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Unveiling SIR Model Parameters: Empirical Parameter
Approach for Explicit Estimation and Confidence Interval
Construction

Nanang Susyanto1,∗ and Jayrold P. Arcede2

1Department of Mathematics, Universitas Gadjah Mada, Yogyakarta, Indonesia
2Department of Mathematics, Caraga State University, Butuan City, Philippines

ABSTRACT.We propose a simple parameter estimation method for the Susceptible-Infectious-Recovered (SIR) model.
This method offers explicit estimates of parameters using second-order numerical derivatives to construct empirical
parameters. In addition, the method constructs confidence intervals, providing a robust assessment of parameter
uncertainty. To validate the accuracy of our method, we applied it to simulated data, in order to demonstrate its effec-
tiveness in accurately estimating the true model parameters. Furthermore, we applied this method to actual COVID-19
case data from the USA, Indonesia, and the Philippines. This application enables the estimation of parameters and
reproductive numbers, along with their confidence intervals, thus underscoring the efficacy of our technique. Notably,
the parameter estimates obtained through our approach successfully predicted the case numbers in all three countries,
confirming its predictive reliability. Our method offers significant advantages in terms of simplicity and accuracy,
making it an invaluable tool for epidemiological modeling and public health planning.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction
The Susceptible-Infectious-Recovered (SIR) model, a cor-

nerstone in epidemiology, has played a pivotal role in under-
standing the dynamics of infectious diseases for almost a cen-
tury. Initially introduced by Kermack and McKendrick in 1927,
this model categorizes a population into susceptible (S), infec-
tious (I), and recovered (R) compartments [1]. A visual represen-
tation of how individuals transition between these compartments
is provided in Figure 1. In this paper, we consider the propor-
tion of individuals in each class, meaning we are working with the
population proportions. Moreover, we consider a simple short-
term model, i.e., no population turnover, or age structure, inho-
mogeneities and group behavior. This simplify the model to a
system of ordinary differential equations:

dS(t)

dt
= −βS(t)I(t),

dI(t)

dt
= −βS(t)I(t)− γI(t),

dR(t)

dt
= γI(t),

(1)

with nonnegative initial conditions S(0) = S0, I(0) = I0,
R(0) = R0, and domain Ω = {(x, y, z) ∈ R3 : x, y, z ≥
0 and x+y+z = 1} that is positively invariant under System (1).
Here, β and γ represent the infection and removal rates, respec-
tively. It is worth noting that in reality, especially in diseases with
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a significant mortality rate, individuals in theR compartment can
include both those who have recovered and those who have suc-
cumbed to the disease.

Although the SIR model may seem deceptively simple, it
has been proven to be an immensely powerful tool for analyzing
various spreading phenomena. Its versatility extends beyond in-
fectious diseases to encompass a range of phenomena, including
the spread of diseases such as herpes [2], influenza [3], and the re-
cent COVID-19 pandemic [4–6]. Furthermore, in non-disease con-
texts, the SIR model finds application in investigating the spread
of behaviors like smoking [7] and computer viruses [8]. Exten-
sions of the SIR model, such as SIRD, SIRS, SEIR, SEIRD, SEIRS,
and SIRDS, have further broadened its applicability. These ex-
tensions are employed in analyzing the spread of diseases like
dengue, incorporating vector compartments [9], capturing phe-
nomena involving reinfection [10], exploring the relationship be-
tween different diseases [11, 12], assessing the impact of policies
on disease control [13], and evaluating the effectiveness of con-
trol measures or treatments in epidemic models [14–16].

Research on the analysis of the SIR model from a mathe-
matical perspective abounds in the literature. The investigation
of equilibrium points and their stability in the SIR model [17] pro-
vides insights into the interaction of different species in biolog-
ical communities. From a global stability standpoint, [18] offers
a comprehensive analysis. The stability of models with delays is
explored in [19], while [20] delves into the stability of the SIR
model considering vaccination and treatment.

In the wake of the COVID-19 pandemic, the SIR model and
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Figure 1. SIR Diagram Transfer

its extensions, coupled with various mathematical tools, have be-
come indispensable for analyzing the spread of the virus. During
the early stages of the pandemic, the SIR model was employed
to understand the spread of the virus in Indonesia [4, 21], while
in France, case analyses were conducted using the model [22].
In Iran, a combination of the SIR model and Gaussian Weighted
Regression was utilized to examine the spread of the virus [23].
Investigations into the later stages of the pandemic were carried
out in the Philippines, particularly in Davao City [6]. Furthermore,
numerous studies have been conducted on COVID-19, employing
SIR models in various contexts [13, 24, 25].

In addition to efforts aimed at finding analytic and numer-
ical solutions, as well as investigating the stability of SIR mod-
els, parameter estimation is a crucial aspect. While knowing the
infection and removal rates enables the determination of solu-
tions, either analytically or numerically, to ascertain the number
of individuals in each compartment, these parameters are often
unknown in reality and must be estimated from data. Here, we
assume that we can observe all the proportions of individuals in
each class. The most prevalent method for estimating these pa-
rameters is through Least Squares Estimates (LSE) [26–30]. More
advanced methods have been proposed using machine learning
approaches [31, 32], yet these methods do not provide explicit
estimates.

A simpler method outlined in [33] does offer explicit param-
eter estimates using second-order finite differences. However,
it can be sensitive to data, meaning it may fluctuate significantly
due to data noise. This issue can be addressed by quantifying the
uncertainty of the estimates. We propose a simple method that
not only provides explicit parameter estimates but also quantifies
uncertainty by generating confidence intervals a first in the field
to our knowledge. This method’s potential will be demonstrated
through both simulated and actual data on COVID-19’s spread.

The remainder of the paper is structured as follows. Sec-
tion 2 describes the proposed parameter estimation method.
Section 3 contains the application of the method to simulated
and real-world data to demonstrate its efficacy. Finally, Section 4
is dedicated to discussing the results, limitations of our methods,
and potential improvement.

2. Empirical Methods Approach

In this section, we will outline the detailed method through
which our approach provides explicit parameter estimates in the
SIRmodel. Our approach relies on the utilization of second-order
finite differences to approximate the first derivative of functions.
Recalling the definition of the derivative of a differentiable func-
tion f : (a, b) → R, where a, b ∈ R and a < b, at x = c can be
expressed as

f ′(c) = lim
h→0

f(c+ h)− f(c− h)

2h
.

If f is continuously differentiable up to the third order, then the
derivative can be approximated as:

f ′(c) =
f(c+ h)− f(c− h)

2h
+O(h2).

This implies that we can numerically compute (or approximate)
the first derivative as:

f ′(c) ≈ f(c+ h)− f(c− h)

2h
, (2)

with the error being of quadratic order, thus termed as the
”second-order approximation” method for computing the first
derivative.

Let a = t0 < t1 < · · · < tn = b be the n + 1 time
points such that tj − tj−1 = h for each j = 1, 2, . . . , n that
is called equidistant time points. If fj = f(tj) for each j =
0, 1, . . . , n, then f ′(tj) can be approximated using the second-
order approximation according to eq. (2) by

f ′(tj) ≈
fj+1 − fj−1

2h
.

Now, we are ready to apply the second-order approxima-
tion to the SIR model. Given equidistant time points t0 < t1 <
· · · < tn, let Sj , Ij , andRj be defined as Sj = S(tj), Ij = I(tj),
and Rj = R(tj) for each j = 1, 2, . . . , n, where all these values
are obtained from observations. The primary objective is to es-
timate β and γ in eq. (1), which best fit these data. Utilizing the
approximation in eq. (2) with h = 1, we can approximate

S′(tj) ≈
Sj+1 − Sj−1

2
,

I ′(tj) ≈
Ij+1 − Ij−1

2
,

R′(tj) ≈
Rj+1 −Rj−1

2
.

Then, the first and third equations in eq. (1) can be written as:

Sj+1 − Sj−1

2
≈ βSjIj ,

Rj+1 −Rj−1

2
≈ γIj .

Thus, we can estimate β and γ as follows:

β ≈ Sj+1 − Sj−1

2SjIj
,

γ ≈ Rj+1 −Rj−1

2Ij
,

for each j = 1, 2, . . . , n − 1. However, as we assume that β and
γ are constants, it is natural to consider

βj =
Sj+1 − Sj−1

2SjIj
, (3)
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Figure 2. Estimates of β (left) and γ (right) for First set (β = 0.25, γ = 0.1).

and

γj =
Rj+1 −Rj−1

2Ij
, (4)

which we will refer to as the empirical beta and empirical gamma,
respectively, serving as ”realizations” of β and γ.

These ”realizations” of β and γ are explicit once the S, I, and
R data are given. We construct the estimates by simply taking the
average of those empirical beta and empirical gamma:

β̂ =
1

n− 1

n−1∑
j=1

βj , (5)

and

γ̂ =
1

n− 1

n−1∑
j=1

γj . (6)

To quantify the uncertainty, we first compute the standard devi-
ation for both parameters:

σβ̂ =

√√√√ 1

n− 2

n−1∑
j=1

(βj − β̂)2,

σγ̂ =

√√√√ 1

n− 2

n−1∑
j=1

(γj − γ̂)2.

Assuming normality, when a significance level α ∈ (0, 1) is given,
the corresponding (1 − α)100% confidence interval for β and γ
is simply:[

β̂ − Φ−1
(
1− α

2

)
σβ̂ , β̂ +Φ−1

(
1− α

2

)
σβ̂

]
, (7)

and [
γ̂ − Φ−1

(
1− α

2

)
σγ̂ , γ̂ +Φ−1

(
1− α

2

)
σγ̂

]
, (8)

respectively. Here, Φ−1 denotes the inverse of the cumulative
distribution function of the standard normal distribution. Note
that, as mentioned in the Introduction, our estimate and its con-
fidence interval for each parameter are explicit. We provide the
R-code for this simple method in the Appendix.

3. Results
In this section, we will apply our proposed method to both

simulated and real data to see its performance. For all data, all
parameters are rounded to the nearest 10−4. This value is suffi-
ciently small because when calculating errors, with the range of
β and γ that we have, it will result in around 10−3 relative errors.

3.1. Simulated data
We will simulate 3 datasets here. Simulation involves set-

ting the parameter values β and γ, as well as the initial propor-
tions for the S, I, and R individuals. Given time steps t0 < t1 <
· · · < tn, we can obtain the proportion values for S, I, and R using
the Runge-Kutta method based on System (1), i.e.,

S0, S1, . . . , Sn,

I0, I1, . . . , In,

R0, R1, . . . , Rn.

Subsequently, we will estimate the parameters β and γ explicitly
and construct the (1−α)100% confidence intervals based on the
S, I, and R values. We will then compare the estimated param-
eters using our proposed method with the corresponding true
values and provide the margins of error.

The parameter values used for simulating the data are
taken from [33] for comparison with their method and from [34]
to mimic the conditions in that paper. For all datasets, we
set n = 60 to represent a two-month period, (S0, I0, R0) =(

999
1000 ,

1
1000 , 0

)
, and a significance level of α = 5%.

1. First set
We chose β = 0.25 and γ = 0.1 as in [33]. Estimates of
β and γ for the first dataset are shown in Figure 2, where
the orange points represent the empirical parameters and
the blue lines represent the true parameters. The left panel
displays the estimated values of β with β̂ = 0.2503, while
the right panel shows the estimates of γ with γ̂ = 0.1002.
The grey areas represent the 95% confidence intervals for
each parameter estimate, which are [0.2493, 0.2513] for β
(with the true value of 0.25) and [0.0997, 0.1006] for γ (with
the true value of 0.1). Thus, the relative margin of error in

JJBM | Jambura J. Biomath Volume 5 | Issue 1 | June 2024
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Figure 3. Estimates of β (left) and γ (right) for Third set (γ = 1/9, R0 = 2.5148)

this data is around 8×10−3 for β and 9×10−3 for γ, which
is sufficiently accurate.

2. Second set
Still adopting parameters from [33], we now chose β = 0.1
and γ = 0.09. Interestingly, our proposed method gives es-
timated values of β and γ that are exactly the same as their
true values: β̂ = 0.1 and γ̂ = 0.09. Recall that the empirical
parameters are rounded to the nearest 10−4.

3. Third set
In these simulations, we choose γ = 1/9 to illustrate the
COVID-19 removal rate (assuming the infectious period is 9
days). The infection rate β is chosen such that the reproduc-
tive numberR0 = 2.5148 as studied in [34]. Hence, we have
β = 0.2794. Our proposed method gives β̂ = 0.2799 with a
95% confidence interval of [0.2786, 0.2812], which still con-
tains the true value β = 0.2794. For the removal rate, our
proposed method results in γ̂ = 0.1113 with a 95% confi-
dence interval of [0.1108, 0.1118], also containing the true
value γ = 1/9.
From the relative margin of error point of view, in this third
set, we get around 9 × 10−3 for both parameters, which
is again sufficiently accurate. The complete graphs of esti-
mates of β and γ are shown in Figure 3, where the orange
points represent the empirical parameters and the blue lines
represent the true parameters. The left panel displays the
estimated values of β, while the right panel shows the esti-
mates of γ.

3.2. Real data

We will apply our proposed method to real data on the
COVID-19 pandemic from three different countries, representing
various periods of the pandemic. All data are sourced from Johns
Hopkins University and Medicine (https://coronavirus.jhu.edu/).
The first dataset is COVID-19 data from the USA representing the
early pandemic phase, which will be compared to the method
presented in [33]. The second and third datasets are COVID-19
data from the authors’ countries, i.e., Indonesia and the Philip-
pines, representing mid- and late-pandemic periods, respectively.
This diverse temporal sampling is intended to capture the impact

of COVID-19 variants.
Since our proposed method assumes β and γ to be con-

stant, while in reality they can be time-varying, at each time point
we estimate the parameters using the data from the last 14 days,
as done in [33]. In general, at each time step, we use the last 14
days as training data and the next 7 days as testing data. There-
fore, as the time step changes, our parameter estimates will also
vary over time because they are based on different training data.
Additionally, we estimate the reproductive number (R0) and its
confidence interval using a similar method as we did for β and γ.
Recall that we have empirical beta eq. (3) and empirical gamma
eq. (4). Thus, we can define the empirical basic reproduction
number, R0, as

R0,j =
βj

γj
.

This empiricalR0,j can be used to determine theR0 estimate and
its confidence interval. We remark that β and γ are unobserved,
and thus need to be estimated from the data. Therefore, we can-
not compute the error of the parameter estimates. Rather, we
compute the mean absolute prediction error (MAPE) [35], so that
at each time step, after we use the data from the last 14 days to
estimate the parameters, we can predict the number of cases for
the next seven days and consequently, compare it to the actual
number of cases. At each time step, the MAPE is computed as:

MAPE(tj) =
1

7

7∑
i=1

∣∣∣∣∣ Îtj+i − Itj+i

Itj+i

∣∣∣∣∣
where Îtj+i is the predicted number of cases at time period and
Itj+i is the true number of cases at tj + i. Finally, we take the
mean of all these individual predictions and call it the final MAPE.
Here, the number of cases can easily be determined by multi-
plying the predicted proportion given by the model by the total
population.
1. USA data

As used in [33], we utilized COVID-19 data from the USA in
the early period of the pandemic, from June 23, 2020, until
September 21, 2020. While their paper only provides the

JJBM | Jambura J. Biomath Volume 5 | Issue 1 | June 2024
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Figure 4. Estimates of β (left) and γ (right) for USA data

Figure 5. R0 for USA data from 23 June 2020 to 21 September 2020

Figure 6. Cases predictions for USA data
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Figure 7. Estimates of β (left) and γ (right) for Indonesia data

Figure 8. R0 for Indonesia data from 7 January to 7 April 2021

Figure 9. Cases predictions for Indonesia data
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Figure 10. Estimates of β (left) and γ (right) for Philippines data

Figure 11. R0 for Philippines data from 4 May to 2 August 2021

Figure 12. Cases predictions for Philippines data
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reproductive numbers, in this paper, we provide explicit es-
timates of the parameters, as seen in Figure 4, which are
used to estimate the reproductive numbers shown in Fig-
ure 5. The 95% confidence intervals for these estimates are
provided in the shaded areas.
As seen in Figure 5, the trend of reproductive numbers is
similar to [33]. A notable addition is that we provide the
95% confidence interval for each time step, enhancing the
robustness of our analysis.
In Figure 6, the left panel displays the number of cases and
the corresponding predictions using data from June 23 to
July 6 as the training data (orange points) and their model
(black lines), along with predictions using data from July 7
to July 13 as the testing data (red points) and their corre-
sponding prediction values (blue lines). We assume that the
number of population is 331 millions. The 95% confidence
intervals are represented by the grey areas. Note that the
time step for this case is July 13. The middle and right pan-
els exhibit the same information, but for time steps August 6
and September 6, respectively. These time steps are chosen
to represent the beginning, middle, and end of the period
from June 23 to September 21, 2020. The Mean Absolute
Prediction Error (MAPE) for this data is 1.39%, indicating high
accuracy. Moreover, all points in the testing sets fall within
our 95% confidence intervals.

2. Indonesia data
For Indonesia’s data, we considered COVID-19 cases from
January 7 to April 7, 2021, to match the length of the USA
data. We assume that the population is 272million. Employ-
ing the same methodology as for the USA case, we present
the parameter estimates in Figure 7, the reproductive num-
bers in Figure 8, and the number of cases in Figure 9. In all
figures, the 95% confidence intervals are displayed in shaded
areas. The Mean Absolute Prediction Error (MAPE) for this
data is 2.75% indicating high accuracy. As expected, the re-
productive numbers dropped below 1, leading to a decreas-
ing trend in the number of cases in the later part of this
period. Again, all testing data are within the 95% prediction
intervals.

3. Philippines data
The last dataset we used is the COVID-19 cases in the Philip-
pines from May 4 to August 2, 2021, with a 90-day time
window. Assuming a population of 113 million, we applied
the same settings as before. Our proposed method gives
the parameter estimates in Figure 10 and the correspond-
ing reproductive numbers in Figure 11. We observe that the
reproductive numbers are around 1, indicating a relatively
stagnant trend. However, the confidence intervals are quite
wide, which may be due to data collection or reporting is-
sues. The Mean Absolute Prediction Error (MAPE) is around
6.94%, which is larger than that of the USA and Indonesia
data but still relatively accurate. The corresponding figures
for the number of cases are given in Figure 12. Interestingly,
all testing data still fall within our 95% confidence intervals.

4. Discussions

We have proposed a simple yet powerful method for esti-
mating parameters in the SIR model, providing explicit estimates

and associated confidence intervals. This method not only al-
lows for the accurate calculation of model parameters but also
facilitates the estimation of the reproductive number with cor-
responding confidence intervals. Our approach has proven suc-
cessful in accurately retrieving true parameters from simulated
datasets and has demonstrated high predictive accuracy in fore-
casting actual COVID-19 case numbers using real-world data.

While traditional methods for parameter estimation in epi-
demiological models often involve complex computational tech-
niques, our method stands out for its simplicity and directness.
Furthermore, without requiring with extensive computation, our
technique provides a quick and straightforward means of obtain-
ing parameter estimates. This can be particularly advantageous
in public health scenarios where timely decision-making is cru-
cial.

In reality, the parameters in the current model are not con-
stants and may vary over time. Although our proposed method
can estimate these time-varying parameters by re-estimating at
every time step, a more refined approach that accommodate pa-
rameter variation also warrants. These methods should provide
simple and explicit estimates to be computed quickly. Addition-
ally, the method’s performance is contingent as always on the
quality and granularity of available data, and its efficacy in differ-
ent epidemiological contexts could vary.

Further studies could explore the integration of our esti-
mation method with other epidemiological models, such as SEIR
or SIRS, and the like to widen its applicability to diseases with
different transmission dynamics.

Author Contributions. Susyanto, N.: Conceptualization, methodology,
software, validation, formal analysis, investigation, resources, data cu-
ration, writing—original draft preparation, visualization. Arcede, J. P.:
Validation, investigation, resources, writing—review and editing.

Acknowledgement. The authors are thankful to the editors and review-
ers who have supported us in improving this manuscript.

Funding. This research did not receive any external funding.

Conflict of interest. The authors declare no conflict of interest.

Data availability. The data used in this research is open data provided
by Johns Hopkins University and Medicine (https://coronavirus.jhu.edu/)

References
[1] W. O. Kermack and A. G. McKendrick, “A contribution to the mathematical

theory of epidemics,” Proceedings of the Royal Society of London. Series A, Con-
taining Papers of a Mathematical and Physical Character, vol. 115, no. 772, pp.
700–721, 1927. DOI:10.1098/rspa.1927.0118

[2] D. Tudor, “A deterministic model for herpes infections in human and
animal populations,” SIAM Review, vol. 32, no. 1, pp. 136–139, 1990.
DOI:10.1137/1032003

[3] B. J. Coburn, B. G. Wagner, and S. Blower, “Modeling influenza epidemics
and pandemics: insights into the future of swine flu (h1n1),” BMC Medicine,
vol. 7, no. 1, pp. 30, 2009. DOI:10.1186/1741-7015-7-30

[4] N. Nuraini, K. Khairudin, and M. Apri, “Modeling simulation of covid-19 in
indonesia based on early endemic data,” Communication in Biomathematical
Sciences, vol. 3, no. 1, pp. 1–8, 2020. DOI:10.5614/cbms.2020.3.1.1

[5] R. Saxena, M. Jadeja, and V. Bhateja, “Propagation analysis of covid-19: An sir
model-based investigation of the pandemic,” Arabian Journal for Science and
Engineering, vol. 48, no. 8, pp. 11103–11115, 2023. DOI:10.1007/s13369-
021-05904-0

JJBM | Jambura J. Biomath Volume 5 | Issue 1 | June 2024

https://coronavirus.jhu.edu/
https://royalsocietypublishing.org/doi/10.1098/rspa.1927.0118
https://royalsocietypublishing.org/doi/10.1098/rspa.1927.0118
https://royalsocietypublishing.org/doi/10.1098/rspa.1927.0118
https://royalsocietypublishing.org/doi/10.1098/rspa.1927.0118
https://epubs.siam.org/doi/10.1137/1032003
https://epubs.siam.org/doi/10.1137/1032003
https://epubs.siam.org/doi/10.1137/1032003
https://bmcmedicine.biomedcentral.com/articles/10.1186/1741-7015-7-30#citeas
https://bmcmedicine.biomedcentral.com/articles/10.1186/1741-7015-7-30#citeas
https://bmcmedicine.biomedcentral.com/articles/10.1186/1741-7015-7-30#citeas
https://journals.itb.ac.id/index.php/cbms/article/view/13395
https://journals.itb.ac.id/index.php/cbms/article/view/13395
https://journals.itb.ac.id/index.php/cbms/article/view/13395
https://link.springer.com/article/10.1007/s13369-021-05904-0#citeas
https://link.springer.com/article/10.1007/s13369-021-05904-0#citeas
https://link.springer.com/article/10.1007/s13369-021-05904-0#citeas
https://link.springer.com/article/10.1007/s13369-021-05904-0#citeas


N. Susyanto and J. P. Arcede – Unveiling SIR Model Parameters: Empirical Parameter Approach for Explicit… 62

[6] L. E. Anonuevo et al., “Transmission dynamics and baseline epidemio-
logical parameter estimates of coronavirus disease 2019 pre-vaccination:
Davao city, philippines,” PLOS ONE, vol. 18, no. 4, pp. 1–20, 2023.
DOI:10.1371/journal.pone.0283068

[7] G. Zaman et al., “Optimal strategy of vaccination & treatment in an sir epi-
demic model,” Mathematics and Computers in Simulation, vol. 136, no. 3, pp.
63–77, 2017. DOI:10.1016/j.matcom.2016.11.010

[8] L. Yang and X. Yang, “A new epidemiological model for computer viruses,”
Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 6,
pp. 1935-1944, 2014. DOI:10.1016/j.cnsns.2013.09.038

[9] S. Side et al., “Analysis and simulation of siri model for dengue fever trans-
mission,” International Journal Of Scientific & Technology Researchers, vol. 13,
no. 3, pp. 340–351, 2020. DOI:10.17485/ijst/2020/v13i03/147852

[10] M. Zheng et al., “Non-periodic outbreaks of recurrent epidemics and its
network modelling,” Scientific Reports, vol. 5, no. 1, pp. 16010, 2015.
DOI:10.1038/srep16010

[11] H. Fahlena et al., “Analysis of a coendemic model of covid-19 and dengue
disease,” Communication in Biomathematical Sciences, vol. 4, no. 2, pp. 138–
151, 2021. DOI:10.5614/cbms.2021.4.2.5

[12] N. Nuraini et al., “The impact of covid-19 quarantine on tuberculosis and
diabetes mellitus cases: A modelling study,” Tropical Medicine and Infectious
Disease, vol. 7, no. 12, 2022. DOI:10.3390/tropicalmed7120407

[13] S. D. Silver, P. van den Driessche, and S. Khajanchi, “A dynamic multistate and
control model of the covid-19 pandemic,” Journal of Public Health, vol. 136,
no. 3, pp. 63–77, 2023. DOI:10.1007/s10389-023-02014-z

[14] D. Lestari et al., “Qualitative behaviour of a stochastic hepatitis c epidemic
model in cellular level,” Mathematical Biosciences and Engineering, vol. 19,
no. 2, pp. 1515–1535, 2021. DOI:10.3934/mbe.2022070

[15] D. Lestari et al., “A minimum principle for stochastic control of hepatitis c
epidemic model,” Boundary Value Problems, vol. 2023, no. 1, pp. 52, 2023.
DOI:10.1186/s13661-023-01740-3

[16] L. Hanum, D. Ertiningsih, and N. Susyanto, “Sensitivity analysis unveils the
interplay of drug-sensitive and drug-resistant glioma cells: Implications
of chemotherapy and anti-angiogenic therapy,” Electronic Research Archive,
vol. 32, no. 1, pp. 72–89, 2023. DOI:10.3934/era.2024004

[17] G. Zaman and I. Jung, “Stability techniques in sir epidemic models,” PAMM,
vol. 7, no. 1, pp.2030063–2030064 2007. DOI:10.1002/pamm.200701147

[18] F. S. Alshammari and F. T. Akyildiz, “Global Stability for Novel Compli-
cated SIR Epidemic Models with the Nonlinear Recovery Rate and Transfer
from Being Infectious to Being Susceptible to Analyze the Transmission of
COVID-19,” Journal of Function Spaces, vol. 2021, no. 1, pp. 5207152, 2021.
DOI:10.1155/2021/5207152

[19] C. Huang, J. Cao, F. Wen, and X. Yang, “Stability analysis of sir model with
distributed delay on complex networks,” PLoS ONE, vol. 11, no. 8, 2016.
DOI:10.1371/journal.pone.0158813

[20] A. Elazzouzi, A. L. Alaoui, M. Tilioua, and A. Tridane, “Global stability
analysis for a generalized delayed sir model with vaccination and treat-
ment,” Advances in Difference Equations, vol. 2019, no. 1, pp. 532, 2019.
DOI:10.1186/s13662-019-2447-z

[21] A. Hasan et al., “Superspreading in early transmissions of covid-19 in indone-
sia,” Scientific Reports, vol. 10, no. 1, pp. 22386, 2020. DOI:10.1038/s41598-
020-79352-5

[22] H. Salje et al., “Estimating the burden of SARS-CoV-2 in France,” Science,
vol. 369, no. 6500, pp. 208–211, 2020. DOI:10.1126/science.abc3517

[23] R. RamÃrez-Aldana, J. C. Gomez-Verjan, and O. Y. Bello-Chavolla, “Spatial
analysis of covid-19 spread in iran: Insights into geographical and structural
transmission determinants at a province level,” PLOS Neglected Tropical Dis-
eases, vol. 14, no. 11, pp. 1–15, 2020. DOI:10.1371/journal.pntd.0008875

[24] M. Shahzad et al., “Dynamics models for identifying the key transmission
parameters of the covid-19 disease,” Alexandria Engineering Journal, vol. 60,
no. 1, pp. 757–765, 2021. DOI:10.1016/j.aej.2020.10.006

[25] L. Bougoffa, S. Bougouffa, and A. Khanfer, “Approximate and parametric
solutions to sir epidemic model,” Axioms, vol. 13, no. 3, pp. 201, 2024.
DOI:10.3390/axioms13030201

[26] I. Dattner and C. A. J. Klaassen, “Optimal rate of direct estimators in systems
of ordinary differential equations linear in functions of the parameters,”
Electronic Journal of Statistics, vol. 9, no. 2, pp. 201, 2015. DOI:10.1214/15-
EJS1053

[27] J. P. Arcede et al., “Accounting for symptomatic and asymptomatic in a seir-
type model of covid-19,” Math. Model. Nat. Phenom., vol. 15, no. 1, pp. 34,
2020. DOI:10.1051/mmnp/2020021

[28] T. E. Simos et al., “Real-time estimation of r0 for covid-19 spread,” Mathe-
matics, vol. 9, no. 6, pp. 664, 2021. DOI:10.3390/math9060664

[29] V. Srivastava et al., “A systematic approach for covid-19 predictions and pa-
rameter estimation,” Personal and Ubiquitous Computing, vol. 27, no. 3, pp.
675–687, 2023. DOI:10.1007/s00779-020-01462-8

[30] A. Osi and N. Ghaffarzadegan, “Parameter estimation in behavioral epidemic
models with endogenous societal risk-response,” PLOS Computational Biol-
ogy, vol. 20, no. 3, pp. e1011992, 2024. DOI:10.1371/journal.pcbi.1011992

[31] S. Shaier, M. Raissi, and P. Seshaiyer, “Data-driven approaches for predict-
ing spread of infectious diseases through dinns: Disease informed neu-
ral networks,” Letters in Biomathematics, vol. 8, no. 1, pp. 71–105, 2022.
DOI:10.48550/arXiv.2110.05445

[32] J. Gadewadikar and J. Marshall, “A methodology for parameter estimation in
system dynamics models using artificial intelligence,” Systems Engineering,
vol. 27, no. 2, pp. 253–266, 2024. DOI:10.1002/sys.21718

[33] M. Medvedeva et al., “Direct estimation of sir model parameters through
second-order finite differences,”Mathematical Methods in the Applied Sciences,
vol. 44, no. 5, pp. 3819–3826, 2021. DOI:10.1002/mma.6985

[34] E. Soewono, “On the analysis of covid-19 transmission in wuhan, dia-
mond princess and jakarta-cluster,” Communication in Biomathematical Sci-
ences, vol. 3, no. 1, pp. 9–18, 2020. DOI:10.5614/cbms.2020.3.1.2

[35] N. Reich, J. Lessler, K. Sakrejda, S. Lauer, S. Iamsirithaworn, and D. Cum-
mings, “Case study in evaluating time series prediction models using the
relative mean absolute error,” The American Statistician, vol. 70, no. 3, pp.
285–292, 2016. DOI:10.1080/00031305.2016.1148631

Appendix
The R function pars implements explicit parameter estimation using the

empirical parameter approach for β and γ, as described in eqs. (3) and (4), re-
spectively. Confidence intervals are constructed according to eqs. (7) and (8) for
a given significance level α ∈ [0, 1], with a default value of 5%. To avoid numer-
ical issues, the empirical values of β and γ are rounded to the nearest 10−dig,
with a default value of dig = 4.

The function requires input data forS, I , andR, and allows for setting the
significance level and rounding parameter dig. The output is a list containing:

1. empbeta: values of empirical β as given in eq. (3).
2. empgamma: values of empirical γ as given in eq. (4).
3. estbeta: explicit estimate of β as given in eq. (5).
4. estgamma: explicit estimate of γ as given in eq. (6).
5. [lowerbeta, upperbeta]: confidence interval for β as given in eq. (7).
6. [lowergamma, uppergamma]: confidence interval for γ as given in eq. (8).

Here is the R code:

pars <- function(S,I,R,alpha=0.05,dig=4){
n <- length(S); n1 <- n-1; dt <- 1
t <- 0:n1
Sj <- S[-n]; Sj1 <- S[-1]; Sjp1 <- Sj1[-1]; Sjm1 <- Sj[-n1]
Ij <- I[-n]; Ij1 <- I[-1]; Ijp1 <- Ij1[-1]; Ijm1 <- Ij[-n1]
Rj <- R[-n]; Rj1 <- R[-1]; Rjp1 <- Rj1[-1]; Rjm1 <- Rj[-n1]
Sj <- Sj1[-n1];Ij <- Ij1[-n1];Rj <- Rj1[-n1]
#Calculate empirical beta and gamma
betahat <- (Sjm1-Sjp1)/(2*Ij*Sj*dt); betahat <-
round(betahat,dig)
gammahat <- -(Rjm1-Rjp1)/(2*Ij*dt); gammahat <-
round(gammahat,dig)
#Calculate estimates
mb <- mean(betahat); mg <- mean(gammahat)
#Calculate standard deviation for beta and gamma
sb <- sd(betahat); sg <- sd(gammahat)
za <- qnorm(1-alpha/2)
#Calculate confidence intervals
lb <- mb-za*sb; ub <- mb+za*sb
lg <- mg-za*sg; ug <- mg+za*sg
#Return results
temp <- list(empbeta=betahat,empgamma=gammahat,estbeta=mb,
estgamma=mg, lowerbeta=lb,upperbeta=ub,
lowergamma=lg,uppergamma=ug)
return(temp)
}
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