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Forward and Backward Bifurcation Analysis From an Imperfect
Vaccine Efficacy Model with Saturated Treatment and
Saturated Infection

Hakan Ahmad Fatahillah1 and Dipo Aldila1,∗

1Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia.

ABSTRACT. This paper aims to study the saturation effect on the infection and recovery process within a Susceptible-
Vaccination-Infected model featuring an imperfect vaccine efficacy. First, we nondimensionalized the model under the
assumption of a constant population, resulting in the reduction of the model from three to two-dimensional differential
equations. The analysis indicates the presence of a disease-free equilibrium (DFE) and potentially multiple endemic
equilibria (EE) within the model. The calculation of the basic reproduction number further explains the model’s solution
conditions. In particular, we discovered that a backward bifurcation is possible under specific saturation effect values.
Dulac’s criterion confirmed the absence of a closed orbit in the solution region, suggesting the global stability of the
endemic equilibrium when the basic reproduction number exceeds one. To supplement the analytical study, a numerical
simulation was conducted to generate a bifurcation diagram, autonomous simulation, and global sensitivity analysis.
The global sensitivity analysis revealed that changing the vaccination rate or recovery rate could significantly impact
the basic reproduction number. Moreover, the bifurcation diagram depicting the relationship between the transmission
rate and vaccination rate demonstrated that increasing the vaccination rate while maintaining the transmission rate
can reduce the proportion of infected individuals within the population.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction

Mathematical models have been extensively utilized by re-
searchers to understand the spread of diseases within popula-
tions, such as dengue [1–5], malaria [6–10], COVID-19 [11–16],
Tuberculosis (TB) [17–24], the recent Mpox [25–29], and many
other diseases [30–35]. The objectives of these models range
from elucidating the mechanisms of disease transmission to pro-
jecting future scenarios based on the types of intervention re-
quired. A common feature these models share is the use of the
basic reproduction number, denoted as R0, as an endemic indi-
cator. Generally, the findings indicate that a disease will persist
in the population if the basic reproduction number exceeds one,
while it may be eradicated if R0 is less than one [36].

The condition of disease persistence, characterized by a re-
production number greater than one, is consistently observed in
the literature. However, the disappearance of the disease when
the basic reproduction number is less than one is always guar-
anteed. This scenario may arise if a backward bifurcation occurs
when the basic reproduction number equals one. In such cases,
a stable disease-free equilibrium (DFE) coexists with a stable en-
demic equilibrium even when the basic reproduction number is
less than one [37]. Consequently, reducing the basic reproduc-
tion number below one may not always lead to disease elimina-
tion. The emergence of backward bifurcation can be attributed
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to various factors, such as reinfection, relapse, treatment failure
in tuberculosis transmission [23, 38], disease-induced mortality
[39], saturated treatment rate [12], saturated transmission rate
[40], and other sources. In contrast, forward bifurcation phenom-
ena are easier to interpret biologically. In cases of forward bifur-
cation, when the basic reproduction number is less than one, the
DFE is always stable, and no other equilibrium exists. However,
when the basic reproduction number reaches one, the DFE shifts
from stable to unstable, and an endemic equilibrium begins to
emerge [37].

As mentioned in the previous paragraph, existence of back-
ward bifurcation may trigger a misunderstading condition of dis-
eases extinction when the basic reproduction number is less than
one. Hence, it is important to conduct an analysis on the source
of possible backward bifurcation which may appears from sev-
eral diseases, such as saturated treatment and infection which
may appears on a diseases that trigger changes of human be-
haviour when the outbreak appears. This research examines an
additional potential source of backward bifurcation: the satu-
ration effects in treatment and infection rates within an imper-
fect vaccination model. The model encompasses three compart-
ments: susceptible, vaccinated, and infected populations, inte-
grating saturation effects in transmission and recovery rates. The
vaccination is presumed to be flawed, and individuals who have
recovered are considered to revert to the susceptible group. The
paper is organized in the following format: Section 2 delineates
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Figure 1. Transmission diagram of the SVI model in (1).

the model construction, whereas Section 3 examines the model
analysis, emphasising existence, stability, and bifurcation types.
Section 4 subsequently presents numerical simulations which ex-
plain the bifurcation diagram and conduct a global sensitivity
analysis of R0. In the end, Section 5 finishes the paper with the
summary of findings.

2. Model Construction
The model consists of three compartments: susceptible

population S, vaccinated population V , and infected population
I . It incorporates demographic processes such as birth and nat-
ural death. Model construction is given as follows and based on
transmission diagram depicted in Figure 1. Newborns enter the
susceptible compartment at a rate of Λ, and the individuals in
each compartment experience natural mortality at a rate of µ.
We assume that the total population remains constant over time,
represented byN = S+V +I . When a susceptible person joins
the vaccination program, they enter the vaccinated compartment
at a rate of u1. However, due to vaccine imperfections, the vac-
cinated individual may revert to being susceptible at a rate of α
and could be infected by a reduction of ξ. Both susceptible and
vaccinated individuals could be infected at a rate of β, and in-
fected individuals would recover but remain susceptible to the
disease at a rate of δ. The transmission and recovery processes
undergo saturation at rates of α1 and α2, respectively, depend-
ing on the number of infected individuals. This implies that both
the transmission and recovery rates will decrease as the number
of infected individuals increases. The mathematical model of the
spread of the disease with regard to vaccination and saturation
is presented by model (1).

dS

dt
= Λ− u1S + αV − βSI

1 + α1I
+

δI

1 + α2I
− µS,

dV

dt
= u1S − αV − ξβV I

1 + α1I
− µV,

dI

dt
=

βSI

1 + α1I
+

ξβV I

1 + α1I
− δI

1 + α2I
− µI,

(1)

with S(0) ≥ 0, V (0) ≥ 0, I(0) ≥ 0.

Note that all parameters in the model are positive. It is
essential to ensure that the solution of this model is nonnegative
and bounded. In the boundary region of R3

≥0, we have

dS

dt
|S=0,V≥0,I≥0 = Λ+ αV +

δI

1 + α2I
≥ 0,

dV

dt
|S≥0,V=0,I≥0 = u1S ≥ 0,

dI

dt
|S≥0,V≥0,I=0 = 0.

This computation confirms that initiating the system in the
boundary plane indicates that the rates are nonnegative. Thus,
setting the initial conditions to be nonnegative ensures that the
solution remains nonnegative.

Theorem 1. The solution of model (1) remains nonnegative for all
t > 0, given the nonnegative initial condition.

Next, sinceN = S+V +I , we have dN
dt = dS

dt +
dV
dt +

dI
dt =

Λ − µN . Solving this equation for N , we have N = Λ
µ + N(0)

eµt .
When t → ∞, we have N → Λ

µ . Additionally, the solution N

depends on the initial condition N(0). We analyze dN
dt qualita-

tively. The equilibrium of dNdt isN = Λ
µ . Note that

dN
dt is a linear,

monotonically decreasing function over N . If we let N(0) > Λ
µ ,

then dN
dt < 0. Thus, the solution monotonically decreases to

Λ
µ . Conversely, if we let N(0) < Λ

µ , then
dN
dt > 0 and the so-

lution monotonically increases to Λ
µ . Therefore, the solution is

bounded above by either Λ
µ or the initial condition. We conclude

the results in the next theorem.

Theorem 2. The solution of model (1) is bounded in the region
Ω =

{
(S, V, I) ∈ R3

≥0 : N ≤ max
{

Λ
µ , N(0)

}}
.

Since the total population remains constant, this model can
be simplified by representing the susceptible population as S =

JJBM | Jambura J. Biomath Volume 5 | Issue 2 | December 2024
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N − V − I , where N is the total population. Model (1) could be
reduced to

dV

dt
= u1(N − V − I)− αV − ξβV I

1 + α1I
− µV,

dI

dt
=

β(N − V − I)I

1 + α1I
+

ξβV I

1 + α1I
− δI

1 + α2I
− µI.

Then, we let v = V /N , i = I/N , b = βN , a1 = α1N , and a2 =
α2N . The result is the nondimensionalized model (1) depicted
below.

dv

dt
= u1(1− v − i)− αv − ξbvi

1 + a1i
− µv,

di

dt
=

b(1− v − i)i

1 + a1i
+

ξbvi

1 + a1i
− δi

1 + a2i
− µi,

(2)

with s = 1− v− i. We could interpret v and i as the proportion
of vaccinated and infected individuals, respectively, to the total
population.

3. Model Analysis
3.1. Equilibrium points

Equilibrium points are determined by setting the left-hand
side of model (2) to zero. The results are as follows.
1. Disease-Free Equilibrium
The DFE represents a state in which no individuals are in-
fected, i.e., the proportion of infected individuals is zero.
We have

DFE = (v0, i0) =

(
u1

u1 + α+ µ
, 0

)
. (3)

2. Basic Reproduction Number
The basic reproduction number, denoted asR0, is defined as
the average number of new cases generated by one infected
individual in a fully susceptible population [41]. This value
can be calculated using the Next-Generation Matrix method
[36]. To apply this method, we first compute the Jacobian
matrix of the infected subsystem. Thus, we arrive at

J1 =

[
−bi+ b(1− v − i)− µ+ bvξ +

a2δi

(1 + a2i)2
− δ

1 + a2i

]
.

Following this, we decompose the Jacobian matrix J1 into
its transmission and transition components, denoted as T
and Σ. Next, we evaluate T at the DFE to obtain TDFE and
Σ−1, which is the inverse of Σ. We have

TDFE =

[
bξu1

α+ µ+ u1
+ b

(
1− u1

α+ µ+ u1

)]
,

Σ−1 = − 1

δ + µ
.

To compute the Next-Generation Matrix, we use the formula
K = −TDFEΣ

−1, yielding K =
[

b(α+µ+ξu1)
(δ+µ)(α+µ+u1)

]
. The

basic reproduction number is defined as the spectral radius
of K, which is given by

R0 =
b(α+ µ+ ξu1)

(δ + µ)(α+ µ+ u1)
. (4)

3. Endemic Equilibrium
The other equilibrium observed in model (2) is the endemic
equilibrium, where both vaccinated and infected individuals
coexist within the population. The endemic equilibrium is
formally presented in Theorem 3.

Theorem 3. The endemic equilibrium of model (2) is given
by EE = (v∗, i∗) with

v∗ =
(1− i∗)(1 + a1i

∗)u1

α+ µ+ bξi∗ + u1 + a1i∗(α+ µ+ u1)
,

and i∗ is the solution of

f1(i) = r3i
3 + r2i

2 + r1i+ r0 = 0,

where

r3 = a2(b
2ξ + µa21(α+ µ+ u1) + ba1(α+ µ+ ξ(µ

+ u1))),

r2 = (δ + µ)a21(α+ µ+ u1) + b(bξ + a2(α+ µ

+ ξ(µ+ u1 − b))) + a1(b(α+ µ+ ξ(δ + µ

+ u1))− a2((b− 2µ)(α+ µ) + (bξ − 2µ)u1)),

r1 = b(α+ µ+ ξ(δ + µ+ u1 − b)) + a2((µ− bξ)u1

− ((b− µ)(α+ µ))) + a1((2δ + 2µ− bξ)u1

− ((α+ µ)(b− 2(δ + µ)))),

r0 = u1(δ + µ− bξ)− ((b− δ − µ)(α+ µ)).

Typically, the endemic equilibrium occurs when R0 > 1.
However, due to the endemic equilibrium’s lack of explicit
form, it is plausible that certain conditions, such as some
value of R0, may allow for its existence even when R0 < 1.
This implies that the disease could persist within the popu-
lation despite expectations of its eradication.
We discuss the existence of the endemic equilibria (EE) of
model (2) when both saturation effects are taken into ac-
count. Since r3 > 0, then

lim
i→∞

f1(i) = ∞,

lim
i→−∞

f1(i) = −∞.

According to the Location of Roots Theorem, there is at least
one i∗ such that f1(i∗) = 0. Note that when r0 < 0 or
R0 > 1, there is at least one positive root of f1(i). This
result is detailed in the next corollary.

Corollary 1. If r0 < 0, which infers R0 > 1, then there is
at least one endemic equilibrium of model (2).

The remaining analysis is conducted using a gradient anal-
ysis. The Descartes’ Rule of Sign of f1(i) is summarized in
Table 1.
By applying gradient analysis, we implicitly differentiate
f1(i)with respect toR0 and evaluate it at i = 0 andR0 = 1.
This results in r1 ∂i

∂R0
+ ∂r0

∂R0
. The condition ∂i

∂R0
< 0 holds

JJBM | Jambura J. Biomath Volume 5 | Issue 2 | December 2024
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Table 1. Descartes’ Rule of Sign of f1(i)

Case r3 r2 r1 r0 R0 Possible Positive Roots
1 + + + + R0 < 1 0
2 + + + - R0 > 1 1
3 + + - + R0 < 1 0 or 2
4 + + - - R0 > 1 1
5 + - + + R0 < 1 0 or 2
6 + - + - R0 > 1 1 or 3
7 + - - + R0 < 1 0 or 2
8 + - - - R0 > 1 1

if − 1
r1

∂r0
∂R0

< 0. Thus, EE exist when R0 < 1 and

a2 >
1

δ(α+ µ+ ξu1)2

[
(δ + µ)

(
a1(α+ µ+ ξu1)

2 + (α

+ µ+ ξ(δ + µ+ u1))(α+ µ+ ξu1)− (δ + µ)ξ(α

+ µ+ u1)
)]
.

This result is formalized in the following theo-
rem.

Theorem 4. The EE of model (2) exists for some value of
R0 < 1, if

a2 >
1

δ(α+ µ+ ξu1)2

[
(δ + µ)

(
a1(α+ µ+ ξu1)

2 + (α

+ µ+ ξ(δ + µ+ u1))(α+ µ+ ξu1)− (δ + µ)ξ(α

+ µ+ u1)
)]
.

Since the polynomial for the existence of the endemic equi-
librium of the complete model is due to the third-degree
polynomial, it is difficult to determine the range of R0 such
that the model has more than one endemic equilibrium for
some value of R0 < 1. This allows us to analyze a simple
case where only transmission saturation is considered, or
a2 = 0. Model (2) when a2 = 0 is rewritten as:

dv

dt
= u1(1− v − i)− αv − ξbvi

1 + a1i
− µv,

di

dt
=

b(1− v − i)i

1 + a1i
+

ξbvi

1 + a1i
− δi− µi.

(5)

The endemic equilibrium of this model is stated in Theo-
rem 5.

Theorem 5. Special case when a2 = 0. The endemic equi-
librium of model (5) is given by EE2 = (v∗2 , i

∗
2) with

v =
b(1− i∗2)− (δ + µ+ i∗2(δ + µ)a1)

b(1− ξ)
,

and i∗2 is the solution of

f2(i) = q2i
2 + q1i+ q0 = 0,

where

q2 = b2ξ + (δ + µ)a21(α+ µ+ u1) + ba1(α+ µ+ ξ(δ

+ µ+ u1)),

q1 = b(α+ µ+ ξ(δ + µ+ u1 − b)) + a1(u1(2δ + 2µ

− bξ)− ((α+ µ)(b− 2(δ + µ)))),

q0 = u1(δ + µ− bξ)− ((b− δ − µ)(α+ µ)).

Next, we discuss the existence of the EE of model (5). Note
that we have the endemic equilibrium of the second-degree
polynomial, represented by f2(i), which indicates that there
might be two EE. By employing a gradient analysis, the im-
plicit derivative of f2(i) is evaluated at i = 0, and R0 = 1 is
given by q1 ∂i

∂R0
+ ∂q0

∂R0
. This leads to ∂i

∂R0
= − 1

q1

∂q0
∂R0
. Thus,

we find that two EE exist when ∂i
∂R0

< 0 or when R0 < 1 if

a1 <
ξu1(δ(1− ξ)− 2α− µ(1 + ξ))− ((α+ µ)2 + ξ2u2

1)

(α+ µ+ ξu1)2
.

This result is stated in the next theorem.

Theorem 6. Let

a∗
1 =

ξu1(δ(1− ξ)− 2α− µ(1 + ξ))− ((α+ µ)2 + ξ2u2
1)

(α+ µ+ ξu1)2
.

The EE of model (5), has:
(a) no endemic equilibrium when R0 < 1 and a1 > a∗1,
(b) one endemic equilibrium for any R0 > 1,
(c) twin EE at R0 = Rc

0 < 1 and a1 < a∗1, where R
c
0 is

R0 that satisfies q21 − 4q2q0 = 0, or
(d) two different equilibria at Rc

0 < R0 < 1 and a1 <
a∗1.

3.2. Stability Analysis
1. Stability of Disease-Free Equilibrium
The Jacobian matrix evaluated at the DFE is given by:

J |DFE =

[
J11 J12
0 J22

]
,

J11 = − (α+ µ+ u1), J12 = −
(
u1 +

bξu1

α+ µ+ u1

)
,

J22 = − δ − µ+
bξu1

α+ µ+ u1
+ b

(
1− u1

α+ µ+ u1

)
.

The characteristic equation of JDFE isP (λ) = λ2+Bλ+C,
where

B = − b+ α+ δ + 2µ+ u1 +
bu1(1− ξ)

α+ µ+ u1
,

C = − (δ + µ)(α+ µ+ u1)(R0 − 1).

It follows that for P (λ) to have two roots with the same
sign, we require C > 0, which implies −(R0 − 1) > 0.
Thus, when R0 < 1, the eigenvalues are of the same sign.
To ensure thatP (λ) has two negative roots, we needB > 0,
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or

b− bu1(1− ξ)

α+ µ+ u1
< α+ δ + 2µ+ u1,

b <
(α+ δ + 2µ+ u1)(α+ µ+ u1)

α+ µ+ ξu1
,

R0(δ + µ)(α+ µ+ u1)

α+ µ+ ξu1
<

(α+ δ + 2µ+ u1)(α+ µ+ u1)

α+ µ+ ξu1
,

R0(δ + µ) < α+ δ + 2µ+ u1,

R0 < 1 +
α+ µ+ u1

δ + µ
.

Since R0 < 1 < 1 + α+µ+u1

δ+µ , this guarantees that both
eigenvalues are negative when R0 < 1.

Theorem 7. The DFE is locally asymptotically stable ifR0 <
1 and unstable if R0 > 1.

2. Stability of Endemic Equilibrium
To analyze the stability of the endemic equilibrium, we em-
ploy the Castillo-Song Theorem that is based on central
manifold theory [42]. We now discuss the stability analysis
of the endemic equilibrium of model (2) by rewriting model
(2) with v = x1 and i = x2. The rewritten version of model
(2) is as follows:

g1 =
dx1

dt
= u1(1− x1 − x2)− αx1 −

ξbx1x2

1 + a1x2
− µx1,

g2 =
dx2

dt
=

b(1− x1 − x2)x2

1 + a1x2
+

ξbx1x2

1 + a1x2
− δx2

1 + a2x2

− µx2.

(6)

The Jacobian matrix of this system is given as:

J3 =

[
J311 J312
J321 J322

]
,

J311 = −
(
α+ µ+

bx2ξ

1 + a1x2
+ u1

)
,

J312 = −
(

bx1ξ

(1 + a1x2)2
+ u− 1

)
,

J321 = − bx2(1− ξ)

1 + a1x2
,

J322 = − µ− δ

(1 + a2x2)2
+

b(1− (1− ξ)x1 − x2)

(1 + a1x2)2
.

This Jacobian matrix evaluated at DFE and

b = b∗ =
(δ + µ)(α+ µ+ u1)

α+ µ+ ξu1

is given by:

J3|DFE,b=b∗ =

[
−α− µ− u1 −u1

(
1 + (δ+µ)ξ

α+µ+ξu1

)
0 0

]
.

The eigenvalues of this matrix are λ1 = 0 and λ2 = −α −
µ − u1. The presence of a zero eigenvalue and a negative

eigenvalue satisfies the first assumption of the Castillo-Song
Theorem. Next, we determine the right and left eigenvec-
tors of J3|DFE,b=b∗ . The right eigenvector is defined as
v = (v1, v2)

T . By solving J3|DFE,b=b∗v, we obtain

v1 =
−v2u1(α+ µ+ ξ(δ + µ+ u1))

(α+ µ+ u1)(α+ µ+ ξu1)
.

To simplify the calculation, we let

v1 = − u1(α+ µ+ ξ(δ + µ+ u1)),

v2 = (α+ µ+ u1)(α+ µ+ ξu1).

The left eigenvector is represented as w = (w1, w2), where
w1 = 0 and w2 > 0 after solving wJ3|DFE,b=b∗ . The ex-
istence of a right eigenvector with nonnegative component
corresponding to the zero entries of DFE, along with a left
eigenvector, fulfills the second assumption of the Castillo-
Song Theorem. By using the formula in the theorem to ob-
tain a and b, we arrive at the non-zero partial derivatives:

∂2g2
∂x1∂x2

=
∂2g2

∂x2∂x1

= − (δ + µ)(1− ξ)(α+ µ+ u1)

α+ µ+ ξu1
,

∂2g2
∂x2

2

= − 2(δ + µ)a1 + 2δa2 −
2(δ + µ)(α+ µ+ u1)

α+ µ+ ξu1
,

∂2g2
∂x2∂b

=
α+ µ+ ξu1

α+ µ+ u1
,

we obtain

a = w2(α+ µ+ u1)
2 ×

(
2(δ + µ)(1− ξ)u1(α+ µ+ ξ(δ

+ µ+ u1))− (α+ µ+ ξu1)
2

(
2(δ + µ)a1 − 2δa2

+
2(δ + µ)(α+ µ+ u1)

α+ µ+ ξu1

))
,

b = w2(α+ µ+ ξu1)
2 > 0.

(7)

The condition a > 0 infers the occurrence of a backward
bifurcation. Thus, we conclude that:

Theorem 8. Model (2) experiences backward bifurcation at
R0 = 1, if a > 0.

3. Global Stability Analysis
Another question worth addressing is whether the system
possesses closed orbits within the solution region. If it pos-
sesses closed orbits, then there would be periodic solutions
at certain parameter values. To examine this, we employ
Dulac’s Criterion [43]. Let

R = {(x1, x2) : x1 ∈ [0, 1], x2 ∈ (0, 1]} .

We consider the function h = 1
x2
. Then, we obtain

hg1 =
1

x2

(
−(α+ µ)x1 + u1(1− x1 − x2)−

bξx1x2

1 + a1x2

)
,
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(a) (b)

(c)

Figure 2. Bifurcation diagram of model in (2) using of b, u1, and ξ as the bifurcation parameter shown in panel (a), (b), and (c), respectively.
LP and BP denotes the fold and branching point, respectively. All parameters remain constant, except a2 which varies.

hg2 =
1

x2

(
−µx2 +

bξx1x2

1 + a1x2
+

b(1− x1 − x2)x2

1 + a1x2
−

δx2

1 + a2x2

)
.

We have

∂(hg1)

∂x1
+

∂(hg2)

∂x2
=

δa2

(1 + a2x2)2
− α+ µ+ u1

x2

− b(1 + a1 + ξ + a1x1(1− ξ) + ξa1x2)

(1 + a1x2)2
,

=
1

x2(1 + a1x2)2(1 + a2x2)2

[
− (α+ µ

+ u1)(1 + a1x2)
2(1 + a2x2)

2 − b(1 + a1

+ ξ + a1x1(1− ξ) + ξa1x2)x2(1 + a2x2)
2

+ δa2x2(1 + a1x2)
2
]
.

To ensure that ∂(hg1)
∂x1

+ ∂(hg2)
∂x2

have the same sign, specifi-

cally ∂(hg1)
∂x1

+ ∂(hg2)
∂x2

< 0, we require:

δa2x2(1 + a1x2)
2 < (α+ µ+ u1)(1 + a1x2)

2(1 + a2x2)
2

+ b(1 + a1 + ξ + a1x1(1− ξ)

+ ξa1x2)x2(1 + a2x2)
2.

This inequality can be further rearranged and simplified as:

R0(δ + µ)x2(1 + a2x2)
2

α + µ + ξu1

[
1 + a1 >

1

(α + µ + u1)(1 + a2x2)2

[
(1

+ξ + a1x1(1 − ξ) + ξa1x2

]
+a1x2)

2
(
δa2x2 − (α + µ

+u1)(1 + a2x2)
2
)]

.

Given that (x1, x2) ∈ R, we get

R0(δ + µ)(1 + 2a1 + ξ)

α+ µ+ ξu1
>

R0(δ + µ)x2(1 + a2x2)2

α+ µ+ ξu1

[
1 + a1 + ξ

+ a1x1(1− ξ) + ξa1x2

]
and

(1 + a1x2)2
(
δa2x2 − (α+ µ+ u1)(1 + a2x2)2

)
(α+ µ+ u1)(1 + a2x2)2

> −
1

(1 + a2)2
.

Thus, it follows that

R0 > − (α+ µ+ ξu1)

(δ + µ)(1 + 2a1 + ξ)(1 + a2)2
.

Therefore, when R0 > 0, by Dulac’s Criterion, there are no
closed orbits in R. The result is stated in the next theo-
rem.
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(a) (b)

(c)

Figure 3. Bifurcation diagram of model in (2) using of b, u1, and ξ as the bifurcation parameter shown in panel (a), (b), and (c), respectively.
All parameters remain constant, except a1 which varies.

(a) (b)

Figure 4. Bifurcation diagrams in the b-u1 plane illustrate the scenarios in which forward bifurcation (panel (a)) or backward bifurcation
(panel (b)) occurs. In these diagrams, the green region represents the parameter space where the DFE is the only stable
equilibrium. The purple region corresponds to the coexistence of two EE (one stable and one unstable) alongside a stable DFE,
indicating bistability. The red region denotes the parameter space where only one endemic equilibrium exists, which is stable.
The L1 line represents the condition R0 = 1, while L2 corresponds to R0 = 0.43427, which is the fold point where backward
bifurcation arises.
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(a) (b)

Figure 5. Autonomous simulation of forward bifurcation

Theorem 9. Model (2) possesses no closed orbits in R.

Consequently, the endemic equilibrium of model (2) is glob-
ally stable. This is only valid if the endemic equilibrium ex-
ists in the solution region.

3.3. Discussion from the analytical results

We proposed our SVI model in eq. (1) which later can be
simplified into a two dimensional-vi model by assuming the to-
tal population is constant. The analytical results are widely cov-
ered the dynamical properties of the model, ranging from the
positivity criteria, existence of equilibrium points, up to the sta-
bility of the equilibrium points. We have shown from Theorem 3
and 4 that the basic reproduction number determines the exis-
tence of the endemic equilibrium. Caused by saturated infection
and treatment, our model shows a possibility to have more than
one endemic equilibrium, especially when the basic reproduction
number is less than one. This phenomena later confirmed by
Theorem 8 that our model may exhibit a backward bifurcation at
basic reproduction number equal to one if the saturation param-
eter in infection or treament term exceed some threshold, par-
ticularly when a1 < a∗1 and a2 > a∗2. a1 < a∗1 indicates that the
model exhibit backward bifurcation if the saturation parameter
in transmission term is less than the threshold, inferring that if
the transmssion is not significantly reduced given the increasing
infected population, then the endemic equilibrium still presist in
the population even when R0 < 1. Similarly, a2 > a∗2 indicates
that the model exhibit backward bifurcation if the saturation pa-
rameter in treatment term is greater than the threshold, inferring
that if the recovery rate is significantly reduce given the increas-
ing infected population (which also infers the prolonged recov-
ery time), the endemic equilibrium still presist in the population
even when R0 < 1. These findings imply that achieving disease
control requires more than simply reducing the basic reproduc-
tion number below one, as the presence of backward bifurcation
and saturation effects can sustain endemic levels. This highlights
the need for targeted interventions that address these nonlinear

dynamics to ensure successful disease eradication.

4. Numerical Simulation
4.1. Bifurcation Diagram and Autonomous Simulation

This section is dedicated to plotting the bifurcation dia-
gram of model (2) for selected parameters, namely the infection
parameter b, rate of vaccination u1, and vaccine efficacy ξ, under
varying values of the saturation effects a1 and a2. By utilizing the
parameter values outlined in Table 2, we can calculate the critical
values of a1 and a2 that may determine the type of bifurcation,
i.e., a∗1 = 31.1346 and a∗2 = 28.8651. Hence, according to Theo-
rem 8, if a2 > a∗2, a backward bifurcation may occur. Conversely,
if a2 < a∗2, the model will always undergo a forward bifurcation
at R0 = 1. Similarly, if a1 < a∗1, a backward bifurcation appears
at R0 = 1. The diagrams are depicted in Figures 2 and 3.

Table 2. Parameter values used in numerical simulation in
Figures 2 and 3.

Parameter Description Value Source
u1 Vaccination rate 0.01 [11]
α Loss of vaccine effectiveness 1

52
Assumed

ξ Reduction due to vaccine efficacy 0.01 Assumed
µ Natural death rate 1

72×52
[44]

δ Recovery rate 1 [11]
b Transmission rate 2.159182 Assumed

The effect of varying a2 using b, u1, or ξ as the bifurcation
parameter is illustrated in Figure 2. In Figure 2a, the bifurcation
diagram using b as the bifurcation parameter under variation of
a1 where a1 = 5 and a2 = 15 shows a forward bifurcation at
R0 = 1, while a2 = 45 and a2 = 90 result in a backward bifur-
cation at R0 = 1. A similar analysis can be applied to Figure 2b
when u1 is the bifurcation parameter. On the other hand, Fig-
ure 2c demonstrates the scenario when ξ as the bifurcation pa-
rameter, revealing that no ξ ∈ [0, 1] can yieldR0 = 1. Hence, the
bifurcation diagram in Figure 2c for ξ ∈ [0, 1] does not exhibit
the Branching Point (BP). However, our findings using ξ as the bi-
furcation parameter remains consistent with Figures 2a and 2b,
indicating that a larger value of a2 results in a higher size of en-
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(a) (b)

(c)

Figure 6. Autonomous simulations in the presence of backward bifurcation phenomenon demonstrate that the solution depends on the
initial conditions. The results show that the solutions converge to the same stable disease-free equilibrium in panel (a), to
different equilibria (disease-free and endemic equilibrium) in panel (b), and to the same endemic equilibrium in panel (c).

demic equilibrium. For b < b∗ = 1.439454522, where b∗ is the
BP satisfying R0 = 1, and a2 = 5 or a2 = 15, when forward
bifurcation at R0 = 1 occurs, the system exhibits a stable DFE.
When b reaches the BP at b∗, the DFE transitions from stable to
unstable. Simultaneously, a stable endemic equilibrium emerges
and continues to grow as b increases. Consequently, for b > b∗,
the model displays a stable endemic equilibrium and an unstable
DFE.

A different phenomenon unfolds when a2 = 45, resulting
in a backward bifurcation at R0 = 1, as shown in Figure 2a. Be-
ginning with the branch denoted by stable endemic equilibrium
when b > b∗. When b > b∗, a unique stable endemic equilibrium,
represented by the blue curves, coexists with an unstable DFE.
As b decreases, the size of the endemic equilibrium continues
to diminish until it reaches the fold point at b+ = 0.56726882.
Beyond this point (b+), the stability of the endemic equilibrium
branch shifts from stable to unstable. As b increases along this
unstable branch, the endemic equilibrium size of i decreases un-
til it meets the BP at b = b∗. At this BP, the stability of the DFE
changes: if b is smaller than the BP, the DFE is stable; if b is larger

than the BP, the DFE becomes unstable. A similar argument ap-
plies to the case where a2 = 45, or other scenarios illustrated in
Figure 2b.

The next set of simulations is presented in Figure 3, uti-
lizing the same bifurcation parameter while varying a1 to deter-
mine the type of bifurcation at R0 = 1, whether it is a forward
or backward bifurcation. The BP b1 = 1.439454522 is identified
at R0 = 1. Unlike the previous simulations in Figure 2, where
increasing a2 increases the likelihood of a backward bifurcation,
the simulations in Figure 3 demonstrate that increasing a1 de-
creases the probability of a backward bifurcation at R0 = 1. It
is evident that selecting a1 = 45 or a1 = 90 results in a forward
bifurcation at R0 = 1, while choosing a1 = 5 or a1 = 15 leads
to a backward bifurcation at R0 = 1. Hence, a smaller saturation
effect increases the likelihood of having a stable endemic equi-
librium point, even when the basic reproduction number is less
than one.

The next simulation is presented in Figure 4, illustrating the
two-parameter regions for the existence and stability of equilib-
rium points. We use b and u1 as bifurcation parameters, setting
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Figure 7. Global sensitivity analysis of parameter values in Table 2.

a1 = 45 and a2 = 30 to produce Figure 4a, and a1 = 5 and
a2 = 30 to produce Figure 4b. In Figure 4a, which depicts for-
ward bifurcation phenomenon, the b-u1 plane is divided into two
regions by the line L1, corresponding to R0 = 1. The green
area, where R0 < 1, represents the parameter space where only
a stable DFE exists, and no endemic equilibrium is present. Con-
versely, the red area, where R0 > 1, corresponds to the exis-
tence of a unique stable endemic equilibrium, while the DFE be-
comes unstable. In contrast, Figure 4b depicts a scenario where
the phenomenon of backward bifurcation occurs, dividing the
plane into three regions. The red region, where R0 > 1, rep-
resents the parameter space where the DFE is unstable, and a
unique endemic equilibrium is stable. The purple region, lying
between lines L1 and L2, indicates the presence of two stable
equilibria (a stable DFE and a stable endemic equilibrium) and
one unstable endemic equilibrium, signifying bistability. Finally,
the green region, where R0 < L2 (with L2 denoting the fold
point where backward bifurcation occurs), represents the param-
eter space where only a stable DFE exists.

Next, we perform autonomous simulations to demonstrate
the dynamics of our model over time. For this purpose, we sub-
stitute the parameter values from Table 2 into our model in (2).
The only parameter that varies during the simulation is b. To il-
lustrate both forward and backward bifurcation, we set a2 = 30,
with a1 = 45 for forward bifurcation and a1 = 5 for backward
bifurcation. The simulations are conducted using two initial con-
ditions: (v(0), i(0)) = (0.4, 0.1) and (v(0), i(0)) = (0.4, 0.4).
The numerical results are shown in Figure 5 when forward bifur-
cation appears and Figure 6 when backward bifurcation appears.

In Figure 5a, when b is chosen such that R0 < 1 (e.g.,

b = 0.5), the solution of model (2), particularly i(t), converges
to zero, representing the DFE, regardless of the initial condition.
Conversely, when b is chosen such thatR0 > 1 (e.g., b = 1.5), the
solution converges to the endemic equilibrium, regardless of the
initial condition, as shown in Figure 5b. These results confirm
the model analysis: when the model undergoes forward bifurca-
tion, the solution will approach the DFE when R0 < 1 and the
endemic equilibrium when R0 > 1.

In Figure 6, a consistent pattern emerges when b is cho-
sen such that R0 > 1 (e.g., b = 1.5) or R0 < Rc

0 (e.g.,
b = 0.25). In the former scenario, the solution converges to the
endemic equilibrium, as shown in Figure 6c, while in the latter
case, it converges to the DFE, as shown in Figure 6a. Since the
model exhibits backward bifurcation, where selecting b such that
Rc

0 < R0 < 1 (e.g., b = 0.75) results in the solution being de-
pendent on the initial condition. If the initial condition is closer
to the DFE (e.g., i(0) = 0.1), the solution will converge to the
DFE. Conversely, if the initial condition is closer to the endemic
equilibrium (e.g., i(0) = 0.4), the solution will converge to the
endemic equilibrium. This indicates the occurrence of bistability
in backward bifurcation when Rc

0 < R0 < 1, as illustrated in
Figure 6b.

4.2. Sensitivity Analysis

We conduct a global sensitivity analysis in this section using
Partial Rank Correlation Coefficient (PRCC) with the Latin Hyper-
cube Sampling (LHS) method. We take 5000 sample points from
the parameter values in Table 2, ranging between 95% and 105% of
the parameter values listed in Table 2. The results are presented
in Figure 7. It is clear that with this set of parameter values, the
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vaccination intervention (u1) and recovery rate (δ) are the most
sensitive parameters impacting R0, followed by vaccine efficacy
ξ, infection rate b, and vaccine drop out α, respectively. Further-
more, from the 5000 sample point that we use, the R0 ranges
between 1.35 to 1.7, with R0 = 1.5 being the most frequent R0.

5. Conclusion

This article discusses a source of backward bifurcation re-
lated to saturation effects in infection and treatment rates within
an imperfect vaccination model. The model was constructed
using a Susceptible-Vaccinated-Infected-Susceptible (SVIS) com-
partmental framework and simplified to a system of two non-
linear differential equations by assuming a constant population
size. The paper demonstrates the existence of a unique solution
and analyzes the existence and stability of the DFE and EE ana-
lytically. The basic reproduction number, R0, was calculated to
assess whether the epidemic would converge to the disease-free
or endemic equilibrium.

The analysis reveals that at least one endemic equilibrium
exists when R0 > 1, and under certain conditions, an endemic
equilibrium may also exist even when R0 < 1, indicating the
occurrence of a backward bifurcation. This phenomenon is at-
tributed to saturation effects in the infection and recovery terms.
A smaller value of the saturation parameter for infection term
increases the likelihood of backward bifurcation. Conversely, a
larger saturation effect on the recovery rate increases the proba-
bility of backward bifurcation.

Numerical simulations were performed to validate the an-
alytical results and explore the impact of varying saturation pa-
rameters. We utilized the Mathematical Continuation (MatCont)
toolbox within the MATLAB platform to generate bifurcation dia-
grams for the model under different scenarios. The results illus-
trate a bistability phenomenon when backward bifurcation oc-
curs, highlighting a complex situation where the long-term so-
lution is heavily dependent on initial conditions. Furthermore,
the global sensitivity analysis reveals that the parameters u1 and
δ have the most significant influence on changes in the basic re-
production number, R0. This indicates that adjusting either or
both of these parameters could significantly alter the value ofR0.
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