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A Fractional Mathematical Model for Controlling and
Understanding Transmission Dynamics in Computer Virus
Management Systems

Akeem Olarewaju Yunus1,∗, Morufu Oyedunsi Olayiwola2, and Adewole Mukaila Ajileye3

1,2Department of Mathematical Sciences, Osun State University, Osogbo, Nigeria
3Department of Mathematics, University of Ilesa, Ilesa, Osun State, Nigeria

ABSTRACT. The constant danger of computer viruses and malware makes it difficult to safely simulate the man-
agement of computer systems over time for both networks and individual users. The present study proposes a novel
six-compartment fractional model that builds on existing classical frameworks and examines the existence and unique-
ness of its solution, indicating that it is both mathematically and biologically well-posed. Additionally, we compute the
fundamental reproduction number R0 and use sensitivity analysis to investigate the impact of various factors on the
model’s behavior. The Laplace Adomian Decomposition Method is employed for numerical analysis, and its findings
have the potential to transform computer security and network management by providing robust countermeasures
and eradication tactics. The complex properties of the fractional-order model are further explored by examining the
memory effect of fractional order on system dynamics. The research findings offer valuable insights for virus managers
in developing and implementing effective management methods and can successfully prevent the spread of computer
viruses by leveraging these discoveries. In conclusion, this study provides significant insights and solutions for protect-
ing the integrity of digital domains and network infrastructure.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction

Malicious programs known as computer viruses can ruin
files, harm systems, and steal data. They pose serious risks, in-
cluding data loss and personal information theft, and prolifer-
ate undetected. Improved virus prevention and response tac-
tics are made possible by mathematical models. Mathematical
modeling needs in understanding of diseases that are transmis-
sible. The dynamics of computer viruses, which pose a threat
to networks and are essential for maintaining network security,
are modeled using the Caputo fractional-order derivative. An ex-
amination of models such as FSSIP for virus mitigation in net-
works is conducted, and analysis using the Laplace-Adomian de-
composition approach emphasizes the significance of preventive
measures. [1–7], To understand these intricate dynamics, we
delve into fractional calculus, a mathematical field exploring non-
integer-order derivatives and integrals. Its origins date back to
Leibniz’s 1695 letter to L’Hospital, introducing semi-derivatives.
In today’s era of scientific and technological progress, informa-
tion science gains increasing significance. Fractional calculus pro-
vides a valuable tool for analyzing and solving fractional differen-
tial equations, extending traditional calculus to non-integer or-
ders [8–11].

Researchers emphasized the importance of human con-
nections during epidemics and conducted stability analysis us-
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ing the Laplace-Adomian decomposition method and the ho-
motopy perturbation method [12–21]. A study established the
validity of a nine-compartment model for coronavirus infec-
tion through robust epidemiological analysis [22], to describe
coronavirus dynamics, the fractional-order Caputo’s derivative
model was approximated using Laplace-Adomian decomposition,
and the basic reproduction threshold (R0) was calculated using
the next-generation matrix approach. The impact of smoking
was addressed separately. Numerical simulations were meticu-
lously conducted to gain insight into model parameters [23–26].
The World Health Organization’s declaration of COVID-19 as a
global public health emergency in March 2020 prompted height-
ened research efforts. This study comprehensively analyzes an
SEIRV epidemic model, incorporating optimal control techniques
and employing the Caputo fractional derivative of order (0, 1].
The stability of the SEIRV model is thoroughly examined, and
an optimal control strategy is delineated. Real-time statistics
from India ground the parameters of the fractional order SEIRV
model in COVID-19 scenarios. The model’s numerical solution
was achieved using the Adam-Bash-Forward-Moulton predictor-
corrector method. Findings indicate superior performance of
the fractional-order SEIRV model compared to its integral-order
counterpart in assessing COVID-19 transmission dynamics. The
initial model undergoes stability analysis of equilibrium points,
while the second model, incorporating a conformable fractional
derivative, is discretized and scrutinized for stability and poten-
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tial Neimark-Sacker bifurcation, considering a variable parame-
ter. Comparative analysis reveals chaotic tendencies in the dis-
crete, conformable fractional order model, supported by numer-
ical simulations [27–29]. In another study, a nonlinear frac-
tional model is addressed via the reduced differential transform
method, utilizing the Caputo fractional derivative for precise re-
sults. The model is visually represented through a signal flow
diagram, and simulation is carried out using stimulation within
MATLAB [30–32].

Various approaches exist for solving linear and nonlinear
differential equations, often involving complex symbolic calcula-
tions or significant computational resources. Precise solutions
for these models pose formidable challenges. In referenced re-
search, the fractional optimal control problem concerning varia-
tional inequalities is explored, employing the Riemann-Liouville
fractional time derivative and investigating the existence and
uniqueness of fractional differential variation inequalities within
a Sobolev space [7, 33–35]. It demonstrates solutions with both
Dirichlet and Neumann boundary conditions, all within a con-
fined region. The establishment of optimality conditions for the
quadratic performance function of the fractional Cauchy problem
is a focal point. These conditions encompass the adjoint problem
as well as the first-order optimality test for the Euler-Lagrange
equation [36].

Furthermore, another study delves into the ramifications
of the Caputo fractional order concerning the KDV equation, ac-
centuating its utility within the framework of wave modeling,
as demonstrated through the homotopy perturbation approach
[34, 37].

In the specific context of an epidemic model denoted as
SAEIQRS (Susceptible-Antidotal-Exposed-Infected-Quarantined-
Recovered-Susceptible), the differential transformation tech-
nique (DTM) is employed. A comparison of solutions between
the Differential Transform Method (DTM) and the fourth-order
Runge-Kutta technique (RK4) illustrates their concurrence [7].
The study investigates the estimation of glucose supply in the
human bloodstream using mathematical modeling that incorpo-
rates the incomplete I-function (IIF) [38]. The results reveal signif-
icant scenarios across parameters, with important applications in
biology and medicine. In a fractional blood alcohol model, [39]
investigates the Caputo and modified Atangana-Baleanu deriva-
tives (MABC), paying particular attention to liver metabolism, ab-
sorption rates, and stomach alcohol content. The link between
blood and stomach alcohol concentrations is revealed by analyti-
cal data obtained using the Laplace transform and Mittag-Leffler
methods. The influence of fractional factors is emphasized by
graphic analyses, which provide fresh perspectives with possible
medical uses [40]. One of the main causes of death worldwide,
particularly for those over 65 and children under five, is pneu-
monia. Stability, reproduction numbers, and equilibrium points
are the main topics of this study’s analysis of disease dynamics
utilizing an SVEIR model. MATLAB21 simulations demonstrate
that the disease may be eradicated by raising vaccination rates
over a certain threshold. Uses the Caputo fractional derivative
to investigate a novel fractional TB model [41]. Two treatment
strategies are considered while computing solutions using the
generalized Euler’s method (GEM): primary therapy for infected
individuals and protective treatment for latent populations. The

six-dimensional compartmental model includes the susceptible,
latent, infected, recovered, and treatment classes. The stability
of the equilibrium point is examined, and MATLAB 22 is used for
graphical simulations, providing precise and straightforward in-
sights into the model’s dynamics [42]. Pneumonia causes over
2,000,000 deaths annually, mainly in children under five and the
elderly in developing nations. The study uses a generalized SVEIR
model with Caputo fractional derivatives to analyze pneumonia
dynamics. Solutions are computed using the generalized Euler’s
method, and stability analysis reveals that increased vaccination
coverage can eliminate the disease. Sensitivity analysis highlights
transmission rates and progression to contagiousness as key fac-
tors, stressing the need to improve treatment effectiveness to
prevent disease spread [43]. The study explores the application
of fractional operators and special functions to understand physi-
cal processes. It introduces a fractional integral operator with an
I-function in its kernel, used to solve several fractional differential
equations (FDEs). These equations model various physical phe-
nomena across fields such as physics, biology, engineering, and
chemistry. The study establishes key relations involving the new
fractional operator with incomplete I-function, classical Riemann
Liouville operators, Hilfer fractional derivatives, and the general-
ized composite fractional derivative (GCFD) operator, followed
by the identification and analysis of several exceptional cases
[44]. The study explores the use of non-integer order derivatives
inmodeling contagious diseases, specifically applying a fractional
model to dengue fever. The Hilfer fractional model is used to an-
alyze epidemic dynamics. The study employs the Laplace homo-
topy analysis transform method (LHATM) for numerical analysis,
incorporating homotopy analysis and Laplace transforms. The
uniqueness and convergence of the solution are also considered.
MATLAB21a is used for numerical simulations, comparing results
for both integer and non-integer orders within the interval (0, 1).

Computer viruses pose a common hazard to information
security, and examining the fractional-order model of a computer
virus outbreak through various approaches can yield valuable
information. The Laplace-Adomian decomposition technique
(LADM) is utilized to derive an analytical solution, facilitating an
investigation into the influence of Caputo fractional order deriva-
tives on various factors. Analyzing virus transmission dynamics is
crucial for countermeasures, and this study uses fractional-order
derivatives to enhance understanding. Fractional calculus accu-
rately captures virus-spreading properties, offering insights into
propagation rates and the role of network structure. Future re-
search can explore evolving viruses, real-world data, and the in-
terplay with other factors, ultimately improving security and re-
silience against cyber threats.

In order to better understand the dynamics of computer
viruses, this study proposes a new six-compartment fractional
model that takes memory effects into account. Through thor-
ough validation, it guarantees mathematical and biological ro-
bustness and offers useful information through sensitivity anal-
ysis and reproduction number computation. It provides a rev-
olutionary method for protecting digital systems and network
infrastructure by utilizing the Laplace Adomian Decomposition
Method to facilitate the creation of effective countermeasures
and eradication strategies.
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2. Preliminaries

Definition 1. The fractional integration of order α is defined
as

(Dα
t0f)(t) =

1

Γ(α)

∫
(t− s)α−1f(s)ds, α ≥ 0, t ≥ t0,

(Dα
t0f)(t) = f(t).

Definition 2. Gamma function Γ(p) is defined as

Γ(p) =

∫ ∞

0

ℓ−xxp−1dx.

Definition 3. The fractional derivative of order α and n =
[α] the Riemann-Liouville fractional time derivative of order
α can be defined as:

Dα
t f(t) =

1

Γ(n− α)

(
d

dx

)n ∫ t

a

(t− u)n−α−1f(u)du.

Also non-integer time Fractional derivative in the origin is
defined as:

Dα
t f(t) =

1

Γ(n− α)

∫ t

a

(t− u)n−α−1f(u)du,

for a function f(t), f(t) = 0, if t ≥ 0. Where [α] = n and c
is constant, then Dα

t c = 0.

Theorem 1. If n− 1 < α < n where n ∈ N and α ∈ R then

lim
α→n

Dα
t f(t) = f (n)(t),

lim
α→n−1

Dα
t f(t) = f (n−1)(t)− f (n−1)(0).

Proof. By the formula

Dα
t f(t) =

1

Γ(n− α)

∫ t

0

f (n)(y)dy

(t− y)α+1−n
.

We will use the integration by part, obtain∫ t

0

u(y)v
′
(y)dy = u(y)v(y)t0 −

∫ t

0

u
′
(y)v(y)dy,

u(y) = f (n)(y),

v(y) = − (t− y)n−α,

u
′
(y) = f (n+1),

v
′
(y) = (t− u)n−α−1.

Dα
t f(t) =

1

Γ(n− α)

[
f (n)(y)(t− y)n−α

n− α

∣∣∣∣t
0

+
1

n− α

∫ t

o

(t− y)n−αf (n+1)(y)dy

]
.

Using the property of Γ Function:

Γ(n− α+ 1) = (n− α)Γ(n− α),

Dα
t f(t) =

1

Γ(n− α)

[
f (n)(0) +

∫ t

0

f (n+1)(y)(t− y)n−αdy

]
,

lim
α→n

Dα
t f(t) =

[
f (n)(0) +

∫ t

0

f (n+1)(y)(t− y)n−αdy

]
,

= f (n)(0) + f (n)(y)t0,

= f (n)(t).

lim
α→1

Dα
t f(t) =

[
f (n)(0) +

∫ t

0

f (n+1)(y)(t− y)n−αdy

]
,

= f (n)(0) + (t− y)f (n)(y)t0,

= f (n−1)(t)− f (n−1)(0).

Definition 4. The Laplace Transform of a function is defined
as

F (s) =

∫ ∞

0

ℓ−stf(t)dt.

The corresponding inverse Laplace transform is defined as

f(t) =
1

2π
lim
t→∞

∫ ∞

−∞
ℓ−stF (s)dt = L−1F (s).

Theorem 2. f(t) = tλ∞.

Proof. By definition of Laplace transform

F (s) =

∫ ∞

0

ℓ−sttλdt.

We introduce the change of variable x = ts, we have also dx =
sdt.

F (s) =

∫ ∞

0

ℓ−xx
λ

sλ
dx

s
,

⇒ F (s) =
1

Sλ+1

∫ ∞

0

ℓ−xxλdx,

=
Γ(λ+ 1)

sλ+1
.

The direct and inverse Laplace transform are

L(tλ) =
Γ(λ+ 1)

sλ+1
,

L−1(
1

sλ+1
) =

tλ

Γ(λ+ 1)
.

JJBM | Jambura J. Biomath Volume 5 | Issue 2 | December 2024



A. O. Yunus, M. O. Olayiwola, and A. M. Ajileye – A Fractional Mathematical Model for Controlling and Understanding Transmission Dynamics… 119

Definition 5. Ifα > 0,

f(t) =
1

Γ(α)

∫ t

0

(t− y)α−1f(y)dy.

Laplace transform of Riemann -Liouville is

L[Dα
t f(t)] = L

[
1

Γ(n− α)

(
dtn

dnt

)∫ t

0

(t− u)n−α−1f(u)du

]
,

L

(
dtn

dnt

)
tn−af(t),

L[fn(t)] = snF (s)− sn−1f
′
(0) · · · f (n−1)(0).

Definition 6. Adomian polynomials, we will denote these
polynomial by A0, A1, . . . , An, the Adomian method con-
sists in the decomposition the unknown function y(t)in a
series of the form y(t) = y0 + y1 + y2 + · · ·+ yn, where yn
can be expressed in term of Adomian polynomials An. The
Adomian polynomial are defined

An =
1

n

dn

dλn

G(t) n∑
j=0

yjλ
j


λ=0

.

Definition 7. Let g(y) be a function defined on the interval
(0, t) and let n − 1 < α < n be a real number, where n is
the smallest integer greater than α. The Caputo fractional
derivative of order α is given by:

Dmg(y) =
1

Γ(n− 1)

∫ t

0

(y − t)m−α−1g(m)(t)dt.

The Caputo fractional derivative has several important
properties, including:
1. Linearity: for functions

Dα(af(y) + bg(y) = aDαf(y) + bDαg(y)f(x),

where a and b are contains in Chain rule: If Dαf(g(x))
is differentiable and Dαf(x) is Caputo differentiable,
then

Dα[f(g(x))] = Dα[f(x)] · g′(x).

2. Initial conditions: for n − 1 < α < n the Caputo frac-
tional derivative satisfies Γ(n−α+1)Γ(n+1)×n−α.

3. Caputo fractional integration: the Caputo fractional
derivative is related to fractional integration through
the relationship

Dα

∫ α

p

(y − t)n−α−1ρ(n)(t)dt = f(y).

3. Methods
3.1. Model formulations

A nonlinear classical-order mathematical model was devel-
oped by [7], and it has now been modified to a fractional-order
version. This reformulation aims to capture the memory effect
and offer a deeper understanding of the concept of computer
viruses.

dαS(t)

dtα
= π − βS(t)I(t)− (ψ + µ)S(t) + ηR(t),

dαA(t)

dtα
= ψS(t)− (µ+ ϕ)A(t)− ρA(t)I(t),

dαE(t)

dtα
= βS(t)I(t)− (µ+ γ)E(t) + ρA(t)I(t),

dαI(t)

dtα
= γE(t)− (µ+ θ + σ + ω)I(t),

dαQ(t)

dtα
= ωI(t)− (µ+ θ + δ)Q(t),

dαR(t)

dtα
= σI(t) + δQ(t) + ωA(t)− (µ+ η)R(t).

(1)

Given the initial condition: S0 = n1, A0 = n2, E0 = n3, I0 =
n4, Q0 = n5, R0 = n6.

The fractional order derivativemodel of eq. (1) can be trans-
formed into a Caputo derivative, as shown in eq. (2). The vari-
ables and parameters of the model are described in Table 1.

cDα1S(t) = π − βS(t)I(t)− (µ+ ψ)S(t) + ηR(t),
cDα2A(t) = ψS(t)− (ϕ+ µ)A(t)− ρA(t)I(t),
cDα3E(t) = βS(t)I(t)− (γ + µ)E(t) + ρA(t)I(t),
cDα4I(t) = γE(t)− (µ+ ω + σ + θ)I(t),
cDα5Q(t) = ωI(t)− (µ+ θ + δ)Q(t),
cDα6R(t) = σI(t) + δQ(t)− (η + µ)R(t) + ωA(t),

cDα0 ≤ α ≤ 1.

(2)

Signifies Caputo’s fractional-order derivative, while α indicates
the fractional time derivative.

3.2. Determine the solution’s existence and uniqueness

Theorem 3. Let

v
′

1 = w1(v1, v2, v3, . . . , vn, t), v1(t0) = v10

v
′

2 = w2(v1, v2, v3, . . . , vn, t), v2(t0) = v20

v
′

3 = w3(v1, v2, v3, . . . , vn, t), v3(t0) = v30
...
v

′

n = wn(v1, v2, v3, . . . , vn, t), vn(t0) = vn0

Suppose U represents a region in (n+1) dimensional space (with
one dimension) for t and n dimensions for vector x. When the
partial derivative ∂w

∂vi
, where i are continuous within U ,

U = {(v, t) : |t− t0| ≤ a, |v − v0| ≤ b} ,

then there constant δ ≥ 0 Such that there exist a unique contin-
uous vector solution v = [v1(t), v2(t), v3(t), . . . , vn(t)] in the
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Table 1. Parameters description use in model (1)

Symbol Description
N(t) The total number of population.
S(t) The quantity of computers susceptible at a specified moment, exhibiting neither immunity nor infection.
A(t) The aggregate count of computers with antidotal capabilities at a specific point in time, whether they have

been updated or not.
E(t) The count of vulnerable computers that are susceptible to infection at any given point in time.
I(t) The count of computers that require simultaneous cleanup due to being infected.
Q(t) The number of quarantined infected machines at any given time.
R(t) Transient immunity for uninfected computers at a given time.
π The frequency with which new computers are added to the network (birth rate).
µ The natural death rate (crashing of the computers due to other reason than attack of virus).
θ The crashing rate of computers due to the attack of virus.
B Transmission rate of virus attack when susceptible computer contact.
B The rate at which susceptible computers begin the antidotal process.
ϕ The speed at which a virus infiltrates when antidotal computers make contact with infected computers prior to

receiving the latest update (A to E).
ρ The pace at which antidotal computers achieve recovery (A to R).
σ, ω Are the coefficient rate of transition from the infectious class to the recovered class (I to R) the same as the

coefficient rate of transition from the infectious class to the quarantined class (I to Q).
δ, η Do the rate coefficients of the quarantine class and the recovery class (q to r) differ from the coefficient rate of

transition from the recovery class to the susceptible class (R to S).

interval |t− t0| ≤ δ.

Proof.

w1 = cDα1S(t) = π − βS(t)I(t)− (µ+ ψ)S(t) + ηR(t),

w2 = cDα1A(t) = ψS(t)− (ϕ+ µ)A(t)− ρA(t)I(t),

w3 = cDα1E(t) = βS(t)I(t)− (µ+ γ)E(t) + ρA(t)I(t),

w4 = cDα1I(t) = γE(t)− (µ+ θ + σ + ω)I(t),

w5 = cDα1Q(t) = ωI(t)− (µ+ ω + δ)Q(t),

w6 = cDα1R(t) = σI(t) + δQ(t)− (η + µ)R(t) + ωA(t),

U = {(S,A,E, I,Q,R) : |S − S0| ≤ a, |A−A0| ≤ b,

|E − E0| ≤ c, |I − I0| ≤ d, |Q−Q0| ≤ e, |R−R0| ≤ f} .

Applying partial differentiation yields the subsequent result, es-
tablishing the model’s distinct solution:

w1 = cDα1S(t) = π − βS(t)I(t)− (µ+ ψ)S(t) + ηR(t),

∂w1

∂S
= |−(µ+ ψ)β| , ∂w1

∂A
= 0,

∂w1

∂E
= 0,

∂w1

∂I
= |−β| ,

∂w1

∂Q
= 0,

∂w1

∂R
= η.

Furthermore, by computing the partial derivative of the second
function i.e.

w2 = cDα1A(t) = ψS(t)− (µ+ ϕ)A(t)− ρA(t)I(t),

to obtain the following:

∂w2

∂S
= ψ,

∂w2

∂A
= |−(µ+ ϕ)| ,

∂w2

∂E
= 0,

∂w2

∂I
= |−ρ| ,

∂w2

∂Q
= 0,

∂w2

∂R
= 0.

In a similar manner, deriving the partial derivative of the third
function i.e.

w3 = cDα1E(t) = βS(t)I(t)− (γ + µ)E(t) + ρA(t)I(t),

to obtain the following:

∂w3

∂S
= β,

∂w3

∂A
= ϕ1,

∂w3

∂E
= |−(µ+ γ)| , ∂w3

∂I
= β + ϕ1,

∂w3

∂Q
= 0,

∂w3

∂R
= 0.

Calculating the partial derivative of the fourth function is similar
i.e.

w4 = cDα1I(t) = γE(t)− (µ+ k1)I(t)− σ1I(t)− σ2I(t),

to obtain the following;

∂w4

∂S
= 0,

∂w4

∂A
= 0,

∂w4

∂E
= γ,

∂w4

∂I
= |−(µ+ κ1)− σ1 − σ2| ,

∂w4

∂Q
= 0,

∂w4

∂R
= 0.

Computing the partial derivative of the fifth function i.e.

w5 = cDα1Q(t) = σ2I(t)− (µ+ k1)Q(t)− δQ(t),

to obtain the following;

∂w5

∂S
= 0,

∂w5

∂A
= 0,

∂w5

∂E
= 0,

∂w5

∂I
= σ2,

∂w5

∂Q
= |−(µ+ κ1)− δ| , ∂w5

∂R
= 0.

The sixth function’s partial derivative, or, ultimately, yields the
following result;

w6 = cDα1R(t) = σ1I(t) + δQ(t)− µR(t) + ϕ2A(t)− ηR(t),
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∂w6

∂S
= 0,

∂w6

∂A
= 0,

∂w6

∂E
= 0,

∂w6

∂I
= σ1,

∂w6

∂Q
= δ,

∂w6

∂R
= |−µ− η| .

Theorem 1 implies that the function is continuous and limited
due to its existence of the partial derivative. The model’s unique-
ness of the solution means that it is both mathematically and bi-
ologically well posed.

3.3. Basic reproduction number
Basic reproduction number (R0) in epidemiology measures

the average number of secondary infections caused by one in-
fected person. It predicts the potential for epidemics or pan-
demics: R0 < 1 leads to declining infections, while R0 > 1
leads to increasing infections. Factors affectingR0 include trans-
mission mode, infectious period, population susceptibility, con-
tact rate, virulence, and environmental conditions. Mathemati-
cal models like the SIR model estimate Ro by considering these
factors. Ro assumes a fully susceptible population but can be
reduced by immunity from past infections or vaccinations (Re).
Public health interventions like social distancing, mask-wearing,
and vaccinations aim to decreaseRo. MonitoringRo helps guide
disease control, resource allocation, and outbreak management
to minimize the impact of infectious diseases. Top of Form

F =

 µ β ψ

0 0 0

0 0 0

 ,

V =

 (µ+ θ) + σ + δ 0 0

γ (µ+ θ) + ϕ 0

σ δ (µ+ η)

R0 = FV −1,

R0 =
βγ(µ+ θ + δ)δ + ((µ+ θ) + σ + ρ+ µγ(µ+ η) + ψσ(µ+ η)

(µ+ θ + δ)(µ+ θ)(µ+ η)
.

3.4. Sensitivity analysis of R0

This analysis is performed to gain further insight into the
transmission dynamics of the virus while considering the impact
of each parameters of the model on R0. The normalized sensi-
tivity index given by pR0

g = ∂R0

∂g · g
R0

and the computed results
are presented on Table 2.

Table 2. Sensitivity index of each parameter on R0

Parameters Sensitivity Indices
ρ 0.5789005232
β 0.07619778136
ε 0.3417607759
ψ 0.001013075916
µ −0.1234818938
θ −0.1320257419
ϕ 0
ω 0
σ 0.1013075916

Table 2 outlines the sensitivity of each parameter’s impact
on the basic reproduction number ℜ0. In Figure 1 below this
highlights the need to address their roles by implementing fac-
tors potentially capable of lowering their value because positive
sensitivity on R0 on virus.

Figure 1. Sensitivity chart of essential parameters contained
in ℜ0.

4. The Laplace Adomian Decomposition Method
Examine the fractional order epidemic model (2) under the

initial condition, where the independence of each component is
preserved, and they adhere to the specified relationship.

M(t) = S(t) +A(t) + E(t) + I(t) +Q(t) +R(t),

whereN is the total population, the nonlinear term in the model
is S(t)I(t) and A(t)I(t).

Applying Laplace transform to both side of the model (2),
we have eq. (3)

L{cDα1S(t)} = L{π − µs(t)− βS(t)I(t)− µS(t) + ηR(t)},
L{cDα2A(t)} = L{ψS(t)− µA(t)− ϕ2A(t)− ϕ1A(t)I(t)},
L{cDα3E(t)} = L{βS(t)I(t)− µI(t)− γE(t) + ϕ1A(t)I(t)},
L{cDα4I(t)} = L{γE(t)− (µ+ k1)E(t)− σ1I(t)− σ2I(t)},
L{cDα5Q(t)} = L{σ2I(t)− (µ+ k1)Q(t)− δQ(t)},
L{cDα6R(t)} = L{σ1I(t) + δQ(t)− µR(t) + ϕ2A(t)− ηR(t)}.

(3)

From eq. (3), we obtain

Sα1S(t) = Sα1−1S(0) + L{π − βS(t)I(t)− (ψ + µ)S(t) + ηR(t)},

Sα2A(t) = Sα2−1A(0) + L{ψS(t)− (ϕ+ µ)A(t)− ρA(t)A(t)},

Sα3E(t) = Sα3−1E(0) + L{βS(t)I(t)− (µ+ γ)E(t) + ρA(t)I(t)},

Sα4I(t) = Sα4−1I(0) + L{γE(t)− (µ+ θ + σ + ω)I(t)},

Sα5Q(t) = Sα5−1Q(0) + L{ωI(t)− (µ+ θ + δ)Q(t)},

Sα6R(t) = Sα6−1R(0) + L{σI(t) + δQ(t) + δA(t)− (η + µ)R(t)},
(4)

where eq. (4) implies

S(t) = S−1S(0) +
1

sα1
L{π − βS(t)I(t)− (ψ + µ)S(t) + ηR(t)},

A(t) = S−1A(0) +
1

sα2
L{ψS(t)− (ϕ+ µ)A(t)− ρA(t)A(t)},

E(t) = S−1E(0) +
1

sα3
L{βS(t)I(t)− (µ+ γ)E(t) + ρA(t)I(t)},
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I(t) = S−1I(0) +
1

sα4
L{γE(t)− (µ+ θ + σ + ω)I(t)},

Q(t) = S−1Q(0) +
1

sα5
L{ωI(t)− (µ+ θ + δ)Q(t)},

R(t) = S−1R(0) +
1

sα6
L{σI(t) + δQ(t) + δA(t)− (η + µ)R(t)}.

(5)

Assuming that the solution S(t), A(t), E (t), I(t), Q(t),
R(t) are in form of infinite series given by

S(t) =
∑∝

n=0 Sn, A(t) =
∑∝

n=0An,

E(t) =
∑∝

n=0En, I(t) =
∑∝

n=0 In,

Q(t) =
∑∝

n=0Qn, R(t) =
∑∝

n=0Rn,

(6)

and non linear term involved in the model S(t)I(t), A(t)I(t) are
decomposed by Adomain.

S(t)I(t) =

∝∑
n=0

Xn,

A(t)I(t) =

∝∑
n=0

Yn.

(7)

Equation (6) is Adomain polynomial are gives by

Xn =
1

Γ(n+ 1)

dn

dt

[
n∑

k=o

λksK

n∑
k=0

λnik

]
λ,

Yn =
1

Γ(n+ 1)

dn

dt

[
n∑

k=o

λkaK

n∑
k=0

λnik

]
λ.

(8)

Putting eqs. (6) to (8) into eq. (5), using initial value condi-
tion

S(t) =
n1
s

+
1

sα1
L{π − βXn − (µ+ ψ)Sn + ηRn},

A(t) =
n2
s

+
1

sα2
L{ψSn − (ϕ+ µ)An − ρYn},

E(t) =
n3
s

+
1

sα3
L{βXn − (µ+ γ)En + ρYn},

I(t) =
n4
s

+
1

sα4
L{γEn − (µ+ θ + σ + ω)In},

Q(t) =
n5
s

+
1

sα5
L{ωIn − (µ+ θ + δ)Q},

R(t) =
n6
s

+
1

sα6
L{σIn + δIn + ωAn − (µ+ η)Rn}.

(9)

In order to obtain the solution for each compartment, a
process of iterating through the terms in eq. (9) and subsequently
performing a Laplace inverse leads to the derivation of a compre-
hensive formula for the model.

k∑
n=0

Sn+1(t) = L−1

[
1

sα1
L{π − βXn − (µ+ ψ)Sn + ηRn}

]
,

k∑
n=0

An+1(t) = L−1

[
1

sα2
L{ψSn − (ϕ+ µ)An − ρYn}

]
,

k∑
n=0

En+1(t) = L−1

[
1

sα3
L{βXn − (µ− γ)En + ρYn}

]
,

k∑
n=0

In+1(t) = L−1

[
1

sα4
L{γEn − (µ+ θ + σ + ω)In}

]
,

k∑
n=0

Qn+1(t) = L−1

[
1

sα5
L{ωIn − (µ+ θ + δ)Qn}

]
,

k∑
n=0

Rn+1(t) = L−1

[
1

sα6
L{σIn + δQn − ωAn − (µ+ η)Rn}

]
.

(10)

The followings were obtained from eq. (10);

S0 = n1, A0 = n2, E0 = n3, I0 = n4, Q0 = n5, R0 = n6.

When n = 0, from the first equation of eq. (10)

S1 = L−1

[
1

sα1
L{π − βX0 − (ψ + µ)S0 + ηR0}

]
,

= L−1

[
1

sα1
L{π − βn1n4 − (ψ + µ)n1 + ηn6}

]
,

= L−1

[
{π − βn1n4 − (ψ + µ)n1 + ηn6}

1

sα1+1

]
,

= (π − βn1n4 − (ψ + µ)n1 + ηn6)
tα1

Γ(α1 + 1)
.

In the case where n = 0, considering the second equation
within the set denoted as eq. (10).

A1 = L−1

[
1

sα2
L{ψS0 − µA0 − ϕ2Q0 − ϕ1B0}

]
,

= L−1

[
1

sα2
L{ψn1 − (ϕ+ µ)n2 − ρn2n4}

]
,

= L−1

[
{ψn1 − (ϕ− µ)n2 − ρn2n4}

1

sα2+

]
,

= (ψn1 − (ϕ− µ)n2 − ρn2n4)
tα2

Γ(α2 + 1)
.

(11)

In instances where n = 0, we are examining the third
eq. (10).

E1 = L−1

[
1

sα3
L{βX0 − (µ+ γ)E0 + ρY0}

]
,

= L−1

[
1

sα3
L{βn1n4 − (µ+ γ)n3 + ρn2n4}

]
,

= L−1

[
{βn1n4 − (µ+ γ)n3 + ρn2n4}

1

sα3+1

]
,

= (βn1n4 − (µ+ γ)n3 + ρn2n4)
tα3

Γ(α3 + 1)
.

In the scenario where n = 0, our focus shifts to the fourth
equation found within the specified set, identified as eq. (10).

I1 = L−1

[
1

sα4
L{γE0 − (µ+ θ + σ + ω)I}

]
,

= L−1

[
1

sα4
L{γn3 − (µ+ θ + σ + ω)n4}

]
,

= L−1

[
{γn3 − (µ+ θ + σ + ω)n4}

1

sα4+1

]
,

= (γn3 − (µ+ θ + σ + ω)n4)
tα4

Γ(α4 + 1)
.
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In the scenario where n = 0, our focus shifts to the fifth
equation found within the specified set, identified as eq. (10).

Q1 = L−1

[
1

sα5
L{ωI0 − (µ+ θ + σ + δ)Q0}

]
,

= L−1

[
1

sα5
L{ωn4 − (µ+ θ + σ + δ)n5}

]
,

= L−1

[
ωn4 − (µ+ θ + σ + δ)n5

1

sα5+1

]
,

Q1 = (ωn4 − (µ+ θ + σ + δ)n5)
tα5

Γ(α5 + 1)
.

In the scenario where n = 0, our focus shifts to the sixth
equation found within the specified set, identified as eq. (10).

R1 = L−1

[
1

sα6
L{σI0 + δQ0 + ωA0 − (µ+ η)R0}

]
,

= L−1

[
1

sα6
L{σn4 + δn5 + ωn2 − (µ+ η)n6}

]
,

= L−1

[
{σn4 + δn5 + ωn2 − (µ+ η)n6}

1

sα6+1

]
,

= (σn4 + δn5 + ωn2 − (µ+ η)n6)
tα6

Γ(α6 + 1)
.

In the scenario where n = 1, our focus shifts to the first
equation found within the specified set, identified as eq. (10).

S2 = L−1

[
1

sα1
L{π − βX1 − (ψ + µ)S1 + ηR1}

]
,

= L−1

[
1

sα1
L

{
π − β(n1)

tα4

Γ(α4 + 1)
(γn3 − (µ+ θ + σ + ω)n4)

+ (n4)

(
(π − βn1n4 − (ψ + µ)n1 + ηn6)

tα1

Γ(α1 + 1)

)
− (ψ + µ) (π − βn1n4 − (ψ + µ)n1 + ηn6)

tα1

Γ(α1 + 1)

+η (σn4 + δn5 + ωn2 − (µ+ η)n6)
tα6

Γ(α6 + 1)

}]
,

S2 = L−1

[
1

sα1

{
π − β(n1)

Γ(α4 + 1)

Γ(α4 + 1)sα4+1
(γn3 − (µ+ θ + σ + ω)n4)

+ (n4)

(
(π − βn1n4 − (ψ + µ)n1 + ηn6)

Γ(α1 + 1)

Γ(α1 + 1)sα1+1

)
− (ψ + η) (π − βn1n4 − (ψ + µ)n1 + ηn6)

Γ(α1 + 1)1

Γ(α1 + 1)sα1+1

+η (σn4 + δn5 + ωn2 − (µ+ η)n6 )
Γ(α6 + 1)

Γ(α6 + 1)sα6+1

}]
,

S2 = L−1

[{
π − β(n1)

1

sα4+α1+1
(γn3 − (µ+ θ + σ + ω)n4)

+ (n4)

(
(π − βn1n4 − (ψ + µ)n1 + ηn6)

1

s2α1+1

)
− (ψ + µ) (π − βn1n4 − (ψ + µ)n1 + ηn6)

1

s2α1+1

+η (σn4 + δn5 + ωn2 − (µ+ η)n6)
1

sα6+α1+1

}]
,

S2 = π − β(n1)

(
(γn3 − (µ+ θ + σ + ω)n4)

tα1+α4

Γ(α1 + α4)

+(n4)(π − βn1n4 − (ψ + µ)n1 + ηn6)
t2α1

Γ(2α1 + 1)

)
− (µ+ ψ)(π − βn1n4 − (ψ + µ)n1 + ηn6)

t2α1

Γ(2α1 + 1)

+ η(σn4 + δn5 + ωn2 − (µ+ η)n6)
tα1+α6

Γ(α1 + α6 + 1)
.

In the scenario where n = 1, our focus shifts to the second
equation found within the specified set, identified as eq. (10).

A2 = L−1

[
1

sα2
L{ψS1 − (ϕ+ µ)A1 − ρY1}

]
,

= L−1

[
1

sα2
L

{
ψ(π − βn1n4 − (ψ + µ)n1 + ηn6)

tα1

Γ(α1 + 1)

− (ϕ+ µ)(ψn1 − (ϕ− µ)n2 − ρn2n4)
tα2

Γ(α2 + 1)

− ρ(n2)(γn3 − (µ+ θ + σ + ω)n4)
tα4

Γ(α4 + 1)

+ (n4)(ψn1 − (ϕ− µ)n2 − ρn2n4)
tα2

Γ(α2 + 1)

}]
,

= L−1

[
1

sα2

{
ψ(π − βn1n4 − (ψ + µ)n1 + ηn6)

Γ(α1 + 1)1

Γ(α1 + 1)sα1+1

− (ϕ+ µ)(ψn1 − (ϕ− µ)n2 − ρn2n4)
Γ(α2 + 1)

Γ(α2 + 1)sα2+1

− ρ(n2)(γn3 − (µ+ θ + σ + ω)n4)
Γ(α4 + 1)

Γ(α4 + 1)sα2+1

+ (n4)(ψn1 − (ϕ− µ)n2 − ρn2n4)
Γ(α2 + 1)

Γ(α2 + 1)sα2+1

}]
,

= L−1

[
1

sα2

{
ψ(π − βn1n4 − (ψ + µ)n1 + ηn6)

1

sα1+1

− (ϕ+ µ)(ψn1 − (ϕ− µ)n2 − ρn2n4)
1

sα2+1

− ρ(n2)(γn3 − (µ+ θ + σ + ω)n4)
1

sα2+1

+ (n4)(ψn1 − (ϕ− µ)n2 − ρn2n4)
1

sα2+1

}]
,

= L−1

[{
ψ(π − βn1n4 − (ψ + µ)n1 + ηn6)

1

sα1+α2+1

− (ϕ+ µ)(ψn1 − (ϕ− µ)n2 − ρn2n4)
1

s2α2+1

− ρ(n2)(γn3 − (µ+ θ + σ + ω)n4)
1

s2α2+1

+ (n4)(ψn1 − (ϕ− µ)n2 − ρn2n4)
1

sα2+α4+1

}]
,

A2 = ψ(π − βn1n4 − (ψ + µ)n1 + ηn6)
tα1+α2

Γ(α1 + α2 + 1)

− (ϕ+ µ)(ψn1 − (ϕ− µ)n2 − ρn2n4)
t2α2

Γ(2α2 + 1)

− ρ((n2)(γn3 − (µ+ θ + σ + ω)n4))
tα4+α2

Γ(α4 + α2 + 1)

+ (n4)(ψn1 − (ϕ− µ)n2 − ρn2n4)
t2α2

Γ(2α2 + 1)
.

In the scenario where n = 1, our focus shifts to the third
equation found within the specified set, identified as eq. (10).

E2 = L−1

[
1

sα3
L{βX1 − (µ− γ)E1 + ρY1}

]
,

= L−1

[
1

sα3
L

{
β(n1)

tα4

Γ(α4 + 1)
(γn3 − (µ+ θ + σ + ω)n4)

+ (n4)
tα1

Γ(α1 + 1)
(π − βn1n4 − (ψ + µ)n1 + ηn6)− (µ

+ γ)(βn1n4 − (µ+ γ)n3 + ρn2n4)
tα3

Γ(α3 + 1)
+ ρ(n2)(γn3

− (µ+ θ + σ + ω)n4)
tα4

Γ(α4 + 1)
+ (n4)(ψn1 − (ϕ− µ)n2
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− ρn2n4)
tα2

Γ(α2 + 1)

}]
,

E2 = L−1

[
1

sα3
β(n1)(γn3 − (µ+ θ + σ + ω)n4

Γ(α4 + 1)

Γ(α4 + 1)sα4+1

+ (n4)(π − βn1n4 − (ψ + µ)n1 + ηn6)
Γ(α1 + 1)

Γ(α1 + 1)sα1+1

− (µ+ γ)(βn1n4 − (µ+ γ)n3 + ρn2n4)
Γ(α3 + 1)

Γ(α3 + 1)sα3+1

− ρ(n2)(γn3 − (µ+ θ + σ + ω)n4)
Γ(α4 + 1)

Γ(α4 + 1)sα2+1

+ (n4)(ψn1 − (ϕ− µ)n2 − ρn2n4)
Γ(α2 + 1)

Γ(α2 + 1)sα2+1

]
,

= L−1

[
1

sα3
β(n1)(γn3 − (µ+ θ + σ + ω)n4)

1

sα4+1

+ (n4)(π − βn1n4 − (ψ + µ)n1 + ηn6)
1

sα1+1

− (µ+ γ)(βn1n4 − (µ+ γ)n3 + ρn2n4)
1

sα3+1

− ρ(n2)(γn3 − (µ+ θ + σ + ω)n4)
1

sα2+1

+ (n4)(ψn1 − (ϕ− µ)n2 − ρn2n4)
1

sα2+1

]
,

= L−1

[
β(n1)(γn3 − (µ+ θ + σ + ω)n4)

1

sα4+α3+1

+ (n4)(π − βn1n4 − (ψ + µ)n1 + ηn6)
1

sα1+α3+1

− (µ+ γ)(βn1n4 − (µ+ γ)n3 + ρn2n4)
1

s2α3+1

− ρ(n2)(γn3 − (µ+ θ + σ + ω)n4)
1

sα2+α3+1

+ (n4)(ψn1 − (ϕ− µ)n2 − ρn2n4)
1

sα2+α3+1

]
,

E2 = β(n1)(γn3 − (µ+ θ + σ + ω)n4)
tα3+α4

Γ(α3 + α4)

+ (n4)(π − βn1n4 − (ψ + µ)n1 + ηn6)
tα3+α1

Γ(α3 + α1)

− (µ+ γ)(βn1n4 − (µ+ γ)n3 + ρn2n4)
t2α3

Γ(2α3 + 1)

− ρ(n2)(γn3 − (µ+ θ + σ + ω)n4)
tα3+α4

Γ(α3 + α4)

+ (n4)(ψn1 − (ϕ− µ)n2 − ρn2n4)
tα2+α3

Γ(α2 + α3)
.

In the scenario where n = 1, our focus shifts to the forth
equation found within the specified set, identified as equation
eq. (10).

I2 = L−1

[
1

sα4
L{γE1 − (µ+ θ + σ + ω)I1}

]
,

= L−1

[
1

sα4
L

{
γ(βn1n4 − (µ+ γ)n3 + ρn2n4)

tα3

Γ(α3 + 1)

− (µ+ θ + σ + ω)(γn3 − (µ+ θ + σ + ω)n4)
tα4

Γ(α4 + 1)

}]
,

= L−1

[
1

sα4

{
γ(βn1n4 − (µ+ γ)n3 + ρn2n4)

Γ(α3 + 1)

Γ(α3 + 1)sα3+1

− (µ+ θ + σ + ω)(γn3 − (µ+ θ + σ + ω)n4)
Γ(α4 + 1)

Γ(α4 + 1)sα4+1

}]
,

= L−1

[
1

sα4

{
γ(βn1n4 − (µ+ γ)n3 + ρn2n4)

1

sα3+1
− (µ+ θ + σ

+ ω)(γn3 − (µ+ θ + σ + ω)n4)
1

sα3+1

}]
,

= L−1

[
γ(βn1n4 − (µ+ γ)n3 + ρn2n4)

1

sα3+α4+1
− (µ+ θ + σ

+ ω)(γn3 − (µ+ θ + σ + ω)n4)
1

s4α4+1

]
,

I2 = γ(βn1n4 − (µ+ γ)n3 + ρn2n4)
tα3+α4

Γ(α3 + α4)
− (µ+ θ + σ

+ ω)(γn3 − (µ+ θ + σ + ω)n4)
t2α4

Γ(2α4 + 1)

In the scenario where n = 1, our focus shifts to the fifth
equation found within the specified set, identified as eq. (10).

Q2 = L−1

[
1

sα5
L{ωI1 − (µ+ θ + δ)Q1}

]
,

= L−1

[
1

sα5
L

{
ω(γn3 − (µ+ θ + σ + ω)n4)

tα4

Γ(α4 + 1)

− (µ+ θ + δ)(ωn4 − (µ+ θ + σ + δ)n5)
tα5

Γ(α5 + 1)

}]
,

= L−1

[
1

sα5
ω(γn3 − (µ+ θ + σ + ω)n4)

Γ(α4 + 1)

Γ(α4 + 1)sα4+1

− (µ+ θ + δ)(ωn4 − (µ+ θ + σ + δ)n5)
Γ(α5 + 1)

Γ(α5 + 1)sα5+1

]
,

= L−1

[
1

sα5
ω(γn3 − (µ+ θ + σ + ω)n4)

1

sα4+1
− (µ+ θ

+ δ)(ωn4 − (µ+ θ + σ + δ)n5)
1

sα5+1

]
,

= L−1

[
ω(γn3 − (µ+ θ + σ + ω)n4)

1

sα4+α5+1
− (µ+ θ

+ δ)(ωn4 − (µ+ θ + σ + δ)n5)
1

s2α5+1

]
,

Q2 = ω(γn3 − (µ+ θ + σ + ω)n4)
tα4+α5

Γ(α4 + α5 + 1)
− (µ+ θ

+ δ)(ωn4 − (µ+ θ + σ + δ)n5)
t2α5

Γ(2α5 + 1)
.

In the scenario where n = 1, our focus shifts to the Sixth
equation found within the specified set, identified as eq. (10).

R2 = L−1

[
1

sα6
L{σI1 + δQ1 − ωA1 − (µ+ η)R1}

]
,

= L−1

[
1

sα6
L

{
σ(γn3 − (µ+ θ + σ + ω)n4)

tα4

Γ(α4 + 1)

+ δ(ωn4 − (µ+ θ + σ + δ)n5)
tα5

Γ(α5 + 1)
− ω(ψn1

− (ϕ− µ)n2 − ρn2n4)
tα2

Γ(α2 + 1)
− (µ+ η)(σn4 + δn5 + ωn2

− (µ+ η)n6)
tα6

Γ(α6 + 1)

}]
,
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= L−1

[
1

sα6

{
σ(γn3 − (µ+ θ + σ + ω)n4)

Γ(α4 + 1)

Γ(α4 + 1)sα4+1

+ δ(ωn4 − (µ+ θ + σ + δ)n5)
Γ(α5 + 1)

Γ(α5 + 1)sα5+1
− ω(ψn1

− (ϕ− µ)n2 − ρn2n4)
Γ(α2 + 1)

Γ(α2 + 1)sα2+1
− (µ+ η)(σn4

+ δn5 + ωn2 − (µ+ η)n6)
Γ(α6 + 1)

Γ(α6 + 1)sα6+1

}]
,

= L−1

[
1

sα6

{
(γn3 − (µ+ θ + σ + ω)n4)

σ

sα4+1
+ (ωn4 − (µ

+ θ + σ + δ)n5)
δ

sα5+1
− (ψn1 − (ϕ− µ)n2 − ρn2n4)

ω

sα2+1

− (µ+ η)(σn4 + δn5 + ωn2 − (µ+ η)n6)
1

sα6+1

}]
,

= L−1

[
(γn3 − (µ+ θ + σ + ω)n4)

σ

sα4+α6+1
+ (ωn4 − (µ

+ θ + σ + δ)n5)
δ

sα5+α6+1
− ω

sα2+α6+1
(ψn1 − (ϕ− µ)n2

− ρn2n4)− (µ+ η)(σn4 + δn5 + ωn2 − (µ+ η)n6)
1

s2α6+1

]
,

R2 = σ(γn3 − (µ+ θ + σ + ω)n4)
tα4+α5

Γ(α4 + α6 + 1)
+ δ(ωn4 − (µ

+ θ + σ + δ)n5)
tα5+α5

Γ(α6 + α5 + 1)
− ω(ψn1 − (ϕ− µ)n2

− ρn2n4)
tα4+α5

Γ(α2 + α6 + 1)
− (µ+ η)(σn4 + δn5 + ωn2

− (µ+ η)n6)
1

s2α6+1
]

t2α6

Γ(2α6 + 1)
.

S1 = (π − βn1n4 − (ψ + µ)n1 + ηn6)
tα1

Γ(α1 + 1)
,

A1 = (ψn1 − (ϕ+ µ)n2 − ρn2n4)
tα2

Γ(α2 + 1)
,

E1 = (βn1n4 − (µ+ γ)n3 + ρn2n4)
tα3

Γ(α3 + 1)
,

I1 = (γn3 − (µ+ θ + σ + ω)n4)
tα4

Γ(α4 + 1)
,

Q1 = (ωn4 − (µ+ θ + σ + δ)n5)
tα5

Γ(α5 + 1)
,

R1 = (σn4 + δn5 + ωn2 − (µ+ η)n6)
tα6

Γ(α6 + 1)
.

Hence, eqs. (12) and (13) are obtained.

S2 = π − β(n1)

(
(γn3 − (µ+ θ + σ + ω)n4)

tα1+α4

Γ(α1 + α4)

+(n4)(π − βn1n4 − (ψ + µ)n1 + ηn6)
t2α1

Γ(2α1 + 1)

)
− (µ+ ψ)(π − βn1n4 − (ψ + µ)n1 + ηn6)

t2α1

Γ(2α1 + 1)

+ η(σn4 + δn5 + ωn2 − (µ+ η)n6)
tα1+α6

Γ(α1 + α6 + 1)
,

A2 = ψ(π − βn1n4 − (ψ + µ)n1 + ηn6)
tα1+α2

Γ(α1 + α2 + 1)
(12)

− (ϕ+ µ)(ψn1 − (ϕ− µ)n2 − ρn2n4)
t2α2

Γ(2α2 + 1)

− ρ(n2)(γn3 − (µ+ θ + σ + ω)n4)
tα4+α2

Γ(α4 + α2 + 1)

+ (n4)(ψn1 − (ϕ− µ)n2 − ρn2n4)
t2α2

Γ(2α2 + 1)
,

E2 = β(n1)(γn3 − (µ+ θ + σ + ω)n4)
tα3+α4

Γ(α3 + α4)

+ (n4)(π − βn1n4 − (ψ + µ)n1 + ηn6)
tα3+α1

Γ(α3 + α1)

− (µ+ γ)(βn1n4 − (µ+ γ)n3 + ρn2n4)
t2α3

Γ(2α3 + 1)

− ρ((n2)(γn3 − (µ+ θ + σ + ω)n4))
tα3+α4

Γ(α3 + α4)

+ (n4)(ψn1 − (ϕ− µ)n2 − ρn2n4)
tα2+α3

Γ(α2 + α3)
,

I2 = γ(βn1n4 − (µ+ γ)n3 + ρn2n4)
tα3+α4

Γ(α3 + α4)
− (µ+ θ

+ σ + ω)(γn3 − (µ+ θ + σ + ω)n4)
t2α4

Γ(2α4 + 1)
,

Q2 = ω(γn3 − (µ+ θ + σ + ω)n4)
tα4+α5

Γ(α4 + α5 + 1)
− (µ+ θ

+ δ)(ωn4 − (µ+ θ + σ + δ)n5)
t2α5

Γ(2α5 + 1)
.

(13)

5. Results

Assessing the acquired outcomes utilizing the subsequent
parameters [7]: S0 = 30, A0 = 5, E0 = 2, I0 = 1, Q0 = 0,
R0 = 3, ρ = 0.2, ϕ = 0.3, β = 0.09, θ = 0.035, σ = 0.35,
ω = 0.3, µ = 0.05, δ = 0.65, η = 0.01, γ = 0.45, ψ = 0.1,
π = 0.01. The following series solution was obtained.

S = 30.− 14.32tα

Γ(α+ 1)
+

12.26t2α

Γ(2α+ 1)
,

A = 5 +
0.25tα

Γ(α+ 1)

1.0685t2α

Γ(2α+ 1)
,

E = 2 +
2.70tα

Γ(α+ 1)

0.41450t2α

Γ(2α+ 1)
,

I = 1 +
0.21α

Γ(α+ 1)
+

1.067725t2α

Γ(2α+ 1)
,

Q =
0.3tα

Γ(α+ 1)

0.2610t2α

Γ(2α+ 1)
,

R = 3 +
1.62tα

Γ(α+ 1)
+

0.2373t2α

Γ(2α+ 1)
.

6. Numerical Simulation

To assess the influence of the Caputo fractional order
within the model’s compartment, we perform numerical simu-
lations by altering the order values to α = 0.55, α = 0.75,
α = 0.95, and α = 1. The results of the simulation procedure
are depicted visually Bottom of Form
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Figure 2. Fractional order effect on susceptible Figure 3. Fractional order effect on antidotal

Figure 4. Fractional order effect on exposed Figure 5. Fractional order effect on infected

Figure 6. Fractional order effect on quarantined Figure 7. Fractional order effect on recovered
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(a) Classical order (b) Fractional order

Figure 8. Effect of transmission rate on susceptible compartment.

(a) Classical order (b) Fractional order

Figure 9. Effect of antidotal process rate on susceptible compartment.

(a) Classical order (b) Fractional order

Figure 10. Effect rate of transition from the recovery class to the susceptible class (R to S) on susceptible compartment.
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(a) Classical order (b) Fractional order

Figure 11. Effect of transmission rate on exposed compartment.

(a) Classical order (b) Fractional order

Figure 12. Crashing rate of computers due to the attack of virus on infected compartment.

7. Discussion

The research employed advanced methodologies, utilizing
the Next Generation Matrix Method for calculating the basic re-
production number (R0) and performing sensitivity analysis on
it, and the Laplace-Adomian decomposition method to approxi-
mate the numerical solution of the model. To comprehensively
evaluate the results, a simulation analysis was performed using
MAPLE 21 software, showcasing the practical application of the
research and enhancing its credibility.

Figure 1 shows the sensitivity chart of essential parameters
contained in model. Figures 2 to 7 highlight the enhanced flexi-
bility of the fractional-order computer virus model compared to
traditional derivative-based models. Notably, the research pre-
dicted relatively low initial values, necessitating short time pe-
riods for the simulations, as illustrated by integral curves repre-
senting state variables across various alpha values (ranging from
0.55 to 1), and revealing distinct patterns. In Figure 2, we ob-

serve a gradual reduction in susceptibility to infection as alpha
values increase, primarily attributed to the implementation.

Figures 2, 4 and 6 emphasize the importance of selecting
sufficiently large initial data for extended time intervals to pre-
vent the population from becoming negative. Furthermore, all
compartments exhibited significant increases from zero, as indi-
cated by the curves in the figures. These observations provided
valuable insights into virus transmission dynamics, contributing
to a better understanding of the research findings.

The study also aimed to evaluate transmission rates within
susceptible and exposed populations, illustrated in Figures 8
and 12, respectively, under classical and fractional-order scenar-
ios. Additionally, the study assessed transmission rates and com-
puter crash rates in the infected compartment during the process
of eradicating computer viruses. The primary goal was to mini-
mize the emergence of new cases by comprehending the impact
model and other contributing factors to virus prevalence. Conse-
quently, numerical experiments were conducted to explore how
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these factors affected critical state variables within the proposed
model, with the results depicted visually.

8. Convergence Analysis
The solution obtained is a series that rapidly converges and

consistently approaches the exact solution. We employ tradi-
tional methods to assess the convergence of the series, building
upon the concept presented in reference [41].

Theorem 4. Let V be a Banach space and H : V → V
be a contractive nonlinear operator such that for all v, v1 ∈
V, ||T (V )−T (V 1)|| ≤ k||v−v1||, 0 < k < 1. Then T has a
unique point y such that Ty = y, where y = (S,A,E, I,Q,R).

The series given in eq. (11) can be written by applying Ado-
mian decomposition method as:

vm = Tvm−1, vm−1 =
∑

vi, m = 1, 2, 3, . . . ,

and assume that v0 ∈ Br(v) where

Br(v) =
{
v1 ∈ V : (i)vm ∈ Br(v); (ii) lim

n→∞
vm = v

}

Proof. For using mathematical induction form = 1, we have

∥v0 − v∥ = ∥T (v0)− T (v)∥ ≤ k ∥v0 − v∥ .

Let the result is true for n = 1, then

∥v0 − v∥ ≤ kn−1 ∥v0 − v∥ .

We have

∥vn − v∥ = ∥T (vn−1)− T (v)∥
≤ k ∥vn−1 − v∥
≤ kn ∥vn − v∥ .

i.e.

∥vn − v∥ ≤ kn ∥v0 − v∥
≤ knr

< r.

Implies that vm ∈ B. Since ∥vn − v∥ ≤ kn ∥v0 − v∥ and
as lim

n→∞
kn = 0, we have

lim
n→∞

∥vn − v∥ = 0 ⇒ lim
n→∞

vm = v

9. Conclusion
A new six-compartment fractional model is presented in

this study to address the ongoing difficulties in controlling mal-
ware and computer viruses in both networked and standalone
systems. The model is demonstrated to be both mathemati-
cally and biologically well-posed by expanding upon traditional
frameworks, offering a dependable and novel tool for compre-
hending the dynamics of cyberthreats. Sensitivity analysis and

the calculation of the fundamental reproduction number reveal
important variables impacting virus spread, providing useful in-
formation for efficient mitigation techniques. The model’s re-
silience in numerical analysis is demonstrated by the applica-
tion of the Laplace Adomian Decomposition Method, which also
demonstrates how it has the ability to completely transform net-
work management and cyber security procedures. Additionally,
investigating fractional-order dynamics and associated memory
effects broadens our knowledge of how viruses behave over time
and opens the door to the creation of complex defenses. These
results lay the groundwork for further studies in digital security
while also providing useful remedies for virus control and pre-
vention. The knowledge acquired here is crucial for safeguard-
ing network system integrity, improving cyber security tactics,
and defending digital infrastructure. Future research might con-
centrate on improving the model for real-time use and examin-
ing how well it can adjust to new cyber threats.Future research
should enhance models by incorporating real-world features like
variable transmission rates and stochastic processes. Improved
computational methods, such as adaptive time-stepping, are
needed to maintain accuracy over extended time spans. Inte-
grating real-world data and machine learning will refine predic-
tions, while broader validation across populations will extend the
model’s applicability to other diseases.

10. Recommendations

We present the findings and conclusions from a meticulous
study that explored the use of Caputo fractional order derivatives
and the Laplace Adomian decomposition method. This study not
only provided invaluable insights into transmission dynamics but
also proposed novel solutions for addressing complex systems.
Reflecting on these outcomes, numerous recommendations for
future investigations emerge.

• Firstly, researchers should explore alternative fractional
derivatives beyond the familiar Caputo fractional order
derivative. Investigating derivatives such as Antangana-
Baleanu and Caputo-Fabrizo can offer a comprehensive un-
derstanding of diverse scenarios, enriching analytical capa-
bilities.

• Secondly, there is a need to augment our numerical toolkit
by incorporating diverse methods for solving fractional dif-
ferential equations, such as the homotopy perturbation
method or the homotopy analysis method. These methods
promise enhanced efficiency and accuracy, potentially revo-
lutionizing problem-solving in complex dynamics.

• Moreover, refining theoretical models by incorporating real-
world data from relevant domains can bolster the validity
and practical applicability of findings, bridging the gap be-
tween theory and reality.

• Embracing interdisciplinary applications of fractional calcu-
lus principles beyond virus transmission dynamics can yield
remarkable insights and contribute to solutions in various
fields.

• Collaborating with policymakers, epidemiologists, and cy-
bersecurity experts can translate research insights into prac-
tical strategies, forming proactive measures in public health
and cybersecurity.

• A rigorous investigation into the long-term effects of pro-
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posed strategies and interventions is crucial for establishing
sustainable and resilient systems, while addressing potential
risks and ethical implications is imperative.

• Promoting fractional calculus concepts and methodologies
in educational curricula can nurture a skilled workforce ca-
pable of addressing real-world challenges effectively.

• Ensuring robustness and reproducibility through the repli-
cation and validation of study results by fellow researchers
is essential for scientific progress.

• Lastly, fostering international collaboration among re-
searchers from diverse backgrounds can enrich the field with
varied perspectives and expertise, advancing understanding
and practical impact.

• In conclusion, the innovative utilization of Caputo fractional
order derivatives and the Laplace Adomian decomposition
method in the current study opens up exciting future re-
search avenues. By exploring alternative derivatives, nu-
merical methods, and real-world applications, we have the
potential to revolutionize strategies for managing complex
transmission dynamics in various domains, leaving behind a
trail of possibilities for future exploration.

Author Contributions. Yunus, A. O.: Conceptualization, methodology,
formal analysis, software, investigation, writing—review and editing,
original draft preparation. Olayiwola, M. O.: Methodology, investiga-
tion software, writing—review and editing, visualization, supervision.
Ajileye, A. M.: Conceptualization, investigation, writing—review and
editing.

Acknowledgement. The authors thank the editors and reviewers for
their support in improving thismanuscript. We also extend our gratitude
to all the staff of the Department of Mathematical Sciences, Osun State
University, Osun State, Nigeria.

Funding. This research received no external funding.

Conflict of interest. The authors declare no conflict of interest.

Data availability. Not applicable.

References
[1] M. Farman et al., “Modeling and analysis of computer virus fractional order

model,” in: Methods of Mathematical Modelling, H. Singh, H. M. Srivastava,
and D. Baleanu, Eds. Academic Press, 2022, pp. 137–157. ISBN:978-0-323-
99888-8. DOI:10.1016/B978-0-323-99888-8.00010-3

[2] P. M. Beach et al., “Analysis of Systems Security Engineering Design Principles
for the Development of Secure and Resilient Systems,” IEEE Access, Vol. 7, pp.
101741–101757, 2019. DOI:10.1109/ACCESS.2019.2930718

[3] E. Balcı, İ. Öztürk, and S. Kartal, “Dynamical behaviour of fractional order tu-
mor model with Caputo and conformable fractional derivative,” Chaos, Soli-
tons & Fractals, Vol. 123, pp. 43–51, 2019. DOI:10.1016/j.chaos.2019.03.032

[4] A. D. Lazarov, “Mathematical Modelling of Malware Intrusion in Computer
Networks,” Cybernetics and Information Technologies, Vol. 22, no. 3, pp. 29–47,
2022. DOI:10.2478/cait-2022-0026

[5] A. O. Yunus and M. O. Olayiwola, “Mathematical modeling of malaria epi-
demic dynamics with enlightenment and therapy intervention using the
Laplace-Adomian decomposition method and Caputo fractional order,”
Franklin Open, Vol. 8, p. 100147, 2024. DOI:10.1016/j.fraope.2024.100147

[6] T. Korkiatsakul, S. Koonprasert, and K. Neamprem, “Analytical Solutions of
Computer Virus Propagation Model with Anti-virus Software and Time De-
pendent Connecting Network in Caputo Fractional Derivative Sense,” Inter-
national Journal of Engineering Research and Technology, Vol. 12, no. 12, pp.
3006–3017, 2019. ISSN:0974-3154

[7] A. K. Chakraborty, P. Shahrear, and Md. A. Islam, “Analysis Of Epidemic
Model By Differential Transform Method,” Journal of Multidisciplinary Engi-
neering Science and Technology, Vol. 4, no. 2, pp. 6574–6581, 2017. ISSN:2458-
9403

[8] A. O. Oladapo et al., “Optimal control analysis on mathematical model of dy-
namical transmission of hiv-malaria co-infection,” Journal of Southwest Jiao-
tong University, Vol. 58, no. 1, 2023. DOI:10.35741/issn.0258-2724.58.1.44

[9] A. O. Yunus and M. A. Omoloye, “Mathematical Analysis of Efficacy of Con-
dom as a Contraceptive on the Transmission of Chlamydia Disease,” Interna-
tional Journal of Computer Science and Mobile Applications, Vol. 10, no. 2, pp.
22–37, 2023. DOI:10.47760/ijcsma.2022.v10i02.002

[10] H. Panigoro and E. Rahmi, “Global stability of a fractional-order logistic
growth model with infectious disease,” Jambura Journal of Biomathematics
(JJBM), Vol. 1, no. 2, pp. 49–56, 2020. DOI:10.34312/jjbm.v1i2.8135

[11] R. R. Musafir et al., “Comparison of Fractional-Order Monkeypox Model with
Singular and Non-Singular Kernels,” Jambura Journal of Biomathematics (JJBM),
Vol. 5, no. 1, pp. 1–9, 2024. DOI:10.37905/jjbm.v5i1.24920

[12] F. Haq et al., “Numerical solution of fractional order smoking model via
laplace Adomian decomposition method,” Alexandria Engineering Journal,
Vol. 57, no. 2, pp. 1061–1069, 2018. DOI:10.1016/j.aej.2017.02.015

[13] A. O. Yunus et al., “A fractional order model of Lassa disease using
the Laplace-Adomian Decomposition Method,” Healthcare Analytics, Vol. 3,
p. 100167, 2023. DOI:10.1016/j.health.2023.100167

[14] A. I. Alaje and M. O. Olayiwola, “A fractional-order mathematical model
for examining the spatiotemporal spread of COVID-19 in the presence
of vaccine distribution,” Healthcare Analytics, Vol. 4, p. 100230, 2023.
DOI:10.1016/j.health.2023.100230

[15] M. O. Olayiwola et al., “A caputo fractional order epidemic model for eval-
uating the effectiveness of high-risk quarantine and vaccination strategies
on the spread of COVID-19,” Healthcare Analytics, Vol. 3, p. 100179, 2023.
DOI:10.1016/j.health.2023.100179

[16] M. Sinan, “Analytic Approximate Solution of Rabies Transmission Dynamics
using Homotopy Perturbation Method,” Matrix Science Mathematic, Vol. 4,
no. 1, pp. 01–05, 2020. DOI:10.26480/msmk.01.2020.01.05

[17] M. O. Olayiwola, A. I. Alaje, and A. O. Yunus, “A caputo fractional order fi-
nancial mathematical model analyzing the impact of an adaptive minimum
interest rate and maximum investment demand,” Results in Control and Opti-
mization, Vol. 14, p. 100349, 2024. DOI:10.1016/j.rico.2023.100349

[18] A. O. Yunus and M. O. Olayiwola, “The analysis of a novel COVID-19 model
with the fractional-order incorporating the impact of the vaccination cam-
paign in Nigeria via the Laplace-Adomian Decomposition Method,” Jour-
nal of the Nigerian Society of Physical Sciences, Vol. 6, no. 2, p. 1830, 2024.
DOI:10.46481/jnsps.2024.1830

[19] K. O. Kareem et al., “On the Solution of Volterra Integro-differential
Equations using a Modified Adomian Decomposition Method,” Jam-
bura Journal of Mathematics, Vol. 5, no. 2, pp. 265–277, 2023.
DOI:10.34312/jjom.v5i2.19029

[20] M. O. Olayiwola and A. O. Yunus, “Mathematical analysis of a within-
host dengue virus dynamics model with adaptive immunity using Caputo
fractional-order derivatives,” Journal of Umm Al-Qura University for Applied Sci-
ences, pp. 1–20, 2024. DOI:10.1007/s43994-024-00151-z

[21] A. M. S. Mahdy, M. Higazy, and M. S. Mohamed, “Optimal and Memristor-
Based Control of A Nonlinear Fractional Tumor-Immune Model,” Com-
puters, Materials and Continua, vol. 67, no. 3, pp. 3463–3486, 2021.
DOI:10.32604/cmc.2021.015161

[22] A. O. Yunus et al., “Mathematical analysis of fractional-order Caputo’s deriva-
tive of coronavirus disease model via Laplace Adomian decomposition
method,” Beni-Suef University Journal of Basic and Applied Sciences, vol. 11,
no. 1, p. 144, 2022. DOI:10.1186/s43088-022-00326-9

[23] A. Mahata et al., “Dynamics of Caputo Fractional Order SEIRV Epidemic
Model with Optimal Control and Stability Analysis,” International Jour-
nal of Applied and Computational Mathematics, vol. 8, no. 1, p. 28, 2022.
DOI:10.1007/s40819-021-01224-x

[24] A. O. Yunus and M. O. Olayiwola, “The Analysis of a Co-Dynamic Ebola
and Malaria Transmission Model Using the Laplace Adomian Decomposition
Method with Caputo Fractional-Order,” Tanzania Journal of Science, vol. 50,
no. 2, pp. 224–243, 2024. DOI:10.4314/tjs.v50i2.5

[25] K. Shah, F. Jarad, and T. Abdeljawad, “On a nonlinear fractional or-
der model of dengue fever disease under Caputo-Fabrizio derivative,”
Alexandria Engineering Journal, vol. 59, no. 4, pp. 2305–2313, 2020.
DOI:10.1016/j.aej.2020.02.022

[26] M. M. El-Dessoky and M. A. Khan, “Modeling and analysis of an
epidemic model with fractal-fractional Atangana-Baleanu derivative,”

JJBM | Jambura J. Biomath Volume 5 | Issue 2 | December 2024

https://www.sciencedirect.com/science/article/pii/B9780323998888000103
https://www.sciencedirect.com/science/article/pii/B9780323998888000103
https://www.sciencedirect.com/science/article/pii/B9780323998888000103
https://www.sciencedirect.com/science/article/pii/B9780323998888000103
https://ieeexplore.ieee.org/document/8771142/
https://ieeexplore.ieee.org/document/8771142/
https://ieeexplore.ieee.org/document/8771142/
https://linkinghub.elsevier.com/retrieve/pii/S0960077919300931
https://linkinghub.elsevier.com/retrieve/pii/S0960077919300931
https://linkinghub.elsevier.com/retrieve/pii/S0960077919300931
https://www.sciendo.com/article/10.2478/cait-2022-0026
https://www.sciendo.com/article/10.2478/cait-2022-0026
https://www.sciendo.com/article/10.2478/cait-2022-0026
https://linkinghub.elsevier.com/retrieve/pii/S277318632400077X
https://linkinghub.elsevier.com/retrieve/pii/S277318632400077X
https://linkinghub.elsevier.com/retrieve/pii/S277318632400077X
https://linkinghub.elsevier.com/retrieve/pii/S277318632400077X
http://www.irphouse.com/volume/ijertv12n12.htm
http://www.irphouse.com/volume/ijertv12n12.htm
http://www.irphouse.com/volume/ijertv12n12.htm
http://www.irphouse.com/volume/ijertv12n12.htm
http://www.irphouse.com/volume/ijertv12n12.htm
https://www.jmest.org/vol-4-issue-2-february-2017/
https://www.jmest.org/vol-4-issue-2-february-2017/
https://www.jmest.org/vol-4-issue-2-february-2017/
https://www.jmest.org/vol-4-issue-2-february-2017/
http://jsju.org/index.php/journal/article/view/1528
http://jsju.org/index.php/journal/article/view/1528
http://jsju.org/index.php/journal/article/view/1528
https://ijcsma.com/wp-content/papers/Volume10Issue2/V10I202.pdf
https://ijcsma.com/wp-content/papers/Volume10Issue2/V10I202.pdf
https://ijcsma.com/wp-content/papers/Volume10Issue2/V10I202.pdf
https://ijcsma.com/wp-content/papers/Volume10Issue2/V10I202.pdf
http://ejurnal.ung.ac.id/index.php/JJBM/article/view/8135
http://ejurnal.ung.ac.id/index.php/JJBM/article/view/8135
http://ejurnal.ung.ac.id/index.php/JJBM/article/view/8135
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/24920
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/24920
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/24920
https://linkinghub.elsevier.com/retrieve/pii/S1110016817300777
https://linkinghub.elsevier.com/retrieve/pii/S1110016817300777
https://linkinghub.elsevier.com/retrieve/pii/S1110016817300777
https://www.sciencedirect.com/science/article/pii/S2772442523000345
https://www.sciencedirect.com/science/article/pii/S2772442523000345
https://www.sciencedirect.com/science/article/pii/S2772442523000345
https://linkinghub.elsevier.com/retrieve/pii/S2772442523000977
https://linkinghub.elsevier.com/retrieve/pii/S2772442523000977
https://linkinghub.elsevier.com/retrieve/pii/S2772442523000977
https://linkinghub.elsevier.com/retrieve/pii/S2772442523000977
https://www.sciencedirect.com/science/article/pii/S2772442523000461
https://www.sciencedirect.com/science/article/pii/S2772442523000461
https://www.sciencedirect.com/science/article/pii/S2772442523000461
https://www.sciencedirect.com/science/article/pii/S2772442523000461
https://matrixsmathematic.com/archives/1msmk2020/1msmk2020-01-05.pdf
https://matrixsmathematic.com/archives/1msmk2020/1msmk2020-01-05.pdf
https://matrixsmathematic.com/archives/1msmk2020/1msmk2020-01-05.pdf
https://www.sciencedirect.com/science/article/pii/S2666720723001510
https://www.sciencedirect.com/science/article/pii/S2666720723001510
https://www.sciencedirect.com/science/article/pii/S2666720723001510
https://www.sciencedirect.com/science/article/pii/S2666720723001510
https://journal.nsps.org.ng/index.php/jnsps/article/view/1830
https://journal.nsps.org.ng/index.php/jnsps/article/view/1830
https://journal.nsps.org.ng/index.php/jnsps/article/view/1830
https://journal.nsps.org.ng/index.php/jnsps/article/view/1830
https://journal.nsps.org.ng/index.php/jnsps/article/view/1830
https://ejurnal.ung.ac.id/index.php/jjom/article/view/19029
https://ejurnal.ung.ac.id/index.php/jjom/article/view/19029
https://ejurnal.ung.ac.id/index.php/jjom/article/view/19029
https://ejurnal.ung.ac.id/index.php/jjom/article/view/19029
https://link.springer.com/10.1007/s43994-024-00151-z
https://link.springer.com/10.1007/s43994-024-00151-z
https://link.springer.com/10.1007/s43994-024-00151-z
https://link.springer.com/10.1007/s43994-024-00151-z
https://www.sciencedirect.com/org/science/article/pii/S1526149220002118
https://www.sciencedirect.com/org/science/article/pii/S1526149220002118
https://www.sciencedirect.com/org/science/article/pii/S1526149220002118
https://www.sciencedirect.com/org/science/article/pii/S1526149220002118
https://bjbas.springeropen.com/articles/10.1186/s43088-022-00326-9
https://bjbas.springeropen.com/articles/10.1186/s43088-022-00326-9
https://bjbas.springeropen.com/articles/10.1186/s43088-022-00326-9
https://bjbas.springeropen.com/articles/10.1186/s43088-022-00326-9
https://link.springer.com/10.1007/s40819-021-01224-x
https://link.springer.com/10.1007/s40819-021-01224-x
https://link.springer.com/10.1007/s40819-021-01224-x
https://link.springer.com/10.1007/s40819-021-01224-x
https://www.ajol.info/index.php/tjs/article/view/273095
https://www.ajol.info/index.php/tjs/article/view/273095
https://www.ajol.info/index.php/tjs/article/view/273095
https://www.ajol.info/index.php/tjs/article/view/273095
https://www.sciencedirect.com/science/article/pii/S1110016820300867
https://www.sciencedirect.com/science/article/pii/S1110016820300867
https://www.sciencedirect.com/science/article/pii/S1110016820300867
https://www.sciencedirect.com/science/article/pii/S1110016820300867
https://www.sciencedirect.com/science/article/pii/S1110016821003501
https://www.sciencedirect.com/science/article/pii/S1110016821003501
https://www.sciencedirect.com/science/article/pii/S1110016821003501


A. O. Yunus, M. O. Olayiwola, and A. M. Ajileye – A Fractional Mathematical Model for Controlling and Understanding Transmission Dynamics… 131

Alexandria Engineering Journal, vol. 61, no. 1, pp. 729–746, 2022.
DOI:10.1016/j.aej.2021.04.103

[27] M. Farman et al., “Fractal fractional-order derivative for HIV/AIDSmodel with
Mittag-Leffler kernel,“ Alexandria Engineering Journal, vol. 61, no. 12, pp.
10965–10980, 2022. DOI:10.1016/j.aej.2022.04.030

[28] R. P. Agarwal et al., “Fractional calculus and fractional differential
equations in nonreflexive Banach spaces,“ Communications in Nonlinear
Science and Numerical Simulation, vol. 20, no. 1, pp. 59–73, 2015.
DOI:10.1016/j.cnsns.2013.10.010

[29] A. M. S. Mahdy, K. Lotfy, and A. A. El-Bary, “Use of optimal control in study-
ing the dynamical behaviors of fractional financial awareness models,“ Soft
Computing, vol. 26, no. 7, pp. 3401–3409. 2022. DOI:10.1007/s00500-022-
06764-y

[30] G. M. Bahaa, “Fractional optimal control problem for variable-order differ-
ential systems,“ Fractional Calculus and Applied Analysis, vol. 20, no. 6, pp.
1447–1470, 2017. DOI:10.1515/fca-2017-0076

[31] S. Chakraverty, R. M. Jena, and S. K. Jena, “Time-Fractional Model of HIV-I Infec-
tion of CD4+ T Lymphocyte Cells in Uncertain Environment,“ in: Time-Fractional
Order Biological Systems with Uncertain Parameters. Synthesis Lectures on
Mathematics & Statistics. Springer Cham, 2020, pp. 75–104. ISBN:978-3-
031-02423-8. DOI:10.1007/978-3-031-02423-8_6

[32] G. M. Bahaa, “Fractional optimal control problem for variable-order differ-
ential systems,“ Fractional Calculus and Applied Analysis, vol. 20, no. 6, pp.
1447–-1470, 2017. DOI:10.1515/fca-2017-0076

[33] Y. A. Amer et al., “Laplace transform method for solving nonlinear bio-
chemical reaction model and nonlinear Emden Fowler system,“ Journal of
Engineering and Applied Sciences, vol. 13, no. 17, pp. 7388-7394, 2018.
DOI:10.3923/jeasci.2018.7388.7394

[34] S. Hasan et al., “Solution of Fractional SIR Epidemic Model Using Residual
Power Series Method,“ Applied Mathematics & Information Sciences, vol. 13,
no. 2, pp. 153-161, 2019. DOI:10.18576/amis/130202

[35] G. M. Bahaa, “Fractional optimal control problem for differential systemwith
delay argument,“ Advances in Difference Equations, vol. 2017, no. 1, p. 69,
2017. DOI:10.1186/s13662-017-1121-6

[36] G. M. Bahaa, “Fractional optimal control problem for variational inequalities
with control constraints,“ IMA Journal of Mathematical Control and Information,
vol. 35, no. 1, pp. 107–122, 2016. DOI:10.1093/imamci/dnw040

[37] A. Abdelrazec and D. Pelinovsky, “Convergence of the Adomian decomposi-
tion method for initial-value problems,“ Numerical Methods for Partial Differ-
ential Equations, vol. 27, no. 4, pp. 749–766, 2011. DOI:10.1002/num.20549

[38] S. Bhatter et al., “Determining glucose supply in blood using the incom-
plete I-function,“ Partial Differential Equations in Applied Mathematics, vol. 10,
p. 100729, 2024. DOI:10.1016/j.padiff.2024.100729

[39] S. Kumawat, “Comparative implementation of fractional
blood alcohol model by numerical approach,“ Critical Reviews
in Biomedical Engineering, vol. 53, no. 2, pp. 11–19, 2024.
DOI:10.1615/CritRevBiomedEng.2024055033

[40] Shyamsunder, S. D. Purohit, and D. L. Suthar, “A novel investigation of
the influence of vaccination on pneumonia disease,“ International Journal of
Biomathematics, p. 2450080, 2024. DOI:10.1142/S1793524524500803

[41] M. Meena et al., “A novel fractionalized investigation of tuberculosis dis-
ease,“ Applied Mathematics in Science and Engineering, vol. 32, no. 1, 2024.
DOI:10.1080/27690911.2024.2351229

[42] Shyamsunder and S. D. Purohit, “A novel study of the impact of vaccination
on pneumonia via fractional approach,“ Partial Differential Equations in Applied
Mathematics, vol. 10, p. 100698, 2024. DOI:10.1016/j.padiff.2024.100698

[43] S. Bhatter et al., “A study of incomplete I-functions relating to certain frac-
tional integral operators,“ Applied Mathematics in Science and Engineering,
vol. 31, no. 1, 2023. DOI:10.1080/27690911.2023.2252996

[44] M. Meena, M. Purohit, and Shyamsunder, “Mathematical analysis using frac-
tional operator to study the dynamics of dengue fever,“ Physica Scripta,
vol. 99, no. 9, p. 095206, 2024. DOI:10.1088/1402-4896/ad671b

JJBM | Jambura J. Biomath Volume 5 | Issue 2 | December 2024

https://www.sciencedirect.com/science/article/pii/S1110016821003501
https://www.sciencedirect.com/science/article/pii/S1110016821003501
https://www.sciencedirect.com/science/article/pii/S1110016821003501
https://www.sciencedirect.com/science/article/pii/S1110016822002927
https://www.sciencedirect.com/science/article/pii/S1110016822002927
https://www.sciencedirect.com/science/article/pii/S1110016822002927
https://www.sciencedirect.com/science/article/abs/pii/S1007570413004796
https://www.sciencedirect.com/science/article/abs/pii/S1007570413004796
https://www.sciencedirect.com/science/article/abs/pii/S1007570413004796
https://www.sciencedirect.com/science/article/abs/pii/S1007570413004796
https://link.springer.com/article/10.1007/s00500-022-06764-y
https://link.springer.com/article/10.1007/s00500-022-06764-y
https://link.springer.com/article/10.1007/s00500-022-06764-y
https://link.springer.com/article/10.1007/s00500-022-06764-y
https://link.springer.com/article/10.1515/fca-2017-0076
https://link.springer.com/article/10.1515/fca-2017-0076
https://link.springer.com/article/10.1515/fca-2017-0076
https://link.springer.com/chapter/10.1007/978-3-031-02423-8_6
https://link.springer.com/chapter/10.1007/978-3-031-02423-8_6
https://link.springer.com/chapter/10.1007/978-3-031-02423-8_6
https://link.springer.com/chapter/10.1007/978-3-031-02423-8_6
https://link.springer.com/chapter/10.1007/978-3-031-02423-8_6
https://link.springer.com/article/10.1515/fca-2017-0076
https://link.springer.com/article/10.1515/fca-2017-0076
https://link.springer.com/article/10.1515/fca-2017-0076
https://www.researchgate.net/publication/328929582_Laplace_transform_method_for_solving_nonlinear_biochemical_reaction_model_and_nonlinear_Emden-Fowler_system
https://www.researchgate.net/publication/328929582_Laplace_transform_method_for_solving_nonlinear_biochemical_reaction_model_and_nonlinear_Emden-Fowler_system
https://www.researchgate.net/publication/328929582_Laplace_transform_method_for_solving_nonlinear_biochemical_reaction_model_and_nonlinear_Emden-Fowler_system
https://www.researchgate.net/publication/328929582_Laplace_transform_method_for_solving_nonlinear_biochemical_reaction_model_and_nonlinear_Emden-Fowler_system
http://www.naturalspublishing.com/Article.asp?ArtcID=19627
http://www.naturalspublishing.com/Article.asp?ArtcID=19627
http://www.naturalspublishing.com/Article.asp?ArtcID=19627
https://link.springer.com/article/10.1186/s13662-017-1121-6
https://link.springer.com/article/10.1186/s13662-017-1121-6
https://link.springer.com/article/10.1186/s13662-017-1121-6
https://academic.oup.com/imamci/article-abstract/35/1/107/2669912?redirectedFrom=fulltext
https://academic.oup.com/imamci/article-abstract/35/1/107/2669912?redirectedFrom=fulltext
https://academic.oup.com/imamci/article-abstract/35/1/107/2669912?redirectedFrom=fulltext
https://onlinelibrary.wiley.com/doi/abs/10.1002/num.20549
https://onlinelibrary.wiley.com/doi/abs/10.1002/num.20549
https://onlinelibrary.wiley.com/doi/abs/10.1002/num.20549
https://www.sciencedirect.com/science/article/pii/S2666818124001153
https://www.sciencedirect.com/science/article/pii/S2666818124001153
https://www.sciencedirect.com/science/article/pii/S2666818124001153
http://dl.begellhouse.com/journals/4b27cbfc562e21b8,forthcoming,55033.html
http://dl.begellhouse.com/journals/4b27cbfc562e21b8,forthcoming,55033.html
http://dl.begellhouse.com/journals/4b27cbfc562e21b8,forthcoming,55033.html
http://dl.begellhouse.com/journals/4b27cbfc562e21b8,forthcoming,55033.html
https://www.worldscientific.com/doi/10.1142/S1793524524500803
https://www.worldscientific.com/doi/10.1142/S1793524524500803
https://www.worldscientific.com/doi/10.1142/S1793524524500803
https://www.tandfonline.com/doi/full/10.1080/27690911.2024.2351229
https://www.tandfonline.com/doi/full/10.1080/27690911.2024.2351229
https://www.tandfonline.com/doi/full/10.1080/27690911.2024.2351229
https://www.sciencedirect.com/science/article/pii/S2666818124000846
https://www.sciencedirect.com/science/article/pii/S2666818124000846
https://www.sciencedirect.com/science/article/pii/S2666818124000846
https://www.tandfonline.com/doi/full/10.1080/27690911.2023.2252996
https://www.tandfonline.com/doi/full/10.1080/27690911.2023.2252996
https://www.tandfonline.com/doi/full/10.1080/27690911.2023.2252996
https://iopscience.iop.org/article/10.1088/1402-4896/ad671b
https://iopscience.iop.org/article/10.1088/1402-4896/ad671b
https://iopscience.iop.org/article/10.1088/1402-4896/ad671b

	Introduction
	Preliminaries
	Methods
	Model formulations
	Determine the solution's existence and uniqueness
	Basic reproduction number
	Sensitivity analysis of R0

	The Laplace Adomian Decomposition Method
	Results
	Numerical Simulation
	Discussion
	Convergence Analysis
	Conclusion
	Recommendations

