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A Qualitative Analysis of Leukemia Fractional Order SICW
Model

Kalyan Das1,∗, G. Ranjith Kumar2, K. Ramesh2, and MD. Haider Ali Biswas3

1Department of Interdisciplinary Sciences, National Institute of Food Technology Entrepreneurship and Management, HSIIDC Industrial
Estate, Kundli, Haryana, India
2Department of Mathematics, Anurag University, Venkatapur, Hyderabad-500088, Telangana, India
3Mathematics Discipline, Khulna University, Khulna 9208, Bangladesh

ABSTRACT. Using a series of fundamental differential equations, including the Caputo derivative, which makes it
easier to specify the initial conditions of the differential equations, we present a fractional order concept of leukemia
in this study. The universality, positivity, and boundedness of solutions are first established. The local stability prop-
erties of the equilibrium are studied using the fractional Routh-Hurwitz stability criteria. The differential equation
system has been solved using unconventional finite difference techniques. The Leukemia Fractional Order SICW model
introduces several innovative elements compared to traditional epidemiological and disease models. This stands out
due to its integration of fractional-order differential equations, inclusion of leukemic cells and immune cells compart-
ments, simulation of treatment strategies, consideration of waning immunity, and its application to leukemia-specific
scenarios. These elements collectively make it a valuable tool for studying leukemia dynamics, exploring treatment
options, and improving our understanding of how the immune system interacts with cancer cells in leukemia patients.
Numerical simulations of the model are shown at the conclusion to interpret our theoretical outcomes in support of
various fractional orders of derivative ξ options. From there, we can observe how the evolution of the system compo-
nents is impacted by the fractional derivative ξ.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction

Over time, mathematical models have evolved into one of
the most crucial instruments for studying the dynamics of non-
communicable illnesses like leukemia. Although ”blood cancer”
is a more prevalent term, leukemia (”white blood”) is the most ac-
curate description. Cancer that develops in the tissues responsi-
ble for producing blood. The spongy, soft inside of a bone called
bone marrow is responsible for making platelets, white blood
cells, and red blood cells. Symptoms like anemia and shortness of
breath manifest when the body does not have enough red blood
cells, which transport oxygen to all of the body’s cells. The im-
mune system’s white blood cells battle infections, and the blood-
clotting platelets stop bleeding. A specific kind of white blood
cell known as a lymphocyte is produced by the lymph nodes and
the spleen. Antibodies are made by lymphocytes, which also
help the body’s immune system fight infections. Each of the two
circulatory systems in the body-the lymphatic and blood vessel
systems-receives millions of cells per day from all blood-forming
tissues. Leukocytes, or aberrant, immature white blood cells,
are discharged into these circulatory systems in millions when
leukemia develops. These cells are immature, thus they are un-
able to perform their essential role of preventing infection. The
production of normal white blood cells to combat infections,
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platelets to control bleeding, and red blood cells to avoid ane-
mia is crowded out in advanced leukemia due to the unchecked
expansion of aberrant cells (Indian Cancer Society). Approxi-
mately 256,000 adults and children worldwide were diagnosed
with leukemia in 2000, and 209,000 of them died away. This is
equivalent to around 0.35% of all fatalities from all causes and
3% of the almost seven million cancer-related deaths that year.
Leukemia was the 12th most prevalent kind of neoplastic illness
and the 11th most common cause of cancer-related mortality out
of the sixteen distinct locations the body studied [1].

The study of an infectious agent spreading from one pa-
tient’s cell to another has produced a large body of research. A
thorough overview of the key concepts generated by these mod-
els has been put out by [2]. Numerous illnesses that involve the
immune system have been simulated in written works, such as
hepatitis B sickness by [3] and TB by [4, 5]. A comprehensive
mathematical analysis of cancer immunotherapy is presented by
[6]. They demonstrated an immunological model of cancer treat-
ment in which cancer and healthy cells are seen as competitors
for the same resources. It was believed that the anti-cancer cells
preyed on the cancer cells. Additionally, a mathematical model
illustrating the rivalry between tumours and the immune sys-
tem while taking antibodies into account was published by [7].
Leukemia was first modelled by [8–10]. In order to better under-
stand the mechanisms governing the various blood cell popula-
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Figure 1. Transfer diagram showing dynamics of cancer cells.

tions and to evaluate potential strategies for the prevention and
management of noncommunicable illnesses in people, dynamical
models of noncommunicable diseases in humans were being de-
veloped. In order to represent leukemia and its therapy, we must
first take into consideration how leukemia is spread through the
blood circulation system. Our goal is to outline a mathematical
model of leukemia and examine the effects of adoptive cell trans-
fer treatment on the blood cells.

From the work of Aggarwal and Bhadauria [11], we pro-
vide a four-segment paradigm on leukemia in this study. With
the help of Moore and Li’s research, we improved this model by
adding a decay rate parameter β1 for infected cells. We take into
account this parameter since certain infected cells also experi-
ence losses as a result of their interactions with cancer cells. In
the numerical simulation part, we also evaluate our suggested
model in comparison to the prior model. Let s represents the
population of blood cells that are vulnerable, i represents the
population of blood cells that are infected, c represents the pop-
ulation of leukemic cells (abnormal cells), and w represents the
population of white blood cells or immune cells. The popula-
tion of blood cells that are vulnerable to infection begins with
a source term A entering the bloodstream from organs such the
bone marrow, lymph nodes, and thymus. The natural mortality
rates of vulnerable blood cells, infected cells, cancer cells, and im-
mune cells are represented by the parameters a0, k0, β0 and b0 ,
respectively. The parameter represents the continual loss rate of
blood cells that are vulnerable to infection by cancer cells.

The parameter β represents the continual loss rate of blood
cells that are vulnerable to infection by cancer cells. The loss rate
constant of cancer cells as a result of interactions with immune
cells is represented by the parameter k1. Due to the presence
of leukemia or cancer cells in the blood, which is indicated by
the letter b1, certain immune cells will also degenerate. B is
the frequency at which T cells or other immune cells are infused
externally into cancer patients. Immune cells will continue to
multiply if cancer recurs at a steady rate b.The transfer diagram

of the model is shown in Figure 1 in the following.

1.1. Framework of SICW Epidemic model
Our improved paradigm is administered by the subsequent

scheme of ordinary differential equations

ds

dt
= A− a0s− βsc,

di

dt
= βsc− β0i− β1ci,

dc

dt
= k − k0c− k1cw,

dw

dt
= B + bc− b0w − b1wc.

(1)

All of the model’s parameters are either positive, zero, or both;
they cannot be negative or have no biological significance.

Numerous research scholars have noted that fractional
mathematical models can give additional accurate data on real-
life physical processes and that fractional calculus modelling is
quite ideal and efficient for providing a precise overview of re-
membrance as well as some physical attributes of diverse materi-
als and processes, and that are completely absent from traditional
or integer-order equations [12–16]. The hydrology and ground-
water flow [14, 17] , diffusion-like waves, pattern formation in
chemical and biological processes [18–20], non-linear movement
of earthquakes [19], viscoelastic materials [21], and muscular
blood vessel model [22] are just a few examples of the physical
schemes confronted through different disciplines that have been
discussed by fractional differential equations.Additionally, mod-
els with memory easily relate to fractional-order issues, which
occur in several biological contexts [23–25]. As a result, the dy-
namics of leukaemia with fractional derivative are what motivate
this work. As far as we are aware, the mentioned model has not
yet been examined in the literature. The resulting mathematical
findings are therefore novel and intriguing.

The rest of this work is divided into the following sections:
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Section 2 presents formulation of the fractional-order leukemia
model, as well as other findings and concepts related to fractional
calculus, are. Additionally demonstrated is the mathematical and
biological soundness of our paradigm. Utilizing Routh-Hurwitz
criterion, Section 3 focuses on the issue of local stability of pos-
itive equilibrium point. Numerical simulations are undertaken in
Section 4 to demonstrate the theoretical findings. Finally, Sec-
tion 5 brings this essay to a close.

2. Formulation of Fractional order of SICW Epidemic Model
The modeling of the dynamics of epidemic illnesses has

been extensively studied, but it has only ever used integer-order
(delay) differential equations. During the past few years, it has
been discovered that models utilizing fractional order differential
equations (FODEs) may successfully represent a wide variety of
events in several domains [26–28]. Now, we introduce fractional
form of Caputo arbitrary order derivative of order ξ, 0 < ξ < 1
into model (1) is stated as

cDξs = A− a0s− βsc,
cDξi = βsc− β0i− β1ci,
cDξc = k − a0s− k0c− k1cw,
cDξw = B + bc− b0w − b1wc.

(2)

Thus, we get a set of fractional differential equations
eq. (2). System eq. (2), with ξ = 1 provides the classical SICW
model explored in [11]. Initial states s ≥ 0, i ≥ 0, c ≥ 0 and
w ≥ 0 are provided. We will review certain fundamental ideas
associated to the ξ fractional integral together with the fractional
differential operator in order to explore the consequences of a
decay rate parameter β1 of infected cells.

Definition 1. The Riemann-Liouville fractional integral of or-
der ξ > 0 a function f(t) ∈ C[a, b] is defined as

Iξaf(t) =
1

Γ(ξ)

∫ t

a

(t− s)ξ−1f(s)ds,

where Γ(ξ) is the Euler Gamma function.

Definition 2. For every ξ and n = [ξ] the Riemann-Liouville
derivate of order ξ can be defined as

aD
ξ
t f(t) =

1

Γ(n− ξ)

(
d

dx

)n ∫ t

a

(t− s)n−ξ−1f(s)ds.

The Riemann-Liouville fractional derivative is theoretically
the most established and was historically the first fractional
derivative notion. However, in the case of the Riemann-Liouville
fractional differential equation, the initial value is often given in
the form of a fractional derivative, which is not feasible. Conse-
quently, the Caputo fractional derivative is employed, which is
defined as follows.

Definition 3. Let ξ > 0, n = [ξ]. The Caputo derivative of
order ξ is defined as

c
aD

ξ
t f(t) =

1

Γ(n− ξ)

∫ t

a

(t− s)n−ξ−1

(
d

ds

)n

f(s)ds.

2.1. Non-negative solutions

We now demonstrate that the suggested model is properly
posed (2). The evidence requires the results listed below.
Result 1. ([29])(Generalizedmean value theorem) Let the function
u(t) ∈ C[a, b] and its fractional derivative Dξu(t) ∈ C(a, b] for
0 < ξ ≤ 1, a, b ∈ R then we have

u(t) = u(a) +
1

Γ(n− ξ)
Dξu(η)(t− a)ξ, 0 ≤ η ≤ t, ∀t ∈ (a, b].

(3)
Result 2. ([30])The results as follows if we assume that the func-
tion u(t) is ξ differentiable on (a, b):
1. If Dξu(t) < 0 for all t ∈ (a, b) then u(t) is decreasing on

(a, b).
2. If Dξu(t) > 0 for all t ∈ (a, b) then u(t) is increasing on

(a, b).
3. If Dξu(t) = 0 for all t ∈ (a, b) then u(t) is constant on

(a, b).

Theorem 1. The fractional-order SICW model (2) has only one
solution. Additionally, the solution persists in R4

+ and is non-
negative for every t > 0.

Proof. We draw the conclusion that there is a solution for model
(2) in (0,∞) that is both unique and consistent with the findings
of Lin’s Theorem 3.1 and Remark 3.2 [31]. We now establish the
positively invariant nature of the domain

R4
+ =

{
(s, i, c, w) ∈ R4

+ : s ≥ 0, i ≥ 0, c ≥ 0, w ≥ 0.
}

In order to determine if a vector field (A − a0s − βsc, βsc −
βj − βci, k − k0c− k1cw, B + bc− b0w− b1wc) is tangent to
or points toward the interior R4

+ of a coordinate space, we look
at its direction on each coordinate space. Since,

cDξs(t)|s=0 = A ≥ 0,
cDξi(t)|i=0 = βsc ≥ 0,
cDξc(t)|c=0 = k ≥ 0,

cDξw(t)|w=0 = B + bc ≥ 0.

(4)

From Result 1, 2 and eq. (4), the vector field (A−a0s−βsc, βsc−
βj−βci, k−k0c−k1cw, B+bc−b0w−b1wc) on each coordinate
plane is either tangent to the coordinate plane or and points to
the interior of R4

+. As a result, the region of the domain R4
+ is

positively invariant. The solution to the model (2) is bounded, as
shown by the ensuing result, which we assert without offering
any evidence.
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K. Das et al. – A Qualitative Analysis of Leukemia Fractional Order SICW Model… 49

Result 3. The solutions of the system eq. (2) are bounded within
a region Γ, where

Γ =

{
(s, i, c, w) : 0 < s(t) ≤ A

a0
, 0 < s(t) + i(t) ≤ A

δ
,

0 < c ≤ k

k0
, and 0 < w(t) ≤ Bk0 + bk

k20

}
,

δ = min {a0, β0, β1c} .

By positive, we mean that the population is sustained, and by
boundedness, we indicate that there is a natural limit on popula-
tion expansion as a result of scarce resources.

2.2. Existence and uniqueness of global solution
Wewill use the subsequent result 4 to demonstrate that the

system eq. (2) has a unique global solution. Define f : Rn →
Rn with n ≥ 1. consider the fractional-order scheme below:{

Dξ = f(x),
x(t) = x0,

(5)

with ξ ∈ (0, 1], t ∈ R and x0 ∈ Rn. We will apply the following
result 4, which is a direct consequence from [16], to globalize the
solution of scheme eq. (5).
Result 4. Suppose that the function meets the criteria listed be-
low:

1. f and
∂f

∂x
are continuous on Rn.

2. ||f(x)|| ≤ γ + η + ||x|| for all x ∈ Rn where γ and η are
two positive constants. Then, system eq. (6) has a unique
solution on [t0,+∞).

Theorem 2. The fractional-order initial value problem eq. (2) has
unique solution.

Proof. Let X = (s, i, c, w)T , then model (2) can be rewritten as
follows:

DξX = F (X), (6)

where

F (X) =


A− a0s− βsc
βsc− β0i− β1ci
k − k0c− k1cw

B + bc− b0w − b1wc

 .

First, it is clear thatF satisfies the first criterion of Result 4. Next,
let’s rewrite F as a vector function to satisfy the second condi-
tion.

F (X) = M0 + (cM1 +M2)X,

where

M0 =


A
0
k
B

 ,

M1 =


−β 0 0 0
β β1 0 0
0 0 0 −k1
0 0 0 −b1

 ,

M2 =


−a0 0 0 0
0 −β0 0 0
0 0 −k0 0
0 0 b −b0

 .

It follows that there exist γ = ||M0|| and η = |c|||M1||+ ||M2||
such that

F (X) ≤ γ + η||X||.
Then, model (2) has a unique solution on [0,+∞).

3. Stability criteria for the Fractional order of SICW model
In this part, we go through whether equilibria exist and

their local stability of model (2). To find the equilibria, we should
equate to zero the right-hand side in model (2). It has only one
equilibrium point, namely E∗(s∗, i∗, c∗, w∗) whose components
s∗, i∗, c∗ and w∗ are positive solutions of the subsequent alge-
braic equations.

A− a0s− βsc = 0, (7)

βsc− β0i− β1ci = 0, (8)

k − k0c− k1cw = 0, (9)

B + bc− b0w − b1wc = 0. (10)

From eq. (9) we have,

c =
k

1 + k1w
. (11)

Using eq. (11) in eq. (10) we have the following quadratic equa-
tion in w:

k1b0w
2 + (k0b0 + kb1 −Bk1)w − (kb+Bk0) = 0 (12)

The positive endemic equilibrium satisfies eq. (2) and it can be
easily observed that eq. (12) has a unique positive root by es-
cartes’ rule of sign, w∗ (say). Using value of w∗ in eq. (11) we
get

c∗ =
k

1 + k1w∗ ,

s∗ =
A(k0 + k1w

∗)

a0k0 + βk + a0k1w∗ ,

i∗ =
βAk0(k0 + k1w

∗)

(a0k0 + βk + a0k1w∗)(β0(k0 + k1w∗) + β1k)
.

The Jacobian matrix of model (2) is

J =


−a0 − βc 0 −βs 0

βc β0 − β1c βs− β1i 0
0 0 −k0 − k1w −k1c
0 0 b− b1w −b0 − b1c

 .

(13)
To examine the stability of equilibrium points, we employ the
following stability theorem.

Theorem 3. Consider the following autonomous dξu(t)
dtξ

=
f(u(t));u(0) = 0; 0 < ξ < 1 nonlinear fractional order sys-
tem:
The following system’s equilibrium points are solutions to the
equation f(u(t)) = 0. If all eigenvalues (λj) of the Jacobian
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matrix J = ∂f
∂u evaluated at equilibrium u∗ meet the condition

|arg(λj)| >
ξπ

2
, (14)

then an equilibrium point u∗ is locally asymptotically stable.

Figure 2. The stability region of the fractional order system
with 0 < ξ ≤ 1 is shown as per criterion eq. (14) .

Now, we’ll concentrate about the model (2) endemic (positive)
equilibrium’s asymptotic stability. The Jacobian matrix evaluated
at the endemic equilibrium is given as:

J(E+) =


−a0 − βc 0 −βs∗ 0

βc∗ −β0 − β1c∗ βs∗ − β1i∗ 0

0 0 −k0 − k1w∗ −k1c∗

0 0 b− b1w∗ −b0 − b1c∗


(15)

From eq. (15) the latent equation of J(E+) is

λ4 + h0λ
3 + h1λ

2 + h2λ+ h3 = 0 (16)

Where

h0 =D1 +D2 +D3 +D4 +D5 +D6,

h1 =D1D2 +D4D6 +D1D4 +D1D6 +D2D4 +D2D6

+D1k1c
∗,

h2 =D1D4D6 +D2D4D6 +D1D2D4 +D1D2D6 +D2
1k1c

∗

+D1D2k1c
∗,

h3 =D1D2D4D6 +D2
1D2k1c

∗,

D1 =a0 + βc∗, D2 = β0 + β1c
∗,

D3 =βs∗ − β1i
∗, D4 = k0 + k1w

∗,

D5 =b− b1w
∗, D6 = b0 + b1c

∗.

IfD(ϕ) denotes the discriminant of the polynomial ϕ(λ) = λ4+
h0λ

3+h1λ
2+h2λ+h3 where all the coefficients are real. Then

let denote

D(ϕ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 h0 h1 h2 h3 0 0
0 1 h0 h1 h2 h3 0
0 0 1 h0 h1 h2 h3

4 3h0 2h1 h2 0 0 0
0 4 3h0 2h1 h2 0 0
0 0 4 3h0 2h1 h2 0
0 0 0 4 3h0 2h1 h2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(17)

From [32], we have the proposition.

Theorem 4. Suppose that E+ exists in R4
+

1. Let Ω1, Ω2, Ω3 be Routh-Hourwitz determinants:

Ω1 = h0,

Ω2 =

∣∣∣∣ h0 1
h2 h1

∣∣∣∣ ,
Ω3 =

∣∣∣∣∣∣
h0 1 0
h2 h1 h0

h4 h3 h2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
h0 1 0
h2 h1 h0

0 h3 h2

∣∣∣∣∣∣ .
Hence, as ξ = 1, the equilibrium point E+ is locally asymp-
totically stable if

Ω1 > 0, Ω2 > 0, Ω3 = 0, h3 > 0. (18)

For all ξ ∈ [0, 1), for E+ to be locally asymptotically sta-
ble, these constraints eq. (18) are sufficient but not neces-
sary. Since most biologically intriguing systems are one, two
and three dimensions we will investigate the problem eq. (14)
from n = 1 to 4.

2. If D(ϕ) > 0, h0 > 0, h1 < 0 and ξ > 2
3 , then the

equilibrium point E+ is unstable.
3. IfD(ϕ) < 0, h0 > 0, h1 > 0, h2 > 0, h3 > 0 and ξ < 1

3 ,
then the equilibrium point E+ is stable. Also if D(ϕ) < 0,
h0 < 0, h1 > 0, h2 < 0, h3 > 0, then the equilibrium
point E+ is unstable.

4. If D(ϕ) < 0, h0 > 0, h1 > 0, h2 > 0, h3 > 0, and
h1 = h0h3

h2
+ h2

h0
then the equilibrium point E+ is locally

asymptotically stable for all ξ ∈ (0, 1).
5. If h3 > 0 is the necessary condition for the equilibrium point

E+ to be locally asymptotically stable.

4. Numerical Methods and Simulations

Approximation and numerical approaches must be uti-
lized since the majority of fractional-order differential equations
lack accurate analytic solutions. The fractional-order differential
equations have been solved using a variety of analytical and nu-
merical techniques. One can utilise an unconventional finite dif-
ference approach to solve the model (2) numerically (NFDM). The
notion of the nonstandard finite difference technique is covered
in [33]. Mickens first developed the nonstandard finite difference
methods in the 1980s as a potent numerical approach that retains
important features of precise solutions of the differential equa-
tion concerned [34]. The model (2) can be discretized as follows
using this approach [35].
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Figure 3. This figure illustrates the effect of stability of the endemic equilibriumE+ for various values of ξ. (a)-(d) illustrate the variations
of susceptible, infected, Leukemic and immune cells.

ν+1∑
r=0

δξrsν+1−r = A− a0sν+1 − βsν+1cν

ν+1∑
r=0

δξr iν+1−r = βsν+1cν − β0iν+1 − β1cν+1iν (19)

ν+1∑
r=0

δξrcν+1−r = k − k0cν+1 − k1cν+1wν

ν+1∑
r=0

δξrwν+1−r = B + bcν − b0wν+1 − b1cν+1wν

Performing some algebraic operations to eq. (19) produces
the subsequent relations.

sν+1 =
A−

∑ν+1
r=1 δ

ξ
rsν+1−r

δξ0 + a0 + βcν

iν+1 =
βsν+1cν − β1cν+1iν −

∑ν+1
r=1 δ

ξ
r iν+1−r

δξ0 + β

cν+1 =
k −

∑ν+1
r=1 δ

ξ
rcν+1−r

δξ0 + k0 + k1wν

wν+1 =
B + bcν − b1wνcν+1 −

∑ν+1
r=1 δ

ξ
rwν+1−r

δξ0 + b0

In order to demonstrate our theoretical findings mentioned in

the preceding sections, we run few numerical simulations of the
luekemia transmission model (2). Figures 3 and 4 depict the ap-
proximate results s(t), i(t), c(t) and w(t). By choosing A = 1.5,
A0 = 0.01, β = 0.003, β00.03, β1 = 0.02, k = 0.003, k0 = 0.01,
k1 = 0.03, B = 1.5, b = 0.5 and various values of ξ, we get
the endemic equilibrium point E+. Then, according to the The-
orem 4, the endemic equilibrium point is locally asymptotically
stable (Figure 3).

Figure 4 further shows that the solution of model (1) con-
verges to the endemic equilibrium point E∗. for fixed value of
ξ = 0.9 and for various initial conditions. Therefore, we may no-
tice that fractional derivative ξ affects the evolution of the states
from all of these Figures.

5. Discussion and Concluding Remarks

In the current study, in order to explain how leukemia
spreads, we have suggested as well as investigated an unique
fractional order model that makes use of the Caputo fractional
derivative. First, we have proven that non-negative solutions
exist and are bounded. The Routh-Hurwitz criteria are used to
determine the endemic equilibrium’s local stability. We ran the
numerical simulation for several values of the parameter ξ, and
found that this parameter affects how the model states change
over time. Integer order system provides fewer benefits than
fractional order system. We can represent a higher order sys-
tem using a lower order model when describing a system by frac-
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Figure 4. This depicts the effect of stability of the endemic equilibrium E+ with fixed value of ξ = 0.9 and various initial values of each
state variable.(a)-(d) illustrate the variations of susceptible, infected, Leukemic and immune cells.

tional order. Fractional order systems frequently have a greater
influence on controlling theories than integer order systems. We
have used Predictor-Corrector method to simulate model (2) with
the help of MATLAB. The numerical analysis of the fractional
order system is quite advanced. Numerous techniques are uti-
lized in numerical studies, including the Homotopy perturbation
method, the Taylor basis approximations approach, the Adomian
decomposition method, and others. In the future, we’ll strive to
assess this work using a variety of numerical techniques to pro-
vide better outcomes.
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