87, 0.84.

Table 3. Root mean square error of 18-week calibration

Derivative order Caputo operator ABC operator
α = 1 259.38

α = 0.97 152.46 167.20
α = 0.94 163.13 295.67
α = 0.90 163.04 221.66
α = 0.87 171.04 279.87
α = 0.84 191.95 328.38

In terms of RMSE values in the forecasting, the MPXC for
α = 0.94 provides the best forecasts, followed by α = 0.90 and
α = 0.97. The MPXC for α = 0.84 has a greater RMSE compared
to the first-order model. Nevertheless, the MPXC outperforms
the first-order model. There are varying values of α that indicate
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Table 4. Root mean square error of 7-week forecast

Derivative order Caputo operator ABC operator
α = 1 236.13

α = 0.97 176.35 154.18
α = 0.94 151.23 256.29
α = 0.90 166.97 239.49
α = 0.87 194.99 299.65
α = 0.84 242.49 375.53

the best performance in the calibration and forecasting. This has
been studied by Musafir et al. [20], indicating that there is an
influence of vaccination on the data period of calibration. On
the other hand, the MPXC is not always better than the MPXABC.
For α = 0.97, the MPXABC provides better forecasts than the
MPXC. For other values of α, the MPXABC has a greater RMSE
than the MPXC. For values of α other than 0.97, the MPXABC has
a greater RMSE than the corresponding first-order model in fore-
cast. Thus, theMPXC generally performs better than theMPXABC
in forecasting the data.

We consider the integrability issue of the Caputo deriva-
tive, leading many researchers to employ the ABC derivative in-
stead of the Caputo derivative [21, 26–28]. Based on our study,
the integrability issue of the Caputo derivative does not always
have a negative impact on its performance. In fact, our study gen-
erally indicates that the Caputo derivative outperforms the ABC
derivative in model (2). Hence, the performance of the model
with respect to either the Caputo or ABC derivative in calibration
and forecasting is relative to the data trend.

We previously noticed that the calibration and forecasting
of model (2) are limited to values of α, namely 1, 0.97, 0.94, 0.9,
0.87, and 0.84. However, the results are sufficient to show that
the implementation of the ABC operator does not always yield
better results than the implementation of the Caputo operator.
For future work, the performance of each operator can be com-
pared by involving the estimation of the value of α.

6. Conclusion

We have considered a monkeypox epidemic model with re-
spect to the Caputo operator (MPXC) as a model with a singular
kernel. Then, we have proposed a monkeypox epidemic model
with respect to the ABC operator (MPXABC) as a model with a
non-singular kernel. The conditions for the existence and unique-
ness of solutions of the MPXABC have been determined. The ex-
istence and global stability of equilibrium points have also been
investigated. The conditions for the basic properties and stabil-
ity of equilibrium points of the MPXABC are the same as those
of the MPXC, which have been analyzed in the previous study.
To evaluate the performance of both operators in the model, we
have fitted the model to the data using the least squares method,
followed by the predictor-corrector method to obtain numerical
solutions. In addition, the values of the root mean square error
(RMSE) are also determined as benchmarks for the performance
of both operators in the model. Based on the fitted model and
the values of the derivative order, the MPXC generally performs
better than the first-order model in calibration and forecasting.
Meanwhile, the MPXABC has relatively lower performance than
the first-order model in both calibration and forecasting, except
for certain derivative orders. For each derivative order, the cal-

ibration of the MPXC performs better than that of the MPXABC,
except for certain derivative orders in forecasting. The MPXC
generally has the best performance in calibrating and forecast-
ing monkeypox cases. Thus, the singularity issue of the Caputo
derivative does not always have a negative impact on the perfor-
mance of fractional-order models.

Our study is relative to the data and the derivative or-
der. Hence, future work should be performed by estimating
the derivative orders and parameters of the model. Moreover,
trends in data collection should also be considered to observe
the performance of operators in the monkeypox models. Thus,
the performance of the model with respect to the Caputo and
ABC derivatives can be further studied and confirmed.
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