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Complex dynamics in a discrete-time model of two competing
prey with a shared predator

Debasis Mukherjee1

1Department of Mathematics, Vivekananda College, Thakurpukur, Kolkata-700063, India

ABSTRACT. This paper concentrates on the study of a discrete time model of two competing prey with a shared
predator. The condition for the existence and local stability of positive fixed point are derived. By using an iteration
scheme and the comparison principle of difference equations, it is possible to obtain the sufficient condition for global
stability of the positive fixed point. The sufficient criterion for Neimark-Sacker bifurcation and flip bifurcation are
established. The system admits chaotic dynamics for a certain choice of the system parameters which is controlled by
applying hybrid control method. The intra-specific competition among predators and the intrinsic growth rate of prey
species have major impact for different bifurcation.
For continuous system, handling time spent for prey population plays an important role for obtaining limit cycle
behaviour. The decrease amount of this rate makes the system stable. Global convergence of the solutions to the
coexistence equilibrium point is possible for a particular choice of system parameters. The obtained results for discrete
system are verified through numerical simulations. Also some diagrams are presented for continuous system.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction
In ecology, predation and competition are two important

inter-specific interactions. These two factors motivated some
researchers to develop mathematical models for investigating
the predation effect on the competitive interactions [1–5]. It
is mostly observed that predator attacks weak competitor. In
that case, strong competitor plays a significant role in structur-
ing communities. Also, the species coexistence in predator-prey
system depends on the choice of functional response. Initially,
Lotka and Volterra first showed in predator-prey model after that
numerous problems have been studied by considering different
types of functional response [6]. In [7], the authors observed
chaotic dynamics in two prey- one predator model with a shared
predator. The effect of delay maintaining the persistence of two
preys and one predator system is studied in [8]. Tripathi et al.
[9] studied the local and global behaviour of a two prey and one
predator system with help. Bhattacharya and Pal [10] analysed a
delay induced two prey and one predator system with Bedding-
ton DeAngelis response function. Khalif and Majeed [11] inves-
tigated the dynamical behaviour of two prey and one predator
mode. Most of the previous studies mentioned above are done
on continuous models. However, some literatures indicate that
discrete models are more reasonable than continuous systems
when the population have non-overlapping generations. In na-
ture, mathematical model for discrete system can be observed in
fish populations which reproduce at specific timed moments or
for insect populationswhere non-overlapping generations always
take place.
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Discrete-time models also permits additional efficient com-
putational outcomes for numerical computations and reveal a
rich dynamics in respect of continuous systems [12–15]. One can
observe chaotic behaviour in discrete models [12, 13]. Several
works on discrete prey-predator models may be found in [16–
27].

Most of the previous studies are dealt with into two
species. But the dynamics will be more complex when multi-
ple species occur. In this paper, we propose a discrete-time two
competing prey with a shared predator. We study the existence
and local as well as global stability of the positive fixed point.
After then, we identify the system parameters that give Neimark-
Sacker bifurcation and flip bifurcation. Chaos control of the sys-
tem will be investigated.

The model studied in [8], is modified in the following form:

dx

dt
= x

(
r1 − a11x− a12y −

p1λ1z

1 + p1h1λ1x+ p2h2λ2y

)
,

dy

dt
= y

(
r2 − a21x− a22y −

p2λ2z

1 + p1h1λ1x+ p2h2λ2y

)
,

dz

dt
= z

(
−d+ p1e1λ1x+ p2e2λ2y

1 + p1h1λ1x+ p2h2λ2y
− hz

)
.

(1)

Here x and y represent the densities of two competing prey, and
z stands for the density of the shared predator. When there is
no predator, each prey grows logistically. Here r1 and r2 denote
the intrinsic growth rate of the two competing prey species. a11
and a22 represent the intra-specific competition among the prey
species x and y respectively. a12 and a21 are the inter-specific
competition. Inter-specific competition is a controlling force in
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interacting species that induces niche shifts in ecological and
evolutionary time. The predation process follows Holling type
II response function. p1 and p2 represent the probability that a
predator will attack prey x and y upon an encounter respectively,
λ1 and λ2 are the search rate of a predator for the prey x and y
respectively. e1 and e2 are the expected net energy gained from
the prey x and y, respectively, and h1 and h2 are the expected
handling time spent with the prey x and y respectively. h stands
for intra-specific competition among the predator species. d is
the death rate of the predator species. Specific example illus-
trates the above situation. In real world, zebras and cattle are
two competing species both of them are shared by lions. Here,
all the parameters are assumed to be positive.

For qualitative analysis, including global stability, bifurca-
tion analysis and chaos control for a discrete analogue system
(1), a piecewise constant argument is introduced to describe the
following exponential form of non-linear difference equations:

xn+1 = xn exp
{
r1 −

p1λ1zn

1 + p1h1λ1xn + p2h2λ2yn
− a11xn − a12yn

}
,

yn+1 = yn exp
{
r2 − a21xn − a22yn −

p2λ2zn

1 + p1h1λ1xn + p2h2λ2yn

}
,

zn+1 = zn exp
{
−d+

p1e1λ1xn + p2e2λ2yn

1 + p1h1λ1xn + p2h2λ2yn
− hzn

}
,

(2)

where xn and yn represent the densities of two competing preys
at generation n ∈ N and zn denotes predator density at a dis-
crete time step n ∈ N.

The rest of the paper is structured as follows: The existence
and stability of the interior fixed point are discussed in Section 2.
Global stability criterion is derived in Section 3. Neimark-Sacker
bifurcation and flip bifurcation are described in Section 4. Chaos
control mechanism is presented in Section 5. Numerical exam-
ples are given in Section 6. Section 7 concludes the paper.

2. Existence of interior fixed point
Clearly, system (2) has six boundary fixed points E0 =

(0, 0, 0) and E1 = ( r1
a11
, 0, 0), E2 = (0, r2

a22
, 0), E12 = (x̄, ȳ, 0)

where x̄ = r1a22−r2a12

a11a22−a12a21
, ȳ = r2a11−r1a21

a11a22−a12a21
provided, either

a11

a21
> r1

r2
> a12

a22
or a11

a21
< r1

r2
< a12

a22
.

There exits a unique second prey free fixed point
E13(x̂, 0, ẑ) where x̂ is a positive root of the equation

B1x
3 +B2x

2 +B3x−B4 = 0,

B1 = a11hp
2
1h

2
1λ

2
1,

B2 = hh1p1λ1(2a11 − r1p1h1λ1),

B3 = ha11 − 2hr1p1λ1 + p21λ
2
1e1 − dp21λ1h1,

B4 = hr1 − dp1λ1,

and ẑ = (r1−a11x̂)(1+p1h1λ1x̂)
p1λ1

provided r1 > a11x̂.
There exists a unique first prey free fixed point E23 =

(0, ỹ, z̃) where ỹ is a positive root of the equation

C1y
3 + C2y

2 + C3y − C4 = 0,

C1 = a22hp
2
2h

2
2λ

2
2,

C2 = hh2p2λ2(2a11 − r1p1h1λ1),

C3 = ha11 − 2hr1p2λ2 + p22λ
2
2e2 − dp22λ2h2,

C4 = hr2 − dp2λ2,

and z̃ = (r2−a22ỹ)(1+p2h2λ2ỹ)
p2λ2

provided r2 > a22ỹ.
To locate the interior fixed point E∗ = (x∗, y∗, z∗) of sys-

tem (2), we apply isocline method. x∗, y∗ and z∗ are the positive
solutions of the following system of equations:

r1 − a11x− a12y −
p1λ1z

1 + p1h1λ1x+ p2h2λ2y
= 0, (3)

r2 − a21x− a22y −
p2λ2z

1 + p1h1λ1x+ p2h2λ2y
= 0, (4)

−d+ p1e1λ1x+ p2e2λ2y

1 + p1h1λ1x+ p2h2λ2y
− hz = 0. (5)

From equation eq. (3), we get

z =
1

h

{
−d+ p1e1λ1x+ p2e2λ2y

1 + p1h1λ1x+ p2h2λ2y

}
= ze(say).

z > 0 if p1λ1e1x+ p2λ2e2y > d(1 + p1h1λ1x+ p2λ2h2). Now,
we substitute the value of z in eqs. (3) and (4) and obtained

f1(x, y) = r1 − a11x− a12y −
p1λ1ze

1 + p1h1λ1x+ p2h2λ2y
= 0,

(6)

f2(x, y) = r2 − a21x− a22y −
p2λ2ze

1 + p1h1λ1x+ p2h2λ2y
= 0.

(7)

Now, we have

dx

dy
= −∂f1

∂y
/
∂f1
∂x

= −M1

N1
,

where

M1 = − a12 −
p1λ1(zeyM − p2h2λ2ze)

M2
,

N1 = − a11 −
p1λ1(zexM − p1h1λ1ze)

M2
,

M = 1 + p1h1λ1x+ p2h2λ2y.

It is evident that dx
dy > 0 if either (i) M1 > 0 and N1 < 0 or (ii)

M1 < 0 and N1 > 0 hold. Also we get

dx

dy
= −∂f2

∂y
/
∂f2
∂x

= −M2

N2
,

where

M2 = − a22 −
p2λ2(zeyM − p2h2λ2ze)

M2
,

N2 = − a21 −
p2λ2(zexM − p1h1λ1ze)

M2
,

M = 1 + p1h1λ1x+ p2h2λ2y.

We note that dx
dy < 0 if either (i) M2 > 0 and N2 > 0

or (ii) M2 < 0 and N2 < 0 hold. From the above analysis, we
conclude that the two isoclines eqs. (6) and (7) intersect at the
point (x∗, y∗) under certain restrictions. Throughout this work,
we assume that E∗ exists.
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2.1. Stability of interior fixed point
Let E∗ = (x∗, y∗, z∗) be the interior fixed point of system

(2). The Jacobian matrix for system (2) at E∗ is given by:

J(x∗, y∗, z∗) =

 j11 j12 j13
j21 j22 j23
j31 j32 j33

 ,

j11 = 1− x∗
(
a11 −

p21λ
2
1h1z

∗

M2

)
, j13 = −p1λ1x

∗

M
,

j12 = x∗
(
a12 −

p1λ1p2λ2h2z
∗

M2

)
, j23 = −p2λ2y

∗

M
,

j21 = −y∗
(
a21 −

p1λ1p2λ2h1z
∗

M2

)
, j33 = 1− hz∗,

j22 = 1− y∗
(
a22 −

p22λ
2
2h2z

∗

M2

)
,

j31 =
z∗{p1e1λ1 + p1λ1p2λ2y

∗(e1h2 − e2h1)}
M2

,

j32 =
z∗{p2e2λ2 + p1λ1p2λ2x

∗(e2h1 − e1h2)}
M2

.

The characteristic polynomial of J(E∗) is given by

Q(λ) = λ3 + q1λ
2 + q2λ+ q3 (8)

where

q1 = x∗
(
a11 −

p21λ
2
1h1z

∗

M2

)
+ y∗

(
a22 −

p22λ
2
2h2z

∗

M2

)
+ hz∗ − 3,

q2 = (1− hz∗)

{
1− y∗

(
a22 −

p22λ
2
2h2z

∗

M2

)}
+

{
1− x∗

(
a11

− p21λ
2
1h1z

∗

M2

)}{
2− y∗

(
a22 −

p22λ
2
2h2z

∗

M2

)
− hz∗

}
− x∗y∗

(
a12 −

p1λ1p2λ2h2z
∗

M2

)(
a21 −

p1λ1p2λ2h1z
∗

M2

)
+

p1λ1x
∗z∗

M3
{p1e1λ1 + p1λ1p2λ2y

∗(e1h2 − e2h1)} ,

q3 =

(
1− x∗

[
a11 −

p21λ
2
1h1z

∗

M2

])(
1− y∗

[
a22 −

p22λ
2
2h2z

∗

M2

]
(hz∗

− 1)

)
− x∗

(
a12 −

p1λ1p2λ2h2z
∗

M2

[
y∗(hz∗ − 1)

(
a21

− p1λ1p2λ2h1z
∗

M2

)
+

p2λ2y
∗z∗

M3

{
p1e1λ1 + p1λ1p2λ2y

∗(e1h2

− e2h1)
}])

− p1λ1x
∗

M

[
y∗z∗

(
a11 −

p1λ1p2λ2h1z
∗

M2

)(
p2e2λ2

M2

+
p1λ1p2λ2x

∗(e2h1 − e1h2)

M2

)
+ z∗

{
1− y∗

(
a22

− p22λ
2
2h2z

∗

M2

)}{
p1e1λ1 + p1λ1p2λ2y

∗(e1h2 − e2h1)

M2

}]
,

M = 1 + p1h1λ1x
∗ + p2h2λ2y

∗.

(9)

To determine local stability of the interior fixed point E∗, we
require the following lemma.

Lemma 1 ([28]). Consider the cubic equation

λ3 + q1λ
2 + q2λ+ q3 = 0

where q1, q2 and q3 are real numbers. Then necessary and suf-
ficient conditions that all the roots of eq. (8) lie in an open disk
|λ| < 1 are:
(i). |q1 + q3| < 1 + q2,
(ii). |q1 − 3q3| < 3− q2, and
(iii). q23 + q2 − q3q1 < 1.
We now use Lemma 1 to investigate stability of E∗.

Lemma 2. E∗ is locally asymptotically stable if and only if the
following conditions are satisfied:
(i). |q1 + q3| < 1 + q2,
(ii). |q1 − 3q3| < 3− q2, and
(iii). q23 + q2 − q3q1 < 1.
where q1, q2 and q3 are defined in eq. (9).

3. Global stability

In this section, we will utilize the process of iteration
scheme and the comparison principle of difference equation to
investigate the global stability of the positive fixed point of sys-
tem (2). To establish global stability result, we require the follow-
ing lemmas.

Lemma 3 ([29]). Let f(u) = uexp(δ − ηu), where δ and η are
positive constants. Then f(u) is non-decreasing for u ∈

(
0, 1η

]
.

Lemma 4 ([29]). Assume that the sequence un satisfies

un+1 = un exp(δ − ηun), n = 1, 2, 3, ...,

where δ and η are positive constants and u0 > 0. Then:
(i). If δ < 2, then limn→∞un = δ

η .
(ii). If δ ≤ 1, then un ≤ 1

η , n = 2, 3, ....

Lemma 5 ([30]). Suppose that functions f, g : Z+ × [0,∞) sat-
isfy f(n, x) ≤ g(n, x) (f(n, x) ≥ g(n, x)) for n ∈ Z+ and
g(n, x) is non-decreasing with respect to x. If un are the non-
negative solutions of the difference equations xn+1 = f(n, xn),
un+1 = g(n, un) respectively, and x0 ≤ u0 (x0 ≥ u0) then
xn ≤ un (xn ≥ un) for all n ≥ 0.

Theorem 1. Assume that r1 ≤ 1, r2 ≤ 1 and p1e1λ1r1a22 +
p2e2λ2r2a11 < a11a22(1 + d) then the fixed point
E∗(x∗, y∗, z∗) of system (2) is globally asymptotically stable.

Proof. Assume that (xn, yn, zn) is any solution of system (2) with
initial values x0 > 0, y0 > 0, z0 > 0. Let

U1 = lim sup
n→∞

xn, V1 = lim inf
n→∞

xn,

JJBM | Jambura J. Biomath Volume 5 | Issue 2 | December 2024
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U2 = lim sup
n→∞

yn, V2 = lim inf
n→∞

yn,

U3 = lim sup
n→∞

zn, V3 = lim inf
n→∞

zn.

In the following, we will prove that U1 = V1 = x∗, U2 = V2 =
y∗, U3 = V3 = z∗. First we show that U1 ≤ Mx

1 , U2 ≤ My
1 ,

U3 ≤Mz
1 . From the first equation of system (2), we find

xn+1 ≤ xn exp(r1 − a11xn), n = 0, 1, 2, ....

Considering the auxiliary equation

un+1 = un exp(r1 − a11un), (10)

by Lemma 4 (ii), because of r1 ≤ 1, we get un ≤ 1
a11

for all
n ≥ 2. By Lemma 3, we obtain f(u) = uexp(r1 − a11u) is non-
decreasing for u ∈ (0, 1

a11
]. Thus from Lemma 5, we get xn ≤ un

for all n ≥ 2,where un is the solution of eq. (10) with initial value
u2 = x2. By Lemma 4 (i), we get

U1 = lim sup
n→∞

xn ≤ lim
n→∞

un =
r1
a11

≜Mx
1 .

Hence, for any ϵ > 0, there exists a n1 > 2 such that if n ≥ n1,
then xn ≤Mx

1 + ϵ. In the same way, using the second equation
of system (2), we get,

U2 = lim sup
n→∞

yn ≤ lim
n→∞

un =
r2
a22

≜My
1 .

Hence, for any ϵ > 0, there exists a n2 > n1 such that if n ≥ n2,
then yn ≤My

1 + ϵ. The third equation of system (2), yields

zn+1 ≤ zn exp{−d+p1e1λ1(Mx
1 +ϵ)+p2e2λ2(M

y
1 +ϵ)−hzn}.

Again taking the auxiliary equation

un+1 = un exp{−d+p1e1λ1(Mx
1 +ϵ)+p2e2λ2(M

y
1 +ϵ)−hun},

by Lemma 4 (ii), because of

p1e1λ1(M
x
1 + ϵ) + p2e2λ2(M

y
1 + ϵ) ≤ 1 + d,

we get un ≤ 1
h for all n ≥ 2. From Lemma 3, we get

f(u) = u exp{−d+ p1e1λ1(M
x
1 + ϵ) + p2e2λ2(M

y
1 + ϵ)− hu}

is non-decreasing for u ∈ (0, 1h ]. Lemma 5 yields zn ≤ un for all
n ≥ 2. Consequently

U3 = lim sup
n→∞

zn ≤ lim
n→∞

un = ψ1 ≜Mz
1 ,

ψ1 =
−d+ p1e1λ1(M

x
1 + ϵ) + p2e2λ2(M

y
1 + ϵ)

h
.

Thus for given any ϵ > 0, there exists n3 > n2 such that for
n ≥ n3, zn ≤ Mz

1 + ϵ. Now we prove that V1 ≥ Nx
1 , V2 ≥ Ny

1 ,
V3 ≥ Nz

1 . Using the first equation of system (2), we derive

xn+1 ≥ xn exp[r1 − a11xn − a12(M
y
1 + ϵ)− p1λ1(M

z
1 + ϵ)], n ≥ n3.

Consider the auxiliary equation

un+1 = un exp[r1 − a11un − a12(M
y
1 + ϵ)− p1λ1(M

z
1 + ϵ)].

Since we have

r1 − a11un − a12(M
y
1 + ϵ)− p1λ1(M

z
1 + ϵ) < 1,

by Lemma 4 (ii), we have un ≤ 1
a11

for n ≥ n3. By Lemma 3, we
obtain

f(u) = uexp(r1 − a11u− a12(M
y
1 + ϵ)− p1λ1(M

z
1 + ϵ))

is non-decreasing for u ∈ (0, 1
a11

]. Thus from Lemma 5, we get
xn ≥ un for all n ≥ n3. By Lemma 4 (i), we get

V1 = lim inf
n→∞

xn ≥ lim
n→∞

un = ψ2,

ψ2 =
r1 − a12(M

y
1 + ϵ)− p1λ1(M

z
1 + ϵ)

a11
.

Since ϵ > 0 is arbitrary, we have V1 ≥ Nx
1 = ψ2. So for any

ϵ > 0, one can find a n4 > n3 such that for n ≥ n4, xn ≥ Nx
1 −ϵ.

Considering the second equation of system (2), we get

yn+1 ≥ yn exp[r2−a22yn−a21(Mx
1 +ϵ)−p2λ2(Mz

1+ϵ)], n ≥ n4.

By the same way, we can get

V2 = lim inf
n→∞

yn ≥ lim
n→∞

un = ψ3,

ψ3 =
r2 − a21(M

x
1 + ϵ)− p2λ2(M

z
1 + ϵ)

a22
.

As ϵ > 0 is arbitrary, we have V2 ≥ Ny
1 = ψ3. So for given any

ϵ > 0, there exists n5 > n4 such that for n ≥ n5, yn ≥ Ny
1 − ϵ.

Similarly, from the third equation of system (2), we get

zn+1 ≥ zn exp [ψ4 − d− hzn] , n ≥ n5

ψ4 =
p1e1λ1(N

x
1 − ϵ) + p2e2λ2(N

y
1 − ϵ)

1 + p1h1λ1(Mx
1 + ϵ) + p2h2λ2(M

y
1 + ϵ)

.

with
V3 = lim inf

n→∞
zn ≥ lim

n→∞
un =

1

h
{ψ4 − d}.

As ϵ > 0 is arbitrary, we have V3 ≥ Nz
1 = 1

h{ψ4 − d}. So for
any given ϵ > 0, there exists n6 > n5 such that for n ≥ n6, zn ≥
Nz

1 − ϵ.
Now we show that U1 ≤ Mx

2 , U2 ≤ My
2 , and U3 ≤ Mz

2 ,
whereMx

2 ≤Mx
1 ,M

y
2 ≤My

1 , andM
z
2 ≤Mz

1 respectively. From
the first equation of system (2) for n > n6, we get

xn+1 ≤ xn exp
[
r1 − a11xn − a12(N

y
1 − ϵ)

− p1λ1(N
z
1 − ϵ)

1 + p1h1λ1(Mx
1 + ϵ) + p2h2λ2(M

y
1 + ϵ)

]
.

Consider the auxiliary equation

un+1 = un exp
[
r1 − a11un − a12(N

y
1 − ϵ)

− p1λ1(N
z
1 − ϵ)

1 + p1h1λ1(Mx
1 + ϵ) + p2h2λ2(M

y
1 + ϵ)

]
.

Using the same type of argument as in above, we can get

U1 = lim sup
n→∞

xn ≤ 1

a11

[
r1 − a12(N

y
1 − ϵ)

− p1λ1(N
z
1 − ϵ)

1 + p1h1λ1(Mx
1 + ϵ) + p2h2λ2(M

y
1 + ϵ)

]
,
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since

r1 − a12(N
y
1 − ϵ)− p1λ1(N

z
1 − ϵ)

1 + p1h1λ1(Mx
1 + ϵ) + p2h2λ2(M

y
1 + ϵ)

≤ 1.

As ϵ > 0 is arbitrary, we claim that

U1 ≤Mx
2 =

1

a11

[
r1 − a12(N

y
1 − ϵ)

− p1λ1(N
z
1 − ϵ)

1 + p1h1λ1(Mx
1 + ϵ) + p2h2λ2(M

y
1 + ϵ)

]
.

Thus for any given ϵ > 0, there exists n7 > n6 such that for
n ≥ n7, xn ≤Mx

2 + ϵ. Similarly to the above argument, we get

U2 ≤My
2 =

1

a22

[
r2 − a21(N

x
1 − ϵ)

− p2λ2(N
z
1 − ϵ)

1 + p1h1λ1(Mx
1 + ϵ) + p2h2λ2(M

y
1 + ϵ)

]
.

So for any ϵ > 0, there exists n8 > n7 such that for n ≥ n8,
yn ≤My

2 + ϵ. From the third equation of system (2) for n > n8,
we get

zn+1 ≤ zn exp
[

p1e1λ1(Mx
2 + ϵ) + p2e2λ2(M

y
2 + ϵ)

1 + p1h1λ1(Nx
1 − ϵ) + p2h2λ2(N

y
1 − ϵ)

− d− hzn

]
.

Similarly to the above argument, we get

U3 ≤Mz
2 =

1

h

[
p1e1λ1(M

x
2 + ϵ) + p2e2λ2(M

y
2 + ϵ)

1 + p1h1λ1(Nx
1 − ϵ) + p2h2λ2(N

y
1 − ϵ)

− d

]
.

Hence for any sufficiently small ϵ > 0, there exists n9 > n8 such
that for n ≥ n9, zn ≤Mz

2 + ϵ.
Now we show that V1 ≥ Nx

2 , V2 ≥ Ny
2 , and V3 ≥ Nz

2 ,
whereNx

2 ≥ Nx
1 ,N

y
2 ≥ Ny

1 , andN
z
2 ≥ Nz

1 respectively. Further,
from the first equation of system (2) for n > n9, we get

xn+1 ≥ xn exp
[
r1 − a11xn − a12(M

y
2 + ϵ)

− p1λ1(M
z
2 + ϵ)

1 + p1h1λ1(Nx
1 − ϵ) + p2h2λ2(N

y
1 )

]
.

Using a similar argument, we get

V1 = lim inf
n→∞

xn ≥ 1

a11

[
r1 − a12(M

y
2 + ϵ)

− p1λ1(M
z
2 + ϵ)

1 + p1h1λ1(Nx
1 − ϵ) + p2h2λ2(N

y
1 )

]
,

since

r1 − a12(M
y
2 + ϵ)− p1λ1(M

z
2 + ϵ)

1 + p1h1λ1(Nx
1 − ϵ) + p2h2λ2(N

y
1 )

≤ 1.

As ϵ > 0 is arbitrary, we claim that

V1 ≥ Nx
2 =

1

a11

[
r1 − a12(M

y
2 + ϵ)

− p1λ1(M
z
2 + ϵ)

1 + p1h1λ1(Nx
1 − ϵ) + p2h2λ2(N

y
1 )

]
.

So for given ϵ > 0, there exists n10 > n9 such that for n ≥ n10,
xn ≥ Nx

2 − ϵ. Similarly, from the second equation of system (2)
for n > n10, we have

yn+1 ≥ yn exp
[
r2 − a22yn − a21(M

x
2 + ϵ)

− p2λ2(M
z
2 + ϵ)

1 + p1h1λ1(Nx
1 − ϵ) + p2h2λ2(N

y
1 )

]
.

with

V2 = lim inf
n→∞

yn ≥ 1

a22

[
r2 − a21(M

x
2 + ϵ)

p2λ2(M
z
2 + ϵ)

1 + p1h1λ1(Nx
1 − ϵ) + p2h2λ2(N

y
1 )

]
.

Since ϵ > 0, is arbitrary, we claim that

V2 ≥ Ny
2 =

1

a22

[
r2 − a21(M

x
2 + ϵ)

− p2λ2(M
z
2 + ϵ)

1 + p1h1λ1(Nx
1 − ϵ) + p2h2λ2(N

y
1 )

]
.

Hence for any ϵ > 0, there exists n11 > n10 such that for n ≥
n11, yn ≥ Ny

2 − ϵ. Similarly, from the third equation of system
(2) for n > n11, we have

zn+1 ≥ zn exp
[

p1e1λ1(Nx
2 − ϵ) + p2e2λ2(N

y
2 − ϵ)

1 + p1h1λ1(Mx
2 + ϵ) + p2h2λ2(M

y
2 + ϵ)

− d− hzn

]
.

with

V3 = lim inf
n→∞

zn ≥ 1

h

[
p1e1λ1(N

x
2 − ϵ) + p2e2λ2(N

y
2 − ϵ)

1 + p1h1λ1(Mx
2 + ϵ) + p2h2λ2(M

y
2 + ϵ)

− d

]
.

Since ϵ > 0 is arbitrary, we conclude that

V3 ≥ Nz
2 =

1

h

[
p1e1λ1(N

x
2 − ϵ) + p2e2λ2(N

y
2 − ϵ)

1 + p1h1λ1(Mx
2 + ϵ) + p2h2λ2(M

y
2 + ϵ)

− d

]
.

So for given ϵ > 0, there exists n12 > n11 such that for n ≥ n12,
zn ≥ Nx

2 − ϵ. Repeating the above process, we ultimately get six
sequences {Mx

n}, {My
n}, {Mz

n}, {Nx
n}, {Ny

n}, and {Nz
n} such

that for all n ≥ 2,

Mx
n =

1

a11

[
r1 − a12(N

y
n−1 − ϵ)

−
p1λ1(N

z
n−1 − ϵ)

1 + p1h1λ1(Mx
n−1 + ϵ) + p2h2λ2(M

y
n−1 + ϵ)

]
,

My
n =

1

a22

[
r2 − a21(N

x
n−1 − ϵ)

−
p2λ2(N

z
n−1 − ϵ)

1 + p1h1λ1(Mx
n−1 + ϵ) + p2h2λ2(M

y
n−1 + ϵ)

]
,

Mz
n =

1

h

[
p1e1λ1(M

x
n−1 + ϵ) + p2e2λ2(M

y
n + ϵ)

1 + p1h1λ1(Nx
n−1 − ϵ) + p2h2λ2(N

y
n−1 − ϵ)

− d

]
,
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Nx
n =

1

a11

[
r1 − a12(M

y
n + ϵ)

p1λ1(M
z
n + ϵ)

1 + p1h1λ1(Nx
n−1 − ϵ) + p2h2λ2(N

y
n−1 − ϵ)

]
,

Ny
n =

1

a22

[
r2 − a21(M

x
n + ϵ)

− p2λ2(M
z
n + ϵ)

1 + p1h1λ1(Nx
n − ϵ) + p2h2λ2(N

y
n−1 − ϵ)

]
,

Nz
n =

1

h

[
p1e1λ1(N

x
n − ϵ) + p2e2λ2(N

y
n − ϵ)

1 + p1h1λ1(Mx
n + ϵ) + p2h2λ2(M

y
n + ϵ)

− d

]
.

(11)

Clearly, we have for any integer n > 0, Nx
n ≤ V1 ≤ U1 ≤

Mx
n , N

y
n ≤ V2 ≤ U2 ≤ My

n , and N
z
n ≤ V3 ≤ U3 ≤ Mz

n.
In the following, we will prove that {Mx

n}, {My
n}, and {Mz

n}
are monotonically decreasing and {Nx

n}, {Ny
n}, and {Nz

n} are
monotonically increasing, with the help of inductive method.

Firstly, it is clear thatMx
2 ≤ Mx

1 ,M
y
2 ≤ My

1 ,M
z
2 ≤ Mz

1 ,
Nx

2 ≥ Nx
1 , N

y
2 ≥ Ny

1 , and N
z
2 ≥ Nz

1 . For n = k(k ≥ 2),
we assume that Mx

k ≤ Mx
k−1, M

y
k ≤ My

k−1, M
z
k ≤ Mx

k−1,
Nx

k ≥ Nx
k−1, N

y
k ≥ Ny

k−1, and N
z
k ≥ Nz

k−1. Now

Mx
k+1 −Mx

k =
1

a11

[
r1 −

p1λ1(Nz
k − ϵ)

1 + p1h1λ1(Mx
k + ϵ) + p2h2λ2(M

y
k + ϵ)

− a12(N
y
k − ϵ)

]
−

1

a11

[
r1 − a12(N

y
k−1 − ϵ)

−
p1λ1(Nz

k−1 − ϵ)

1 + p1h1λ1(Mx
k−1 + ϵ) + p2h2λ2(M

y
k−1 + ϵ)

]
,

= −
p1λ1

a11

[
(Nz

k−1 − ϵ)

1 + p1h1λ1(Mx
k−1 + ϵ) + p2h2λ2(M

y
k−1 + ϵ)

−
(Nz

k − ϵ)

1 + p1h1λ1(Mx
k + ϵ) + p2h2λ2(M

y
k + ϵ)

]
−

a12

a11
[Ny

k−1 −Ny
k ],

≤
p1λ1(Nz

k−1 −Nz
k )

1 + p1h1λ1(Mx
k + ϵ) + p2h2λ2(M

y
k + ϵ)

+
a12

a11
[Ny

k−1 −Ny
k ],

≤ 0.

Similarly we can show thatMy
k+1 −My

k ≤ 0. Again

Mz
k+1 −Mz

k =
1

h

[
p1e1λ1(Mx

k + ϵ) + p2e2λ2(M
y
k+1 + ϵ)

1 + p1h1λ1(Nx
k − ϵ) + p2h2λ2(N

y
k − ϵ)

− d

]

−
1

h

[
p1e1λ1(Mx

k−1 + ϵ) + p2e2λ2(M
y
k + ϵ)

1 + p1h1λ1(Nx
k−1 − ϵ) + p2h2λ2(N

y
k−1 − ϵ)

− d

]
,

≤
1

h

[
p1e1λ1(Mx

k −Mx
k−1) + p2e2λ2(M

y
k+1 −My

k )

1 + p1h1λ1(Nx
k−1 − ϵ) + p2h2λ2(N

y
k−1 − ϵ)

]
,

≤ 0,

Nx
k+1 −Nx

k =
1

a11

[
r1 −

p1λ1(Mz
k+1 + ϵ)

1 + p1h1λ1(Nx
k − ϵ) + p2h2λ2(N

y
k − ϵ)

− a12(M
y
k+1 + ϵ)

]
−

1

a11

[
r1 − a12(M

y
k + ϵ)

−
p1λ1(Mz

k + ϵ)

1 + p1h1λ1(Nx
k−1 − ϵ) + p2h2λ2(N

y
k−1 − ϵ)

]
,

=
p1λ1

a11

[
Mz

k + ϵ

1 + p1h1λ1(Nx
k−1 − ϵ) + p2h2λ2(N

y
k−1 − ϵ)

−
Mz

k+1 + ϵ

1 + p1h1λ1(Nx
k − ϵ) + p2h2λ2(N

y
k − ϵ)

]
+

a12

a11
[My

k −My
k+1],

≥
a12

a11
[My

k −My
k+1] +

p1λ1

a11

[
Mz

k −Mz
k+1

1 + p1h1λ1(Nx
k − ϵ) + p2h2λ2(N

y
k − ϵ)

]
,

≥ 0.

Similarly, we can show that

Ny
k+1 −Ny

k ≥ 0,

Nz
k+1 −Nz

k =
1

h

[
p1e1λ1(Nx

k+1 − ϵ) + p2e2λ2(N
y
k+1 − ϵ)

1 + p1h1λ1(Mx
k+1 + ϵ) + p2h2λ2(M

y
k+1 + ϵ)

− d

]

−
1

h

[
p1e1λ1(Nx

k − ϵ) + p2e2λ2(N
y
k − ϵ)

1 + p1h1λ1(Mx
k + ϵ) + p2h2λ2(M

y
k + ϵ)

− d

]

≥
1

h

[
p1e1λ1(Nx

k+1 −Nx
k ) + p2e2λ2(N

y
k+1 −Ny

k )

1 + p1h1λ1(Mx
k + ϵ) + p2h2λ2(M

y
k + ϵ)

]
≥ 0.

This shows that {Mx
n}, {My

n} and {Mz
n} are monotonically de-

creasing and {Nx
n}, {Ny

n} and {Nz
n} are monotonically increas-

ing. Therefore, by the criterion of monotonic bounded, we have
established that every one of this six sequences has a limit.

Let limn→∞Mx
n = x1, limn→∞My

n = x2, limn→∞Mz
n =

x3, limn→∞Nx
n = y1, limn→∞Ny

n = y2, limn→∞Nz
n = y3.

Passing to the limit as n→ ∞ in eq. (11), we get

x1 =
1

a11

[
r1 − a12y2 −

p1λ1y3
1 + p1h1λ1x1 + p2h2λ2x2

]
,

x2 =
1

a22

[
r2 − a21y1 −

p2λ2y3
1 + p1h1λ1x1 + p2h2λ2x2

]
,

x3 =
1

h

[
p1e1λ1x1 + p2e2λ2x2

1 + p1h1λ1y1 + p2h2λ2y2
− d

]
,

y1 =
1

a11

[
r1 − a12x2 −

p1λ1x3
1 + p1h1λ1y1 + p2h2λ2y2

]
,

y2 =
1

a22

[
r2 − a21x1 −

p2λ2x3
1 + p1h1λ1y1 + p2h2λ2y2

]
,

y3 =
1

h

[
p1e1λ1y1 + p2e2λ2y2

1 + p1h1λ1x1 + p2h2λ2x2
− d

]
.

(12)

It is clear that x1 = y1, x2 = y2, and x3 = y3. Thus we obtain
x1 = x∗, x2 = y∗, x3 = z∗ as a solution of eq. (12). Hence,
the global asymptotic stability of (x∗, y∗, z∗) is obtained. This
completes the proof of the theorem.

4. Bifurcation analysis
In this section, we investigate Neimark-Sacker bifurcation

and flip bifurcation at the interior fixed point E∗ of system (2).

4.1. Neimark-Sacker bifurcation
To examine Neimark-Sacker bifurcation in system (2), we

need the following result [31].

Proposition 1. Suppose an n-dimensional system vk+1 =
gm(vk) wherem ∈ R is a bifurcation parameter. Let v∗ be fixed
point of gm and the characteristic polynomial for Jacobian matrix
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J(v∗) = (dij)n×n of n-dimensional map gm(vk) is given by

Pm(x) = xn + d1x
n−1 + · · ·+ dn−1x+ dn (13)

where di = di(m,α), i = 1, 2, 3, · · · , n and α is a control pa-
rameter or another parameter to be deduced. Let ∆±

0 (m,α) =
1,∆±

1 (m,α), · · · ,∆±
n (m,α) be a sequence of determinants de-

fined by∆±
i (m,α) = det(D1±D2), i = 1, 2, 3, · · · , n where

D1 =


1 d1 b2 · · · di−1

0 1 d1 · · · di−2

0 0 1 · · · di−3

· · · · · · · · · · · · · · ·
0 0 0 · · · 1

 ,

D2 =


bn−i+1 dn−i+2 · · · dn−1 dn
dn−i+2 dn−i+3 · · · dn 0
· · · · · · · · · · · · · · ·
dn−1 dn · · · 0 0
dn 0 · · · 0 0

 .

Further assume that
L1 Eigenvalue assignment ∆−

n−1(m0, α) = 0,
∆+

n−1(m0, α) > 0, Pm0
(1) > 0, (−)nPm0

(−1) > 0,
∆±

i (m0, α) > 0, i = n− 3, n− 5, · · · , 1(or 2), when n
is even or odd, respectively.

L2 Transversality condition: [
d(∆−

n−1(m,α))

dm ]m=m0
̸= 0.

L3 Non-resonance condition: cos(2π/j) ̸= ϕ, or resonance
condition cos(2π/j) = ϕ where j = 3, 4, 5, · · · and
ϕ = 1− 0.5Pm0(1)∆

−
n−3(m0, α)/∆

+
n−2(m0, α).

Then Neimark-Sacker bifurcation occurs atm0.

Now we state bifurcation result by taking h as a bifurcation pa-
rameter of system (2), we found the bifurcation phenomenon in
the following theorem.

Theorem 2. The fixed point E∗ of system (2) exhibits Neimark-
Sacker bifurcation if the following conditions hold:

1− q2 + q3(q1 − q3) = 0,

1 + q2 − q3(q1 + q3) > 0,

1 + q1 + q2 + q3 > 0,

1− q1 + q2 − q3 > 0,

(14)

where q1, q2 and q3 are defined in eq. (9).

Proof. Using Proposition 1, we have found the following equali-
ties and inequalities:

∆−
2 (h

∗) = 1− q2 + q3(q1 − q3) = 0,

∆+
2 (h

∗) = 1 + q2 − q3(q1 + q3) > 0,

Ph∗(1) = 1 + q1 + q2 + q3 > 0,

(−1)3Ph∗(−1) = 1− q1 + q2 − q3 > 0.

(15)

4.2. Flip bifurcation

Now we present the criterion for which a unique positive
fixed point of system (2) undergoes a flip bifurcation. Before stat-
ing our result, we require the following result:

Proposition 2 ([32]). In stead of the conditions L1, L2 and L3 in
Proposition 1, all other conditions hold. Further it is assumed that
the following conditions are satisfied:
H1 Pm0

(−1) = 0,∆±
n−1(m0, α) > 0, ∆±

i (m0, α) > 0,
i = n − 2, n − 4, · · · , 1(or 2), when n is even or odd,
respectively.

H2
∑n

i=1(−1)n−id′
i∑n

i=1(−1)n−i(n−i+1)di−1
̸= 0 where d′i denotes the deriva-

tive of di(m) atm = m0. Then a flip bifurcation occurs at
m0.

Theorem 3. The fixed point E∗ of system (2) admits flip bifurca-
tion at r1 = r∗1 if the following conditions are fulfilled:

1− q2 + q3(q1 − q3) > 0,

1 + q2 − q3(q1 + q3) > 0,

1 + q1 + q2 + q3 > 0,

1− q1 + q2 − q3 = 0,

1± q3 > 0,

q′1 − q′2 + q′3
3− 2q1 + q2

̸= 0.,

where q1, q2, and q3 are defined in eq. (9) and q′i stands for the
derivative of qi(r1) with respect to r1 at r1 = r∗1 .

Proof. Proof follows from Proposition 2.

5. Chaos control

Here, we show chaos control for system (2). It is more rea-
sonable for model involving biological population. In studying
discrete-time models, one can find chaotic and complicated dy-
namics than the continuous systems. So it is justifiable to ap-
ply control strategy to overcome any uncertainty. We consider
hybrid control method developed in [33]. This method uses a
single control parameter which lies in the open unit interval. In
literature,several types of methods are available for controlling
chaos in discrete systems, for example, state feedback method,
pole-placement technique and hybrid control method [34–36].
Among these, hybrid control method is very easy to apply. Ap-
plying hybrid control method for system (2), we have

xn+1 = ρxn exp
{
r1 −

p1λ1zn
1 + p1h1λ1xn + p2h2λ2yn

− a11xn − a12yn

}
+ (1− ρ)xn,

yn+1 = ρyn exp
{
r2 −

p2λ2zn
1 + p1h1λ1xn + p2h2λ2yn

− a21xn − a22yn

}
+ (1− ρ)yn,
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zn+1 = ρzn exp
{

p1e1λ1xn + p2e2λ2yn
1 + p1h1λ1xn + p2h2λ2yn

− hzn − d

}
+ (1− ρ)zn,

(16)

where 0 < ρ < 1 is taken as a control parameter. The Jacobian
matrix of controlled system (16) evaluated at E∗ is given by

J(x∗, y∗, z∗) =

 l11 l12 l13
l21 l22 l23
l31 l32 l33

 ,

l11 = 1− ρx∗
(
a11 −

p21λ
2
1h1z

∗

M2

)
, l13 = −ρp1λ1x

∗

M
,

l12 = ρx∗
(
a12 −

p1λ1p2λ2h2z
∗

M2

)
, l23 = −ρp2λ2y

∗

M
,

l21 = −ρy∗
(
a21 −

p1λ1p2λ2h1z
∗

M2

)
, l33 = 1− ρhz∗,

l22 = 1− ρy∗
(
a22 −

p22λ
2
2h2z

∗

M2

)
,

l31 =
ρz∗{p1e1λ1 + p1λ1p2λ2y

∗(e1h2 − e2h1)}
M2

,

l32 =
ρz∗{p2e2λ2 + p1λ1p2λ2x

∗(e2h1 − e1h2)}
M2

.

(17)

The fixed point E∗ of the controlled system (16) is locally asymp-
totically stable if all the roots of the characteristic polynomial of
eq. (17) lie in an unit open disk.

6. Numerical Simulation
In this section, we present some numerical simulations to

validate our analytical findings. First of all, some phase portraits
and time series plots of continuous system (1) are given to com-
pare the results derived in discrete system (2). We show the role
of the parameters r1, h1 and h on the dynamical behaviour of the
system.

Example 1. Suppose r1 = 3.5, r2 = 2, a11 = 0.1, a12 = 0.2,
a21 = 0.01, a22 = 0.1, p1 = 2, p2 = 2, c1 = 1, c2 = 1.5,
h1 = 0.5, h2 = 0.05, h = 0.2, d = 1.3, λ1 = 1, and
λ2 = 1 for system (1). Then limit cycle appears around the
equilibrium point E∗ = (12.1061, 4.64, 7.7201) (see Fig-
ure 1). If we decrease the value of h1 from 0.5 to 0.35,
then system (1) becomes stable around the equilibrium point
E∗ = (14.4933, 2.2523, 9.1789) (see Figure 2).

Example 2. Suppose r1 = 2.842, r2 = 1.6, a11 = 10, a12 =
0.2, a21 = 2, a22 = 1, p1 = 2, p2 = 2, c1 = 1, c2 = 1.5,
h1 = 0.5, h2 = 0.5, h = 0.35, d = 1.3, λ1 = 1, and λ2 =
1 for system (1). Then system (1) becomes stable around
the equilibrium point E∗ = (0.2358, 0.8059, 0.3291) (see
Figure 3).

Example 3. Suppose r1 = 2.8, r2 = 1.6, a11 = 10, a12 =
0.2, a21 = 0.1, a22 = 1, p1 = 2, p2 = 2, c1 = 1, c2 = 1.5,
h1 = 0.5, h2 = 0.5, d = 1.3, λ1 = 1, λ2 = 1, initial points
(2, 1, 2), and h ∈ (0.1, 1) in system (2) with the initial condi-
tion (x0, y0, z0) = (2, 1, 2). When h is considered as a bifur-
cation parameter, then at h = h∗ = 0.36, the interior fixed
point E∗ = (0.1994, 0.9827, 0.6658) becomes unstable and
system (2) undergoes Neimark-Sacker bifurcation. It shows
that the Theorem 2 is true. Bifurcation diagrams and maxi-
mum Lyapunov exponents (MLE) with respect to the param-
eter h of system (2) are depicted in Figure 4. As h increases,
we observe that a transition from unstable to stable and then
bifurcation within a limit cycle to a periodic window and fi-
nally to chaos.

Example 4. Suppose r2 = 1.6, a11 = 10, a12 = 0.2,
a21 = 2, a22 = 1, p1 = 2, p2 = 2, c1 = 1, c2 = 1.5,
h1 = 0.5, h2 = 0.5, h = 0.35, d = 1.3, λ1 = 1, λ2 = 1,
initial points (0.5, 0.5, 0.5), and r1 ∈ (2.6, 3.6) in system (2)
with the initial condition (x0, y0, z0) = (2, 1, 2). When r1 is
considered as a bifurcation parameter, then at r1 = 2.842,
the interior fixed point E∗ = (0.2358, 0.8059, 0.3291) be-
comes unstable and system (2) undergoes flip bifurcation. It
shows that Theorem 3 is true. Bifurcation diagrams and MLE
with respect to the parameter r1 of system (2) are shown in
Figure 5. From Figure 5, it is observed that the system is
stable as log as r1 < 2.842 and as r1 increases, a series
of period-doubling bifurcation wherein a 2k− cycle loses its
stability.

Example 5. Suppose r1 = 3.3, r2 = 3.2, a11 = 0.01, a12 =
0.02, a21 = 0.01, a22 = 0.01, p1 = 2, p2 = 2, c1 = 1,
c2 = 1.5, h1 = 0.35, h2 = 0.4, h = 1, d = 1.3, λ1 = 1,
λ2 = 1, and initial points (2, 1, 2) for system (1). Then the
conditions of Lemma 2 are violated. Thus the fixed point
E∗ = (0.2627, 317.7, 2.434) is unstable. Moreover, system
(2) admits chaotic behaviour (see Figure 6a). Suppose ρ =
0.2 and other parameters are same as in Example 5. Then
the chaotic orbit of system (2) is stabilized at the fixed point
E∗ = (0.2627, 317.7, 2.434) (see Figure 6b).

7. Discussion

The relationship with two rival prey and their common
predator plays an important role in structuring communities.
switching of prey increases the predators ability to consume
more prey instead of sticking upto one particular prey and it in-
creases their growth rate with a higher rate. Sometimes it is dif-
ficult to predict the actual picture in continuous model of inter-
acting species. The main reason behind this is non-overlapping
generation of population. In such occurrence, we have proposed
and investigated a three dimensional discrete-time system con-
sisting of two competing preys with a shared predator. System
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Figure 1. Phase portrait along with time series plots of system (1) with parameter values r1 = 3.5, r2 = 2, a11 = 0.1, a12 = 0.2,
a21 = 0.01, a22 = 0.1, p1 = 2, p2 = 2, c1 = 1, c2 = 1.5, h1 = 0.5, h2 = 0.05, h = 0.2, d = 1.3, λ1 = 1, λ2 = 1, and initial
points (2, 1, 2) and (5, 4, 5).
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Figure 2. Phase portrait along with time series plots of system (1) with parameter values r1 = 3.5, r2 = 2, a11 = 0.1, a12 = 0.2,
a21 = 0.01, a22 = 0.1, p1 = 2, p2 = 2, c1 = 1, c2 = 1.5, h1 = 0.35, h2 = 0.05, h = 0.2, d = 1.3, λ1 = 1, λ2 = 1, and
initial points (2, 1, 2) and (5, 4, 5).
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Figure 3. Phase portrait along with time series plots of system (1) with parameter values r1 = 2.842, r2 = 1.6, a11 = 10, a12 = 0.2,
a21 = 2, a22 = 1, p1 = 2, p2 = 2, c1 = 1, c2 = 1.5, h1 = 0.5, h2 = 0.5, h = 0.35, d = 1.3, λ1 = 1, λ2 = 1, and initial
points (2, 1, 2) and (5, 4, 5).
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Figure 5. Bifurcation diagrams and MLE for system (2) with parameter values r2 = 1.6, a11 = 10, a12 = 0.2, a21 = 2, a22 = 1, p1 = 2,
p2 = 2, c1 = 1, c2 = 1.5, h1 = 0.5, h2 = 0.5, d = 1.3, λ1 = 1, λ2 = 1, r1 ∈ (2.6, 3.6), and initial point (2, 1, 2).
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Figure 6. (a). Phase portrait of system (2) with parameter values r1 = 3.3, r2 = 3.2, a11 = 0.01, a12 = 0.02, a21 = 0.01, a22 = 0.01,
p1 = 2, p2 = 2, c1 = 1, c2 = 1.5, h1 = 0.35, h2 = 0.4, h = 1, d = 1.3, λ1 = 1, λ2 = 1, and initial points (2, 1, 2) and (b).
phase portrait of controlled system (16) for ρ = 0.2.

(2) is constructed on the basis of continuous system (1), which
was studied in [8]. The stability (local as well as global) of inte-
rior fixed point, Neimark-Sacker bifurcation, flip bifurcation and
chaos control are examined. The basic results of the model have
been studied through phase portrait, bifurcation diagrams and
maximum Lyapunov exponents.

In the continuous system (1), it is observed from Figure 2
that when the time spent in handling time with the prey x is
decreased, the system becomes stable. Furthermore, the system
can be stabilized by decreasing the birth rate of the first prey
and the intrinsic growth rate of the second prey (see Figure 3).
Figures 3 and 5, one can observe that the system which is stable
for continuous case but not stable in the discrete case.

It is identified that the parameter h, representing the intra-
specific competition rate among the predator species z is more
relevant to the emergence of Neimark-Sacker bifurcation when-
ever it is varied in some appropriate interval. In examining bifur-
cation, we have observed that the parameter r1, representing the
birth rate of the prey species xmay result flip bifurcation. In real
world, it is observed that shrimps posses a regular structure with
four long narrow tails joined to a central head. Over the outer
surface of a shrimp, the system shows chaos via tangent bifur-
cation, whereas in inner surface, period doubling transition to
chaos appears through flip bifurcation [37]. The proposed model
admits more rich characteristics and more complicated dynam-
ics than that exist in the continuous case. We have derived the
condition for global stability of the positive fixed point by apply-
ing the iteration scheme and comparison principle of difference
equation. Conditions of Theorem 3.1 indicate that when the birth
rate of prey x and intrinsic growth rate of prey y remain below
one and with other restrictions on system parameters then the
positive fixed point is globally asymptotically stable.

Occasionally bifurcation and chaos are in fact undesirable
problem in discrete dynamical systems, because population may
face extinction due to chaos. Hence chaos control is important in
dynamical system. To overcome this situation, we have employed

the hybrid control method so that stability of the system can be
regained.

To our understanding, the dynamical study of discrete time
model considering two competing prey with a shared predator
has not been studied yet.

The major drawback of discrete-time models is related to
data accuracy. In many instances relatively large discretization
step lengths are chosen for tractability, resulting in approxima-
tion errors in the converted problem data, which may lead to
inferior solutions.
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