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Mathematical Model of SAR-CoV-2 and Influenza A Virus
Coinfection within Host with CTL-Mediated Immunity

Mia Siti Khumaeroh1,∗, Najmudin Nuwari2, Elvi Syukrina Erianto3, and Nela Rizka4

1,2,3Department of Mathematics, Universitas Islam Negeri Sunan Gunung Djati, Indonesia
4Department of Mathematics, Faculty of Science, Institut Teknologi Sumatra, Indonesia

ABSTRACT. Coinfection of SARS-CoV-2 and Influenza A virus within a host poses a unique challenge in understanding
immunological dynamics, especially the role of cytotoxic T lymphocytes (CTL) in mediating the immune response.
This work present a mathematical model to examine the dynamics of coinfection within a host, highlighting CTL-
mediated immunity. Generally, this model encompasses several compartments, including epithelial cells, free viruses,
and CTLs specific of both SARS-CoV-2 and Influenza A. The basic properties of the model, equilibrum state analysis,
stability using the Lyapunov function, and numerical simulations are examined to investigate the dynamics behavior
of the model. Eight equilibrium states are identified: the virus-free equilibrium (E0), single SARS-CoV-2 infection
without CTLs (E1), single Influenza A virus infection without CTLs (E2), single SARS-CoV-2 infection with SARS-CoV-
2-specific CTLs (E3), single Influenza A virus infection with Influenza A virus-specific CTLs (E4), SARS-CoV-2 and
Influenza A virus coinfection with SARS-CoV-2-specific CTLs (E5), SARS-CoV-2 and Influenza A virus coinfection with
Influenza A virus-specific CTLs (E6), and SARS-CoV-2 and Influenza A virus coinfection with both SARS-CoV-2-specific
and Influenza A virus-specific CTLs (E7). The existence and stability regions for each equilibrium state are determined
and represented in the R1-R2 plane as threshold functions within the model. Numerical simulations confirm the
results of the qualitative analysis, demonstrating that CTLs specific to SARS-CoV-2 and Influenza A virus can be
activated, reducing the number of infected epithelial cells as well as inhibiting virus transmission within epithelial
cells. Furthermore, analysis of parameter changes shows that increasing the proliferation rate of epithelial cells and
CTLs, while lowering the virus formation rate, can shift the system’s stability threshold and stabilize it at the virus-free
equilibrium.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2) is the virus responsible for the COVID-19 pandemic, which
emerged in Wuhan, China, in December 2019 and subsequently
spread globally, leading to an international health emergency for
several years [1, 2]. According to the World Health Organiza-
tion (WHO), as of September 2024, the number of COVID-19 con-
firmed cases globally exceeds 776 million, with more than 7 mil-
lion deaths. In Indonesia, approximately 6.8 million confirmed
cases and 162 thousand deaths have been reported [3]. In ad-
dition, influenza viruses, similar to SARS-CoV-2, also cause res-
piratory infections in humans, resulting in seasonal outbreaks.
These viruses infect up to 25% of the global human population
[4]. There are four types of influenza viruses: A, B, C, and D, with
Influenza A viruses being capable of causing flu pandemics [5].

Coinfections, where a host is simultaneously infected by
multiple pathogens, can lead to more severe symptoms in pa-
tients due to immune system complications, decreased treatment
effectiveness, and higher risk of misdiagnosis. These conditions
also present a higher challenge to the healthcare process due to
overlapping clinical traits [6, 7]. SARS-CoV-2 and Influenza A both
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infect the epithelial cells of the host’s respiratory tract and have
similar clinical symptoms such as shortness of breath, cough, and
fever [8, 9]. A study reported that the coinfection rate of SARS-
CoV-2 and Influenza A reached 49.8% among COVID-19 patients in
Wuhan. A study in the UK also revealed that 19% of COVID-19 pa-
tients tested positive for both Influenza A virus and SARS-CoV-2
during the first outbreak of COVID-19 from January to April 2020
[10]. Individuals with coinfections of Influenza and SARS-CoV-2
experience a higher risk of severe symptoms and an increased
mortality rate compared to those with a single SARS-CoV-2 in-
fection [11, 12]. Cytotoxic T Lymphocytes (CTL), or killer T cells,
are crucial components of the immune system that detect and
kill virus-infected cells. CTLs derive from T cells, a subtype of
lymphocytes, that undergo maturation in the thymus. They are
generated when naive T cells, which circulate in the body, recog-
nize specific viral antigens shown on the surface of infected cells.
Once activated by these antigens, T cells differentiate into CTLs,
which subsequently locate and eliminate infected cells [13, 14].
CTLs, which are specific to SARS-CoV-2 and Influenza A, are crit-
ical components of the immune response, both identifying and
targeting cells infected by their respective viruses through the
detection of unique viral antigens. Both types of CTLs exhibit
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Figure 1. Compartment diagram of SARS-CoV-2 and Influenza A Virus coinfection

strong antigen-specificity, indicating that CTLs specific to SARS-
CoV-2 generally do not identify or attack cells infected with In-
fluenza A, and vice versa [15, 16].

Mathematical models provide a systematic approach to in-
vestigate and predict how coinfections of SARS-CoV-2 and In-
fluenza A evolve within the host. Previously, single infection
models of Influenza A virus or SARS-CoV-2 have been studied [17–
29]. Those studies examine several mathematical approaches,
including spatio-temporal analysis, deterministic and stochastic
models, discrete models with delay, or using a fractal-fractional
derivative order in the model. Strategies such as quarantine or
treatment are used to control disease transmission.

S. Chowdhury et al. [30] constructed a mathematical model
of COVID-19 that considers the interaction between the immune
system and SARS-CoV-2 within a host. The model analyzes sin-
gle infections caused by SARS-CoV-2 and explores the viral load
dynamics within the host, considering the roles of natural killer
cells and T-cells. M. Ojo et al. [31] developed a coinfection model
for COVID-19 and influenza by analyzing 15 compartments, in-
cluding the exposed (latent) compartment. However, their model
focuses on transmission between individuals rather than within
a host, with the primary analysis centered on optimal control.
Additionally, a study by Ahmed M. Elaiw et al. in 2023 [32] de-
veloped a coinfection model of IAV and SARS-CoV-2 that incor-
porates the eclipse (latent) phase and specific antibody immu-
nity. This model examines the interactions among nine com-
partments, including uninfected epithelial cells, latent and active
SARS-CoV-2-infected cells, latent and active IAV-infected cells,
free SARS-CoV-2 particles, free IAV particles, SARS-CoV-2-specific
antibodies, and IAV-specific antibodies.

Compared to the previous study [32], which adopts a virus-
antibody-specific approach to modeling IAV/SARS-CoV-2 coinfec-
tion, this paper presents a mathematical model for the coinfec-
tion of SARS-CoV-2 and Influenza A virus within a host, focusing
on the role of Cytotoxic T lymphocytes (CTLs) specific to each
virus. The key difference lies in target of immune response,
CTLs directly target and eliminate infected or abnormal cells (e.g.,
virus-infected or cancer cells), whereas virus-specific antibodies
bind to free virus particles, preventing them from entering cells
(neutralization) but do not directly affect infected cells [33, 34].

A latency compartment is included to account for the latency
period or eclipse phase during which the virus enters epithelial
cells and begins replicating without producing or releasing infec-
tious virions. Furthermore, as the eclipse phase for SARS-CoV-2 is
longer than that for Influenza A, the latency phase is incorporated
solely into the SARS-CoV-2 infection dynamics in this model.

Next, the process of constructing the model, along with its
basic qualitative properties and equilibrium states, will be ana-
lyzed. Global stability will be assessed using the Lyapunov func-
tion, and stability regions will be thoroughly examined to com-
plement the analytical results. Furthermore, numerical simula-
tions will be conducted to validate the findings from the analyti-
cal analysis.

2. Mathematical Model and Analysis

2.1. Model formulation

In this section, we present the model for coinfection of
SARS-CoV-2 and Influenza A virus in a host with CTL immu-
nity. This model involves interactions among eight compart-
ments, namely uninfected epithelial cells (S), latent SARS-CoV-2-
infected cells (L), active SARS-CoV-2-infected cells (Iv), free SARS-
CoV-2 particles (V ), Influenza A virus-infected cells (Ia), free In-
fluenza A virus particles (A), SARS-CoV-2-specific CTLs (Cv), and
Influenza A virus-specific CTLs (Ca). In this model, uninfected
epithelial cells are targeted by both SARS-CoV-2 and Influenza A
virus. SARS-CoV-2-Infected cells undergo an intracellular latency
period (eclipse phase) before releasing the viral particle to in-
fect other uninfected epithelial cells. However, as Influenza A
virus-infected cells have shorter intracellular latency period, this
model assumes no latency compartment for Infected Influenza A.
Free SARS-CoV-2 particles (V ) and free Influenza A virus particles
(A) are released from the SAR-CoV-2-infected cells and Influenza-
A virus infected cells, respectively. On the other hand, CTLs-
specific cells, both SAR-CoV-2 or Influenza A, are activated and
proliferated when the infected cells present and release the virus.
These CTLs then circulate through the body, and killing infected
cells displaying the same viral antigen. The coinfection process
diagram of SARS-CoV-2 and Influenza A virus within a host with
CTL immunity are illustrated in Figure 1.
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Table 1. Parameters in the model of coinfection of SARS-CoV-2 and Influenza A virus

Parameter Description Unit
α The proliferation rate of uninfected epithelial cells cell/time
µ1 The natural death rate of uninfected epithelial cells 1/time
µ2 The natural death rate of SARS-CoV-2 1/time
µ3 The natural death rate of Influenza A virus 1/time
µ4 The natural death rate of laten SARS-CoV-2-infected cells 1/time
µ5 The natural death rate of SARS-CoV-2-infected cells 1/time
µ6 The natural death rate of Influenza A virus-infected cells 1/time
µ7 The natural death rate of SARS-CoV-2-specific CTL 1/time
µ8 The natural death rate of Influenza A-specific CTL 1/time
β1 The transmission rate of SARS-CoV-2 particle 1/(time.cell)
β2 The transmission rate of Influenza A virus particle 1/(time.cell)
γ The transition rate from latent SARS-CoV-2-infected cells to active 1/time
ω1 The formation rate of new SARS-CoV-2 particles 1/time
ω2 The formation rate of new Influenza A virus particles 1/time
π1 The killing rate of active SARS-CoV-2-infected cells by SARS-CoV-2-specific CTL 1/(time.cell)
π2 The killing rate of Influenza A virus infected cells by Influenza A virus specific CTL 1/(time.cell)
σ1 The proliferation rate of SARS-CoV-2-specific CTL 1/(time.cell)
σ2 The proliferation rate of Influenza A virus-specific CTL 1/(time.cell)

Based on the compartment diagram in Figure 1, the coin-
fection of SARS-CoV-2 and Influenza A virus in a host with CTL
immunity can be modeled as a system of nonlinear ordinary dif-
ferential equations as follows:

dS

dt
= α− β1SV − β2SA− µ1S,

dL

dt
= β1SV − γL− µ4L,

dIv
dt

= γL− π1IvCv − µ5Iv,

dIa
dt

= β2SA− π2IaCa − µ6Ia,

dV

dt
= ω1Iv − µ2V,

dA

dt
= ω2Ia − µ3A,

dCv

dt
= σ1IvCv − µ7Cv,

dCa

dt
= σ2IaCa − µ8Ca.

(1)

with initial values S(0) ≥ 0, L(0) ≥ 0, Iv(0) ≥ 0, Ia(0) ≥ 0,
V (0) ≥ 0, A(0) ≥ 0, Cv(0) ≥ 0, Ca(0) ≥ 0. The parameter
descriptions for System (1) are provided in Table 1.

2.2. The non-negativity and boundedness of solution
In this section, the solutions of System (1) will be proven

non-negative and bounded for t > 0, ensuring consistency with
its biological interpretation.

Theorem 1. The solutions of differential equation system (1):
S(t), L(t), Iv(t), Ia(t), V (t),A(t), Cv(t), andCa(t) are non-
negative with the given initial values S(0) ≥ 0, L(0) ≥ 0,
Iv(0) ≥ 0, Ia(0) ≥ 0, V (0) ≥ 0, A(0) ≥ 0, Cv(0) ≥ 0,
and Ca(0) ≥ 0, respectively.

Proof. From the system (1), the change of uninfected epithelial

cells is written as

dS

dt
= α− (β1V + β2A+ µ1)S ≥ −(β1V + β2A+ µ1)S.

By using integrating factor method, we get∫ t

0

dS(τ)

S(τ)
≥

∫ t

0

−(β1V + β2A+ µ1)dτ,

lnS(τ)
∣∣ t
0
≥ − µ1t−

∫ t

0

(β1V + β2A)dτ,

ln
S(t)

S(0)
≥ − µ1t−

∫ t

0

(β1V + β2A)dτ,

S(t) ≥ S(0) exp

[
−µ1t−

∫ t

0

(β1V + β2A)dτ

]
.

Thus, for every t ≥ 0, the solution of S(t) remains nonnegative,
since the exponential function is always positive and S(0) ≥ 0.
By applying the same method, it can be derived that L(t), Iv(t),
Ia(t), V (t), A(t), Cv(t), and Ca(t) are all nonnegative.

Theorem 2. The solutions of differential equation system (1) are
bounded, and the region define by

D =

{
(S,L, Iv, Ia, V, A,Cv, Ca) ∈ R8 : 0 ≤ N ≤ α

ρ

}
.

with

N = S + L+ Iv + Ia +
µ5

2ω1
V +

µ6

2ω2
A+

π1
σ1
Cv +

π2
σ2
Ca,

is nonegativity invariant.

Proof. Let

N = S + L+ Iv + Ia +
µ5

2ω1
V +

µ6

2ω2
A+

π1
σ1
Cv +

π2
σ2
Ca.
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Its derivative can be expressed as

dN

dt
=
dS

dt
+
dL

dt
+
dIv
dt

+
dIa
dt

+
µ5

2ω1
· dV
dt

+
µ6

2ω2
· dA
dt

+
π1

σ1
· dCv

dt
+
π2

σ2
· dCa

dt
,

dN

dt
= α− β1SV − β2SA− µ1S + β1SV − γL− µ4L+ γL

− π1IvCv − µ5Iv + β2SA− π2IaCa − µ6Ia +
µ5

2ω1
[ω1Iv

− µ2V ] +
µ6

2ω2
[ω2Ia − µ3A] +

π1

σ1
[σ1IvCv − µ7Cv]

+
π2

σ2
[σ2IaCa − µ8Ca] ,

dN

dt
= α− µ1S − µ4L− µ5Iv − µ6Ia +

µ5Iv
2

− µ5µ2

2ω1
V +

µ6Ia
2

− µ6µ3

2ω2
A− π1µ7

σ1
Cv − π2µ8

σ2
Ca,

dN

dt
= α− µ1S − µ4L− µ5Iv − µ6Ia − µ5µ2

2ω1
V − µ6µ3

2ω2
A

− π1µ7

σ1
Cv − π2µ8

σ2
Ca,

dN

dt
≤ α− ρ

[
S + L+ Iv + Ia +

µ5

2ω1
V +

µ6

2ω2
A+

π1

σ1
Cv +

π2

σ2
Ca

]
dN

dt
≤ α− ρN.

where ρ = min
{
µ1, µ4,

µ5

2
,
µ6

2
, µ2, µ3, µ7, µ8

}
. By using inte-

grating factor method, we get

dN(t)

dt
· e ρt + ρN(t) · e ρt ≤ α · e ρt,∫ t

0

d
(
N(t) · e ρt

)
≤

∫ t

0

α · e ρtdτ,

N(t) · e ρt −N(0) ≤ α

ρ
(eρt − 1),

N(t) ≤ α

ρ
+

(
N(0)− α

ρ

)
e−ρt.

If N(0) ≤ α
ρ , then we have 0 ≤ N(t) ≤ α

ρ for t > 0. Taking the
supremum limit of N(t) as t→ ∞, we obtain

lim sup
t→∞

N(t) = lim
t→∞

[
α

ρ
+

(
N(0)− α

ρ

)
e−ρt

]
=
α

ρ
,

Thus N(t) is upper-bounded. Next, from Theorem 1, since all
solutions are nonnegative, if

0 ≤ S(0) + L(0) + Iv(0) + Ia(0) +
µ5

2ω1
V (0) ≤ α

ρ
,

+
µ6

2ω2
A(0) +

π1
σ1
Cv(0) +

π2
σ2
Ca(0)

then we have

0 ≤ S(t) + L(t) + Iv(t) + Ia(t) +
µ5

2ω1
V (t) ≤ α

ρ

+
µ6

2ω2
A(t) +

π1
σ1
Cv(t) +

π2
σ2
Ca(t)

or

0 ≤ S(t), L(t), Iv(t), Ia(t) ≤
α

ρ
;

0 ≤ V (t) ≤ 2αω1

ρµ5
;

0 ≤ A(t) ≤ 2αω2

ρµ6
;

0 ≤ Cv(t) ≤
ασ1
ρπ1

;

0 ≤ Ca(t) ≤
ασ2
ρπ2

.

To conclude, it has been proven that the solutions of System (1)
are bounded and nonnegativity invariant.

2.3. Equilibrium States
The equilibrium states of the mathematical model of SARS-

CoV-2 and Influenza A coinfection in a host with CTL-mediated
immunity are obtained when each of the differential equations in
System (1) equals zero.

α− β1SV − β2SA− µ1S = 0,

β1SV − γL− µ4L = 0,

γL− π1IvCv − µ5Iv = 0,

β2SA− π2IaCa − µ6Ia = 0,

ω1Iv − µ2V = 0,

ω2Ia − µ3A = 0,

σ1IvCv − µ7Cv = 0,

σ2IaCa − µ8Ca = 0.

(2)

By solving the equations system (2), we obtain eight equilibrium
states, as follows:
1. The virus-free equilibrium state (E0):

E0 = (S,L, Iv, Ia, V, A,Cv, Ca),

=

(
α

µ1
, 0, 0, 0, 0, 0, 0, 0

)
.

2. The equilibrium state of single SARS-CoV-2 infection with-
out CTL (E1):

E1 = (S,L, Iv, Ia, V, A,Cv, Ca),

= (S1, L1, Iv1, 0, V1, 0, 0, 0),

with

S1 =
ξµ2µ5

γβ1ω1
, L1 =

µ1µ2µ5

β1ω1γ
(R1 − 1) ,

Iv1 =
µ1µ2

β1ω1
(R1 − 1) , V1 =

µ1

β1
(R1 − 1) ,

ξ = (γ + µ4), R1 =
αγβ1ω1

ξµ1µ2µ5
.

Note that the equilibrium state E1 exists when R1 > 1.
3. The equilibrium state of single Influenza-A virus infection

without CTL (E2):

E2 = (S,L, Iv, Ia, V, A,Cv, Ca),

= (S2, 0, 0, Ia2, 0, A2, 0, 0),
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with

S2 =
µ3µ6

β2ω2
, Ia2 =

µ1µ3

β2ω2
(R2 − 1) ,

A2 =
µ1

β2
(R2 − 1) , R2 =

αβ2ω2

µ1µ3µ6
.

Note that the equilibrium state E2 exists when R2 > 1.
4. The equilibrium state of single SARS-CoV-2 infection with

SARS-CoV-2 specific CTL (E3):

E3 = (S,L, Iv, Ia, V, A,Cv, Ca),

= (S3, L3, Iv3, 0, V3, 0, Cv3, 0) ,

with

S3 =
αµ2σ1

β1µ7ω1 + µ1µ2σ1
, Iv3 =

µ7

σ1
,

L3 =
αβ1ω1µ7

ξ (β1µ7ω1 + µ1µ2σ1)
, V3 =

µ7ω1

σ1µ2
,

Cv3 =
µ5

π1

(
R1

h1
− 1

)
, ξ = γ + µ4,

h1 =
α

µ1S3
.

Thus, the equilibrium state E3 exists when R1 > h1.
5. The equilibrium state of single Influenza-A virus infection

with Influenza A specific CTL (E4):

E4 = (S,L, Iv, Ia, V, A,Cv, Ca),

= (S4, 0, 0, Ia4, 0, A4, 0, Ca4) ,

with

S4 =
αµ3σ2

β2µ8ω2 + µ1µ3σ2
, Ia4 =

µ8

σ2
,

A4 =
µ8ω2

σ2µ3
, Ca4 =

µ6

π2

(
R2

h2
− 1

)
,

h2 =
α

µ1S4
.

Note that the equilibrium state E4 exists when R2 > h2.
6. The equilibrium state of coinfection with SARS-CoV-2 and

Influenza A virus, with only SARS-CoV-2 specific CTL (E5):

E5 = (S,L, Iv, Ia, V, A,Cv, Ca),

= (S5, L5, Iv5, Ia5, V5, A5, Cv5, 0) ,

with

S5 =
µ3µ6

β2ω2
, L5 =

µ7µ3µ6β1ω1

σ1β2ω2ξµ2
,

Iv5 =
µ7

σ1
, V5 =

µ7ω1

σ1µ2
,

Ia5 =
αh1
µ6R2

(
R2

h1
− 1

)
, A5 =

αω2h1
µ3µ6R2

(
R2

h1
− 1

)
,

Cv5 =
µ5

π1

[
γβ1µ3µ6ω1

ξβ2µ2µ5ω2
− 1

]
=
µ5

π1

[
R1

R2
− 1

]
,

ξ = γ + µ4, h1 =
α

µ1S3
.

Thus, the equilibrium state E5 exists when R2 > h1 and
R1 > R2.

7. The equilibrium state of coinfection with SARS-CoV-2 and
Influenza A virus, with only Influenza A specific CTL stimu-
lated (E6):

E6 = (S,L, Iv, Ia, V, A,Cv, Ca),

= (S6, L6, Iv6, Ia6, V6, A6, 0, Ca6) ,

with

S6 =
ξµ2µ5

γβ1ω1
, L6 =

αh2
ξR1

(
R1

h2
− 1

)
,

Iv6 =
αγh2
ξµ5R1

(
R1

h2
− 1

)
, Ia6 =

µ8

σ2
,

V6 =
αγω1h2
ξµ2µ5R1

(
R1

h2
− 1

)
, A6 =

µ8ω2

σ2µ3
,

Ca6 =
µ6

π2

[
ξβ2µ2µ5ω2

γβ1µ3µ6ω1
− 1

]
=
µ6

π2

[
R2

R1
− 1

]
,

ξ = γ + µ4, h2 =
α

µ1S4
.

Thus, the equilibrium state E6 exists when R1 > h2 and
R2 > R1.

8. The equilibrium state of coinfection with SARS-CoV-2 and
Influenza A virus, with stimulation of both SARS-CoV-2 and
Influenza A specific CTL (E7):

E7 = (S,L, Iv, Ia, V, A,Cv, Ca),

= (S7, L7, Iv7, Ia7, V7, A7, Cv7, Ca7) ,

with

S7 =
µ3β2ω2

µ6Rb
, L7 =

µ8γσ1
µ5Ra

,

Iv7 =
µ7

σ1
, Ia7 =

µ8

σ2
,

V7 =
µ7ω1

σ1µ2
, A7 =

µ8ω2

σ2µ3
,

Cv7 =
µ5

π1
(Ra − 1) , ξ = γ + µ4,

Ca7 =
µ6

π2
(Rb − 1) ,

Ra =
αγβ1µ3ω1σ1σ2

ξµ5 (β1µ3µ7ω1σ2 + β2µ2µ8ω2σ1 + µ1µ2µ3σ1σ2)
,

Rb =
αβ2µ2ω2σ1σ2

µ6 (β1µ3µ7ω1σ2 + β2µ2µ8ω2σ1 + µ1µ2µ3σ1σ2)
.

Note that,

R1

h1 + h2

=
αγβ1µ3ω1σ1σ2

ξµ5 (β1µ3µ7ω1σ2 + β2µ2µ8ω2σ1 + 2µ1µ2µ3σ1σ2)
> Ra,

R2

h1 + h2

=
αβ2µ2ω2σ1σ2

µ6 (β1µ3µ7ω1σ2 + β2µ2µ8ω2σ1 + 2µ1µ2µ3σ1σ2)
> Rb.

As shown,Cv7 andCa7 will be positive when R1

h1+h2
> Ra >

1 and R2

h1+h2
> Rb > 1. Thus, the equilibrium state E7

exists when R1 > h1 + h2 and R2 > h1 + h2.

2.4. Stability Analysis
In this section, we analyze the global stability of equilib-

rium states using a Lyapunov function. The definition of the Lya-
punov function is presented as follows:
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Definition 1. [35] Let xe be an equilibrium state of the differ-
ential equation ẋ = f (x). A function ψ : Rn → Rn is called
a Lyapunov function for xe if there exists a neighborhood
D ⊆ Rn around xe that satisfies the following conditions:
1. Function ψ (x) > 0 for x ∈ D with x ̸= xe and
ψ (xe) = 0 for x = xe.

2. If ψ̇ (x) ≤ 0 for every x ∈ D, then the equilibrium state
xe stable.

3. If ψ̇ (x) < 0 for x ∈ D, with x ̸= xe, then the equilib-
rium state xe globally asymptotically stable.

Definition 2. Define a function

f(x) = x− 1− lnx. (3)

This function has a positive domain and a nonnegative range,
with a minimum value of 0 at x = 1.

Moreover, we will also apply the Arithmetic Mean-
GeometricMean (AM-GM) inequality [36] in analyzing the stability
of System (1). Let a1, a2, a3, . . . , an ∈ R+ with n ≥ 2, then the
following inequalities hold.

a1 + a2 + · · ·+ an
n

≥ n
√
a1a2 · · · an, ai ≥ 0, i = 1, 2, · · · , n.

(4)
Now let E = (S,L, Iv, Ia, V, A,Cv, Ca), the stabilities of the
different equilibrium states of System (1) are described by the
following theorems.

Theorem 3. If R1 ≤ 1 and R2 ≤ 1, then the equilibrium state
E0 is globally asymptotically stable in D.

Proof. Define the Lyapunov function as follows:

ψ0(E) = S0

(
S

S0
− 1− ln

(
S

S0

))
+ L+

ξ

γ
Iv + Ia +

ξµ5

γω1
V

+
µ6

ω2
A+

ξπ1
γσ1

Cv +
π2
σ2
Ca.

Based on Definition 1 and 2, we have:
1. For any E = (S,L, Iv, Ia, V, A,Cv, Ca) ∈ D with E ̸= E0,

the inequality ψ0(E) > 0 holds. Furthermore, if E = E0,
then ψ0 (E) = 0.

2. The derivative of the function ψ0 with respect to t is:

ψ̇0(E) =
dψ0

dS
· dS
dt

+
dψ0

dL
· dL
dt

+
dψ0

dIv
· dIv
dt

+
dψ0

dIa
· dIa
dt

+
dψ0

dV
· dV
dt

+
dψ0

dA
· dA
dt

+
dψ0

dCv
· dCv

dt

+
dψ0

dCa
· dCa

dt
,

ψ̇0(E) =

(
1− S0

S

)
[α− β1SV − β2SA− µ1S] + β1SV

− ξL+
ξ

γ
[γL− π1IvCv − µ5Iv] + β2SA

− π2IaCa − µ6Ia +
ξµ5

γω1
[ω1Iv − µ2V ]

+
µ6

ω2
[ω2Ia − µ3A] +

ξπ1
γσ1

[σ1IvCv − µ7Cv]

+
π2
σ2

[σ2IaCa − µ8Ca, ] ,

ψ̇0(E) =

(
1− S0

S

)
(α− µ1S) + β1S0V + β2S0A

− ξµ5µ2

γω1
V − µ6µ3

ω2
A− ξπ1µ7

γσ1
Cv −

π2µ8

σ2
Ca.

Substituting S0 = α
µ1

or α = µ1S0, we obtain:

ψ̇0(E) =
µ6µ3

ω2

(
αβ2ω2

µ1µ3µ6
− 1

)
A− π2µ8

σ2
Ca

+
ξµ5µ2

γω1

(
αγβ1ω1

ξµ1µ2µ5
− 1

)
V − ξπ1µ7

γσ1
Cv

+

(
1− S0

S

)
(µ1S0 − µ1S) ,

ψ̇0(E) =
ξµ5µ2

γω1
(R1 − 1)V − µ1 (S − S0)

2

S
− π2µ8

σ2
Ca

+
µ6µ3

ω2
(R2 − 1)A− ξπ1µ7

γσ1
Cv.

It follows that ψ̇0 (E) < 0whenR1 ≤ 1 andR2 ≤ 1. This implies
that ψ0(E) is a Lyapunov function, and the equilibrium state E0

is globally asymptotically stable if R1 ≤ 1 and R2 ≤ 1.

Theorem 4. If R2 ≤ R1 and 1 < R1 ≤ h1 with h1 = α
µ1S3

,
then the equilibrium state E1 is globally asymptotically stable in
D.

Proof. Define the Lyapunov function as follows:

ψ1(E) = S1

(
S

S1
− 1− ln

(
S

S1

))
+ L1

(
L

L1
− 1− ln

(
L

L1

))
+
ξ

γ
Iv1

(
Iv
Iv1

− 1− ln
(
Iv
Iv1

))
+ Ia +

µ6

ω2
A+

ξπ1

γσ1
Cv

+
ξµ5

γω1
V1

(
V

V1
− 1− ln

(
V

V1

))
+
π2

σ2
Ca.

Based on Definition 1 and 2, we have:
1. For any E = (S,L, Iv, Ia, V, A,Cv, Ca) ∈ D with E ̸= E1,

we get ψ1(E) > 0. Furthermore, if E = E1, then ψ1 (E) =
0.

2. The derivative of the function ψ1 with respect to t is ex-
pressed by:

ψ̇1(E) =

(
1− S1

S

)
(µ1S1 − µ1S) +

µ6µ3

ω2

(
β2ω2

µ3µ6
S1 − 1

)
A

+ 2β1S1V1 − β1S1V1
S1

S
− β1S1V1

L1SV

LS1V1

− β1S1V1
Iv1L

IvL1
− β1S1V1

IvV1

Iv1V
− π2µ8

σ2
Ca

+
ξπ1µ7

γσ1

(
σ1

µ7
Iv1 − 1

)
Cv,
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ψ̇1(E) = − µ1 (S − S1)
2

S
+ β1S1V1

(
2− S1

S
− L1SV

LS1V1

− Iv1L
IvL1

− IvV1

Iv1V

)
+
µ6µ3

ω2

(
R2

R1
− 1

)
A

+
ξπ1µ7

γσ1

(
R1

h1
− 1

)
Cv − π2µ8

σ2
Ca.

Using the inequality (4), we obtain:

2− S1

S
− L1SV

LS1V1
− Iv1L

IvL1
− IvV1
Iv1V

≤ 0.

It follows that if R2 ≤ R1 and R1 ≤ h1 with R1 > 1 as the
existence condition for E1, then ψ̇1(E) < 0. Therefore, it can
be concluded that ψ1(E) is a Lyapunov function, and the equi-
librium state E1 is globally asymptotically stable under the con-
ditions R2 ≤ R1 and 1 < R1 ≤ h1.

Theorem 5. If R1 ≤ R2 and 1 < R2 ≤ h2 with h2 = α
µ1S4

,
then the equilibrium state E2 is globally asymptotically stable in
D.

Proof. Define the Lyapunov function as follows:

ψ2(E) = S2

(
S

S2
− 1− ln

(
S

S2

))
+ L+

ξ

γ
Iv +

ξµ5

γω1
V

+ Ia2

(
Ia
Ia2

− 1− ln
(
Ia
Ia2

))
+
ξπ1
γσ1

Cv +
π2
σ2
Ca

+
µ6

ω2
A2

(
A

A2
− 1− ln

(
A

A2

))
.

Based on Definition 1 and 2, we have:
1. For any E = (S,L, Iv, Ia, V, A,Cv, Ca) ∈ D with E ̸= E2

we have ψ2(E) > 0. Furthermore, ifE = E2 then ψ2(E) =
0.

2. The derivative of the function ψ2 with respect to t is given
by:

ψ̇2(E) =

(
1− S2

S

)
(µ1S2 − µ1S) + β2S2A2 − β2S2A2

S2
S

− β2S2A2
Ia2SA

IaS2A2
+
ξµ5µ2
γω1

(
β1γω1
ξµ5µ2

S2 − 1

)
V

− β2S2A2
IaA2

Ia2A
+
π2µ8
σ2

(
σ2
µ8
Ia2 − 1

)
Ca

ξπ1µ7
γσ1

Cv,

ψ̇2(E) = − µ1 (S − S2)
2

S
+ β2S2A2

(
1− S2

S
− Ia2SA

IaS2A2

−IaA2

Ia2A

)
+
ξµ5µ2
γω1

(
R1

R2
− 1

)
V − ξπ1µ7

γσ1
Cv

+
π2µ8
σ2

(
R2

h2
− 1

)
Ca.

Hence, whenR1 ≤ R2,R2 ≤ h2, and applying the inequality (4),
we obtain ψ̇2(E) < 0. Note that the existence condition of E2

is R2 > 1. Thus, ψ2(E) qualifies as a Lyapunov function and the
equilibrium state E2 is globally asymptotically stable under the
conditions R1 ≤ R2 and 1 < R2 ≤ h2.

Theorem 6. The equilibrium state E3 is globally asymptotically
stable within domain D If R2 ≤ h1 with h1 = α

µ1S3
.

Proof. Define the Lyapunov function as follows:

ψ3(E) = S3

(
S

S3
− 1− ln

(
S

S3

))
+ L3

(
L

L3
− 1− ln

(
L

L3

))
+
ξ

γ
Iv3

(
Iv
Iv3

− 1− ln
(
Iv
Iv3

))
+ Ia +

π2
σ2
Ca

+
ξµ5

γω1
V3

(
V

V3
− 1− ln

(
V

V3

))
+
µ6

ω2
A

+
ξπ1
γσ1

Cv3

(
Cv

Cv3
− 1− ln

(
Cv

Cv3

))
.

Based on Definition 1 and 2, we have:
1. For any E = (S,L, Iv, Ia, V, A,Cv, Ca) ∈ D with E ̸=
E3 we have ψ3(E) > 0. Furthermore, if E = E3, then
ψ3 (E) = 0.

2. The derivative of the function ψ3 with respect to t is given
by:

ψ̇3(E) =

(
1− S3

S

)
(µ1S3 − µ1S) + 3β1S3V3 − β1S3V3

S3

S

− β1S3V3
L3SV

LS3V3
− β1S3V3

Iv3L

IvL3
− β1S3V3

IvV3

Iv3V

− β1S3V3
Iv
Iv3

+
µ6µ3

ω2

(
β2ω2

µ3µ6
S3 − 1

)
A− π2µ8

σ2
Ca,

ψ̇3(E) = − µ1 (S − S3)
2

S
+ β1S3V3

(
3− S3

S
− L3SV

LS3V3

− Iv3L
IvL3

− IvV3

Iv3V
− Iv
Iv3

)
+
µ6µ3

ω2
(R2 − h1)A

− π2µ8

σ2
Ca.

Therefore, if R2 ≤ h1 and applying the inequality (4), we find
ψ̇3(E) < 0. Thus, it can be concluded that ψ3(E) is a Lyapunov
function, and the equilibrium state E3 is globally asymptotically
stable if R2 ≤ h1.

Theorem 7. The equilibrium state E4 is globally asymptotically
stable within domain D if R1 ≤ h2 with h2 = α

µ1S4
.

Proof. Define the Lyapunov function as follows:

ψ4(E) = S4

(
S

S4
− 1− ln

(
S

S4

))
+ L+

ξ

γ
Iv + Ia4

(
Ia
Ia4

− 1

− ln
(
Ia
Ia4

))
+
µ6

ω2
A4

(
A

A4
− 1− ln

(
A

A4

))
+
ξµ5

γω1
V +

π2
σ2
Ca4

(
Ca

Ca4
− 1− ln

(
Ca

Ca4
.

))
+
ξπ1
γσ1

Cv.

Based on Definition 1 and 2, we have:
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1. For any E = (S,L, Iv, Ia, V, A,Cv, Ca) ∈ D with E ̸=
E4 we have ψ4(E) > 0. Furthermore, if E = E4, then
ψ4 (E) = 0.

2. The derivative of the function ψ4 with respect to t is express
as:

ψ̇4(E) =

(
1− S4

S

)
(µ1S4 − µ1S) + 2β2S4A4 − β2S4A4

S4

S

− β2S4A4
Ia4SA

IaS4A4
− β2S4A4

IaA4

Ia4A
− β2S4A4

Ia
Ia4

+
ξµ5µ2

γω1

(
β1γω1

ξµ5µ2
S4 − 1

)
V − ξπ1µ7

γσ1
Cv,

ψ̇4(E) = − µ1 (S − S4)
2

S
+ β2S4A4

(
2− S4

S
− Ia4SA

IaS4A4

−IaA4

Ia4A
− Ia
Ia4

)
+
ξµ5µ2

γω1

(
R1

h2
− 1

)
V − ξπ1µ7

γσ1
Cv.

Therefore, if R1 ≤ h2, and applying the inequality (4), it follows
that ψ̇4(E) < 0. Thus, ψ4(E) can be concluded as a Lyapunov
function and the equilibrium state E4 is globally asymptotically
stable when R1 ≤ h2.

Theorem 8. IfR2 ≤ h1 +h2 with h1 = α
µ1S3

and h2 = α
µ1S4

,
then the equilibrium state E5 is globally asymptotically stable
within domain D.

Proof. Define the Lyapunov function as follows:

ψ5(E) = S5

(
S

S5
− 1− ln

(
S

S5

))
+ L5

(
L

L5
− 1− ln

(
L

L5

))
+
ξ

γ
Iv5

(
Iv
Iv5

− 1− ln
(
Iv
Iv5

))
+ Ia5

(
Ia
Ia5

− 1

− ln
(
Ia
Ia5

))
+
ξµ5
γω1

V5

(
V

V5
− 1− ln

(
V

V5

))
+
π2
σ2
Ca

+
µ6
ω2
A5

(
A

A5
− 1− ln

(
A

A5

))
+
ξπ1
γσ1

Cv5

(
Cv

Cv5
1

− ln
(
Cv

Cv5

))
.

Based on Definition 1 and 2, we obtain:
1. For any E = (S,L, Iv, Ia, V, A,Cv, Ca) ∈ D with E ̸=
E5 we have ψ5(E) > 0. Furthermore, if E = E5, then
ψ5 (E) = 0.

2. The derivative of the function ψ5 with respect to t is given
by:

ψ̇5(E) =

(
1− S5

S

)
(µ1S5 − µ1S) + 3β1S5V5 + β2S5A5

− β1S5V5
S5

S
− β5S5A5

S5

S
− β1S5V5

L5SV

LS5V5

− β1S5V5
Iv5L

IvL5
− β1S5V5

IvV5
Iv5V

− β1S5V5
Iv
Iv5

− β2S5A5
Ia5SA

IaS5A5
+
π2µ8

σ2

(
σ2
µ8
Ia5 − 1

)
Ca

− β2S5A5
IaA5

Ia5A
,

ψ̇5(E) = − µ1 (S − S5)
2

S
+ β1S5V5

(
3− S5

S
− L5SV

LS5V5

− Iv5L
IvL5

− IvV5
Iv5V

− Iv
Iv5

)
+ β2S5A5

(
1− S5

S

− Ia5SA

IaS5A5
− IaA5

Ia5A

)
+
π2µ8

σ2
(Rb − 1)Ca.

Consider that
R2

h1 + h2
< Rb implies:

ψ̇5(E) < − µ1 (S − S5)
2

S
+ β1S5V5

(
3− S5

S
− L5SV

LS5V5

− Iv5L
IvL5

− IvV5
Iv5V

− Iv
Iv5

)
+ β2S5A5

(
1− S5

S

− Ia5SA

IaS5A5
− IaA5

Ia5A

)
+
π2µ8
σ2

(
R2

h2 + h3
− 1

)
Ca,

Therefore, ifR2 ≤ h1+h2 and by applying the inequality (4), we
have ψ̇5(E) < 0. Thus, it can be concluded that ψ5(E) is a Lya-
punov function, and the equilibrium state E5 is globally asymp-
totically stable when R2 ≤ h1 + h2.

Theorem 9. IfR1 ≤ h1 +h2 with h1 = α
µ1S3

and h2 = α
µ1S4

,
then the equilibrium state E6 is globally asymptotically stable in
domain D.

Proof. Define the Lyapunov function as follows:

ψ6(E) = S6

(
S

S6
− 1− ln

(
S

S6

))
+ L6

(
L

L6
− 1− ln

(
L

L6

))
+
ξ

γ
Iv6

(
Iv
Iv6

− 1− ln
(
Iv
Iv6

))
+ Ia6

(
Ia
Ia6

− 1

− ln
(
Ia
Ia6

))
+
ξµ5
γω1

(
V − V6 − V6 ln

(
V

V6

))
+
µ6
ω2
A6

(
A

A6
− 1− ln

(
A

A6

))
+
ξπ1
γσ1

Cv

+
π2
σ2
Ca6

(
Ca

Ca6
− 1− ln

(
Ca

Ca6

))
Based on Definition 1 and 2, we have:
1. For any E = (S,L, Iv, Ia, V, A,Cv, Ca) ∈ D with E ̸=
E6 we have ψ6(E) > 0. Furthermore, if E = E6, then
ψ6 (E) = 0.

2. The derivative of the function ψ6 with respect to t can be
written as:

ψ̇6(E) =

(
1− S6

S

)
(µ1S6 − µ1S) + 2β1S6V6 + 2β2S6A6

− β1S6V6
S6

S
− β1S6V6

L6SV

LS6V6
− β1S6V6

Iv6L

IvL6

− β1S6V6
IvV6

Iv6V
− β2S6A6

Ia6SA

IaS6A6
+
ξπ1µ7

γσ1

(
σ1

µ7
Iv6

− 1

)
Cv − β2S6A6

IaA6

Ia6A
− β2S6A6

Ia
Ia6

,

ψ̇6(E) = − µ1 (S − S6)
2

S
+ β1S6V6

(
2− S6

S
− L6SV

LS6V6
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Table 2. Existance and stability conditions for System (1)

Equilibrium Existance conditions Global stability conditions
E0 - R1 ≤ 1 and R2 ≤ 1
E1 R1 > 1 R2 ≤ R1 and 1 < R1 ≤ h1

E2 R2 > 1 R1 ≤ R2 and 1 < R2 ≤ h2

E3 R1 > h1 R2 ≤ h1

E4 R2 > h2 R1 ≤ h2

E5 R2 > h1 and R1 > R2 R2 ≤ h1 + h2

E6 R1 > h2 and R2 > R1 R1 ≤ h1 + h2

E7 R1 > h1 + h2 andR2 > h1 + h2 -

− Iv6L
IvL6

− IvV6

Iv6V

)
+ β2S6A6

(
2− S6

S
− Ia6SA

IaS6A6

−IaA6

Ia6A
− Ia
Ia6

)
+
ξπ1µ7

γσ1
(Ra − 1)Cv.

Consider that
R1

h1 + h2
< Ra implies:

ψ̇6(E) = − µ1 (S − S6)
2

S
+ β1S6V6

(
2− S6

S
− L6SV

LS6V6

− Iv6L
IvL6

− IvV6
Iv6V

)
+ β2S6A6

(
2− S6

S
− Ia6SA

IaS6A6

−IaA6

Ia6A
− Ia
Ia6

)
+
ξπ1µ7
γσ1

(
R1

h1 + h2
− 1

)
Cv.

Therefore, when R1 ≤ h1 + h2 and by applying the inequality
(4), then ψ̇6(E) < 0. Thus, ψ6(E) is a Lyapunov function, and
the equilibrium state E6 is globally asymptotically stable when
R1 ≤ h1 + h2.

Theorem 10. If R1 > h1 + h2 and R2 > h1 + h2, then the
equilibrium state E7 exists and is globally asymptotically stable
in domain D.

Proof. Define the Lyapunov function as follows:

ψ7(E) = S7

(
S

S7
− 1− ln

(
S

S7

))
+ L7

(
L

L7
− 1− ln

(
L

L7

))
+
ξ

γ
Iv7

(
Iv
Iv7

− 1− ln
(
Iv
Iv7

))
+ Ia7

(
Ia
Ia7

− 1

− ln
(
Ia
Ia7

))
+
ξµ5
γω1

(
V − V7 − V7 ln

(
V

V7

))
+
µ6
ω2
A7

(
A

A7
− 1− ln

(
A

A7

))
+
ξπ1
γσ1

Cv7

(
Cv

Cv7
− 1

− ln
(
Cv

Cv7

))
+
π2
σ2
Ca7

(
Ca

Ca7
− 1− ln

(
Ca

Ca7

))
.

Based on Definition 1 and 2, we have:
1. For any E = (S,L, Iv, Ia, V, A,Cv, Ca) ∈ D with E ̸=
E7 we have ψ7(E) > 0. Furthermore, if E = E7, then
ψ7 (E) = 0.

2. The derivative of the function ψ7 with respect to t is written
as:

ψ̇7(E) =

(
1− S7

S

)
(µ1S7 − µ1S) + 3β1S7V7 + 2β2S7A7

− β1S7V7
S7
S

− β2S7A7
S7
S

− β1S7V7
L7SV

LS7V7

− β1S7V7
Iv7L

IvL7
− β1S7V7

IvV7
Iv7V

− β1S7V7
Iv
Iv7

− β2S7A7
Ia7SA

IaS7A7
− β2S7A7

IaA7

Ia7A
− β2S7A7

Ia
Ia7

,

ψ̇7(E) = − µ1 (S − S7)
2

S
+ β1S7V7

(
3− S7

S
− L7SV

LS7V7

− Iv7L
IvL7

− IvV7
Iv7V

− Iv
Iv7

)
+ β2S7A7

(
2− S7

S

− Ia7SA

IaS7A7
− IaA7

Ia7A
− Ia
Ia7

)
.

Thus, by using inequality (4), we have ψ̇7(E) < 0. Therefore,
using the LaSalle invariance principle [37], it can be concluded
that ψ7(E) is a Lyapunov function and the equilibrium state E7

is globally asymptotically stable in domain D.

Table 2 provides a summary of the existence and stability
conditions for all equilibrium states. The graph illustrating the
stability region is presented in Figure 2. It can be observed that
R1 = 1 and R2 = 1 serve as thresholds for E0, E1, and E2,
while the values of h1 h2, serve as thresholds for all equilibrium
states except E0.

Figure 2. Stability regions for the equilibrium state in the
R1-R2 plane with h1 < h2.

3. Numerical Simulation
This section present a numerical simulation to examine

how the coexistence of SARS-CoV-2 and Influenza A virus influ-
ences the transmission dynamics of epithelial cells, along with
the role of CTLs in modulating the interaction between these
viruses. Eight simulations are conducted to represent the sta-
bility conditions of each equilibrium state. The parameter values
used for the simulation are provided in Table 3, with the given
initial conditions (S(0), L(0), Iv(0), Ia(0), V (0), A(0), Cv(0),
Ca(0)) = (6, 1.5, 2, 1, 2, 1.4, 3, 4).
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(a) Stability of E0 (b) Stability of E1

(c) Stability of E3 (d) Stability of E4

(e) Stability of E5 (f) Stability of E6

(g) Stability of E7

Figure 3. Graph depicting the numerical solution of System (1) under the stability conditions of each equilibrium state.
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Table 3. Parameter values for numerical simulation.

Parameter α γ µ1 µ2 µ3 µ4 µ5 µ6 ω1 ω2 Reference

Value 0.5 0.05 0.05 0.2 0.1 0.05 0.11 0.2 0.2 0.4 [32]

Parameter µ7 µ8 π1 π2 σ1 σ2 β1 β2 Reference

Value 0.1 0.1 0.2 0.2 varied varied varied varied assumption

The descriptions of each dynamic behavior in Figure 3 are
as follows.

(a) Simulation 1: R1 ≤ 1 and R2 ≤ 1. Set the parameter
values β1 = 0.001, β2 = 0.001, σ1 = 0.2, σ2 = 0.2, and
the solution converges towards E0. Under this conditions,
infections of both SARS-CoV-2 and Influenza A virus will be
eradicated, resulting in no further infection within the host
cells.

(b) Simulation 2: R1 > 1, R2 ≤ R1, and 1 ≤ R1 ≤ h1. Set the
parameter values β1 = 0.05, β2 = 0.001, σ1 = 0.003, and
σ2 = 0.2, and the solution converges towards E1. In this
scenario, a single infection caused by SARS-CoV-2 occurs,
accompanied by a lack of response from CTL, suggesting the
potential for persistent SARS-CoV-2 infection.

(c) Simulation 3: R2 > 1, R1 ≤ R2, and 1 ≤ R2 ≤ h2. Set
the parameter values β1 = 0.005, β2 = 0.03, σ1 = 0.01,
σ2 = 0.001, and the solution converges towards E2. In this
case, there is a single infection caused by the Influenza A
virus without a response from CTL, indicating the potential
for a persistent Influenza infection.

(d) Simulation 4: R1 > h1 and R2 ≤ h1. Set the parameter
values β1 = 0.2, β2 = 0.001, σ1 = 0.1, and σ2 = 0.05, and
the solution converges towards E3. In this case, there is a
single infection by SARS-CoV-2 where the immune response
is activated by CTL specific to SARS-CoV-2.

(e) Simulation 5: R2 > h1 and R1 ≤ h2. Set the parameter
values β1 = 0.01, β2 = 0.1, σ1 = 0.05, σ2 = 0.3, and the
solution converges towards E4. In this case, a single infec-
tion by Influenza A virus occurs, where the immune response
is triggered by CTL specific to Influenza A virus.

(f) Simulation 6: R2 > h1, R1 > R2, and R2 ≤ h1 + h2.
The selected parameter values are β1 = 0.1, β2 = 0.01,
σ1 = 1, and σ2 = 0.09, resulting in the solution converging
towards E5. In this scenario, a coinfection occurs involving
SARS-CoV-2 and Influenza A virus. The immune response
mediated by CTLs specific to SARS-CoV-2 is active, while the
immune response mediated by CTLs specific to Influenza A
virus remains inactive.

(g) Simulation 7: R1 > h2, R2 > R1, and R1 ≤ h1 + h2. The
selected parameter values are β1 = 0.1, β2 = 0.04, σ1 =
0.01, σ2 = 0.5, resulting in the solution converging towards
E6. In this case, a coinfection occurs involving SARS-CoV-2
and Influenza A virus and the immune response mediated
by CTLs specific to the Influenza A virus is active, while the
immune response mediated by CTLs specific to SARS-CoV-2
remains inactive.

(h) Simulation 8: R1 > h2 + h2, R2 > h1 + h2. The se-
lected parameter values are β1 = 0.3, β2 = 0.3, σ1 = 0.4,
σ2 = 0.4, resulting in the solution converging towards E7.
In this case, a coinfection occurs involving SARS-CoV-2 and

Influenza A virus, with the immune responses mediated by
CTLs specific to both viruses being active.
Next, the effect of parameter variations on the thresholds

of each equilibrium point will be analyzed, based on the following
considerations:
• ω1 and ω2, representing the formation rates of SARS-CoV-2

and Influenza A virus, respectively, indicate the efficiency of
viral replication within infected cells. The control mecha-
nism involves the use of replication inhibitors and combina-
tion therapies to limit viral load [38].

• α, representing the proliferation rate of uninfected epithe-
lial cells, determines the regeneration capacity of epithelial
cells. The control mechanism involves the administration of
growth factors or cytokines, such as IL-22, to promote ep-
ithelial cell proliferation [39, 40].

• σ1 and σ2, representing the proliferation rates of SARS-CoV-
2-specific CTLs and Influenza A virus-specific CTLs, respec-
tively, can be regulated through immunotherapies designed
to enhance CTL effectiveness against their target viruses
[41].

• π1 and π2, representing the killing rates of infected cells by
virus-specific CTLs, describe the effectiveness of cytotoxic T
lymphocytes (CTLs) in eliminating infected cells. The control
mechanism involves vaccination to enhance CTL responses.
However, these parameters do not directly influence the
treshold R1 and R2 as defined in the model [42]

• γ, representing the transition rate from latent to active in-
fection in SARS-CoV-2-infected cells, describe the latent pe-
riod, which can be extended to delay active infection and
giving the immune system more time to respond [43].

Furthermore, the effects of changes in the parameters ω1, ω2, α,
σ1, and σ2 on the stability thresholdsR1,R2, h1, h2, and h1+h2
are examined. Using data from Simulation 1, the relationships
between these parameters are presented in Figure 4.

Figures 4a and 4b illustrates the relationship between R1

and R2 as functions of α–ω1 and α–ω2, respectively. As the pro-
liferation rate of epithelial cells (α), the formation rates of SARS-
CoV-2 (ω1), and Influenza A virus (ω2) increase, R1 and R2 also
increase. However, for fixed values of R1 and R2, α is inversely
proportional to ω1 or ω2. Therefore, a combined control strat-
egy to stabilize the system into the virus-free state, achieved by
reducing R1 and R2, can be implemented by decreasing ω1 and
ω2 while simultaneously increasing α.

In addition, Figures 4c and 4d illustrates the relationship
between h1 and h2 as functions of σ1–ω1 and σ2–ω2, respectively.
Increasing σ1 and σ2, which represent the proliferation rates of
CTLs, while decreasing ω1 and ω2, will lower the values of h1 and
h2 and the system stabilizes to a single infection state. Lastly,
from Figure 4e, increasing σ1 and σ2 also lowers the threshold
(h1 + h2), thereby avoiding the coinfection condition. For fixed
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(a) (b)

(c) (d)

(e)

Figure 4. Contour plot of the thresholds (a) R1 as a function of α and ω1, (b) R2 as a function of α and ω2, (c) h1 as a function of σ1

and ω1, (d) h2 as a function of σ2 and ω2, (e) (h1 + h2) as a function of σ2 and σ2.

values of h1 + h2, parameter σ1 is inversely proportional to σ2,
and it is shown that the effect of changes in σ1 is not as significant
as those in σ2 to the change of h1 + h2.

4. Conclusion

In this study, a mathematical model of coinfection involving
SARS-CoV-2 and Influenza A virus with CTL-mediated immunity is
developed and analyzed to understand the dynamics and the be-
havior of this biological process within the host. The model iden-
tifies eight equilibrium points, describing various conditions i.e.

virus-free state, single infections (either SARS-CoV-2 or Influenza
A virus, with and without CTLs), and coinfection state (with and
without CTLs). The existence and stability of each equilibrium
point is associated with the threshold represented inR1,R2, h1,
and h2. Moreover, using Lyapunov analysis, these equilibrium
points are proven to be globally asymptotically stable under the
specified conditions.

Furthermore, numerical simulations using both referenced
and assumed parameter values demonstrate consistency with the
analytical findings. The simulations reveal that CTLs specific to
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SARS-CoV-2 and Influenza A viruses are activated, targeting and
eliminating infected epithelial cells from both viruses. The role
of CTLs enhances the analytical results of the virus transmission
model by providing more precise estimates for the solutions of
the model. The simulations also illustrate how changes in several
parameters, such as the proliferation rate (α), the formation rate
of SARS-CoV-2 (ω1), the formation rate of Influenza A virus (ω2),
the proliferation rate of SARS-CoV-2-specific CTLs (σ1), and the
proliferation rate of Influenza A virus-specific CTLs (σ2), affect
the thresholds for stability criteria. Increasing the proliferation
rate of epithelial cells and CTLs, while lowering the formation
rate of viruses can shift the system’s threshold and stabilize it at
the virus-free equilibrium.

For the next research, preventive strategies such as vacci-
nation and medical treatments against SARS-CoV-2 and Influenza
A can be incorporated into the model to provide valuable insights
into the virus transmission dynamics. Additionally, optimal con-
trol analysis can be applied to minimize the number of infected
cells through effective strategies.
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