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ABSTRACT. Diphtheria is an acute bacterial infection caused by Corynebacterium diphtheriae, characterized by the
formation of a pseudo-membrane in the throat, which can lead to airway obstruction and systemic complications.
Despite the availability of effective vaccines, diphtheria remains a significant public health concern in many regions,
particularly in areas with low immunization coverage. In this study, we formulated and rigorously analyzed a deter-
ministic epidemiological mathematical model to gain insight into the transmission dynamics of Diphtheria infection,
incorporating the concentration of Corynebacterium Diphtheriae in the environment. The analysis of the model begins
with the computation of the basic reproduction number and the examination of the local stability of the disease-free
equilibrium using the Routh-Hurwitz criterion. An in-depth analysis of the model reveals that the model undergoes
the phenomenon of backward bifurcation. This characteristic poses significant hurdles in effectively controlling Diph-
theria infection within the population. However, under the assumption of no re-infection of Diphtheria infection after
recovery, the disease-free equilibrium point is globally asymptotically stable whenever the basic reproduction num-
ber is less than one. Furthermore, the sensitivity analysis of the basic reproduction number was carried out in order
to determine the impact of each of the model basic parameters that contribute to the transmission of the disease.
Utilizing the optimal control theory to effectively curb the spread of Diphtheria, We introduced two time dependent
control measures, to mitigate the spread of Diphtheria. These time dependent control measures represent preventive
actions, such as public enlightenment campaign to sensitize and educate the general public on the dynamics of Diph-
theria and proper personal hygiene which includes regular washing of hands to prevent susceptible individuals from
acquiring Diphtheria, and environmental sanitation practices such as cleaning of surfaces and door handle to reduced
the concentration of Corynebacterium diphtheriae in the environment. The results from the numerical simulations
reveal that Diphtheria infection can successfully be controlled and mitigated within the population if we can increase
the vaccination rate and the decay rate of Corynebacterium Diphtheriae in the environment, as well as properly and
effectively implementing these optimal control measures simultaneously.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction

Diphtheria is a severe bacterial infection caused by species
of Corynebacterium. The most prevalent form of diphtheria is
the classic respiratory type, which is triggered by toxin-producing
Corynebacterium diphtheriae [1]. The bacterium primarily leads to
a severe respiratory infection, creating a thick, adherent pseudo-
membrane in the throat, pharynx, and tonsils, which results in
a swollen neck, often referred to as a ”bull neck” [2]. Less fre-
quently, diphtheria can affect the skin (cutaneous diphtheria) and
mucous membranes at other non-respiratory sites, such as the
genitalia and conjunctivae [1, 3]. Diphtheria is typically transmit-
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ted through the inhalation of airborne droplets, sneezing, cough-
ing, contact with infected skin lesions or contact with contami-
nated personal items [2, 4, 5]. Diphtheria is a highly contagious
and fatal disease that is preventable by vaccination. It can im-
pact the nose and throat, harm the kidneys, nervous system, and
heart, and may lead to paralysis, respiratory failure, ulcerating
skin lesions, and even death [4]. Diphtheria has a fatality rate of
5-10% in general; however, the case fatality rate (CFR) can rise to
20-40% among children and unvaccinated adults [4]. The largest
diphtheria epidemic occurred between 1990 and 1995 in the
Russian Federation, where more than 157,000 cases and 5,000
deaths were reported [4]. Currently, diphtheria is extremely rare
in developed countries due to high vaccination rates [4]. How-
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Table 1. Description of the model variables and parameters

Variable Biological interpretation
S Susceptible Individuals.
V Vaccinated Individuals against Diphtheria.
E Exposed Individuals to Diphtheria.
IA Asymptomatic Infectious Individuals with Diphtheria.
IS Symptomatic Infectious Individuals with Diphtheria.
T Treated Individuals with Diphtheria.
R Recovered Individuals from Diphtheria.
B Concentration of Corynebacterium Diphtheriae in the Environment.

Parameter Description
π Recruitment rate.
µ Natural death rate.
β Effective contact rate between susceptible individuals and infectious individuals.
βd Effective contact rate between susceptible individuals and bacteria in the environment.
ϕ Vaccination rate.
γ Vaccine-waning rate.
α Progression rate from exposed class to infectious classes.
q Fraction of exposed individuals that progressed to the infectious class that are showing symptoms of Diphtheria.
σ Progression rate from asymptomatic to symptomatic.
η1 Treatment rate of asymptomatic infectious individuals.
η2 Treatment rate of symptomatic infectious individuals.
δ Disease-induced death rate.
θ Modification parameter that accounts for reduction in disease-induced death in the treatment class.
ω Recovery rate of treated individuals.
ψ Vaccination rate of recovered individuals.
ε Modification parameter that accounts for re-infection after recovery.
κ1 Shedding rate of the bacteria in the environment from asymptomatic infectious individuals.
κ2 Shedding rate of the bacteria in the environment from symptomatic infectious individuals.
f Fraction of re-infected individuals that are asymptomatic.
δB Decay rate of the bacteria.
K Carrying capacity.

ever, in low-income countries, particularly in Asia and Africa, low
vaccination coverage and poor sanitation conditions have con-
tributed to the re-emergence of diphtheria, with thousands of
cases and outbreaks occurring annually [2].

Over the past two decades, mathematical models have
played a crucial role in studying the transmission dynamics of
infectious diseases (see, for example, [6–14]). Several mathemat-
ical models have been developed to explore the dynamics of diph-
theria. For instance, Ilahi and Widiana [15] introduced a deter-
ministic SEIR compartmental model to examine the transmission
dynamics of diphtheria, incorporating vaccination as a control
parameter. Kanchanarat et al. [16] developed a mathematical
model for diphtheria that incorporates asymptomatic infection,
logistic growth, and vaccination. The model was designed to in-
vestigate the effects of asymptomatic infections and imperfect
vaccination coverage on the control and prevention of diphtheria.
Their numerical simulations revealed that the incubation period
of asymptomatic individuals influences the optimal level of vacci-
nation coverage required for the eradication of diphtheria. Gour-
ram et al. [17] developed and thoroughly analyzed a determin-
istic mathematical model for the transmission dynamics of diph-
theria, incorporating optimal control strategies. These strategies
include educational and outreach campaigns designed to raise
public awareness about diphtheria, encourage individuals to seek
hospital care, and promote the uptake of available vaccinations.
Madubueze and Tijani [18] designed and qualitatively analyzed
a mathematical model for diphtheria to assess the impact of a
booster dose of the diphtheria vaccine in a contaminated envi-
ronment, incorporating optimal control strategies. Their find-
ings indicated that the most effective combination for eradicat-

ing diphtheria involves disinfecting the environment, screening
and treating asymptomatic infected individuals, and administer-
ing booster vaccinations to the community. Izzati et al. [19] for-
mulated an optimal control problem based on a SEIQR model to
minimize the spread of diphtheria through quarantine measures
and optimize the proportion of vaccinated individuals via an im-
munization campaign.

In this study, we build upon the work of Kanchanarat et
al. [16] and Gourram et al. [17] by introducing a compartment
to represent the concentration of Corynebacterium Diphtheriae
in the environment, accounting for contaminated objects. Fur-
thermore, we incorporated the possibility of re-infection among
recovered individuals and introduced two time-dependent con-
trol measures to curb the spread of diphtheria. These control
measures represent preventive actions, including public enlight-
enment campaigns to educate the public on diphtheria dynamics
and the importance of proper personal hygiene, such as regu-
lar handwashing to protect susceptible individuals. Additionally,
we emphasize environmental sanitation practices, such as clean-
ing surfaces, clothes, materials, and door handles, to reduce the
concentration of Corynebacterium diphtheriae in the environment.
The remainder of the paper is structured as follows: Section 2
presents the model formulation and its fundamental properties,
Section 3 provides the model analysis, Section 4 focuses on the
optimal control analysis, and Section 5 concludes with the final
remarks.

2. Model Formulation

At time t, we divide the Diphtheria population into two
namely, the human population, denoted by N(t), and the con-
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Figure 1. Flowchart of the Diphtheria model.

centration of Corynebacterium Diphtheriae in the environment, de-
noted by B(t). The human population (N(t)) is further sub-
divided into seven mutual exclusive compartments of suscepti-
ble individuals S(t), vaccinated individuals V (t), exposed indi-
viduals E(t), asymptomatic infected individuals with Diphtheria
IA(t), symptomatic infected individuals with Diphtheria IS(t),
treated individuals T (t), and recovered individuals R(t). So that

N(t) = S(t) + V (t) + E(t) + IA(t) + IS(t) + T (t) +R(t).

The population of the susceptible individuals is generated
by the recruitment of individuals into the population either by
birth or migration at the constant rate π. Susceptible individu-
als are vaccinated against Diphtheria at the rate ϕ. Susceptible
individuals acquires Diphtheria infection following an effective
contact with either infected individuals with Diphtheria or the
concentration of Corynebacterium Diphtheriae in the environment
at the rate λ, given by

λ =
β (IA + IS)

N
+

βdB

K +B
,

where β is the transmission probability from infected individuals
to susceptible individuals, βd is the transmission probability from
the concentration of Corynebacterium Diphtheriae in the environ-
ment to susceptible individuals, and K is the carrying capacity
of Corynebacterium Diphtheriae. The rate γ is the waning rate of
Diphtheria vaccine. Susceptible individuals that come in contact
with infected individuals or the concentration of the Corynebac-
terium Diphtheriae in the environment, progressed to the exposed
class at the rate λ, and further progressed to the infected com-
partments at the rate α. A fraction (1 − q)α of the exposed in-
dividual progressed to the infected asymptomatic compartment,
while the remaining fraction exposed individuals progressed to
the symptomatic infected compartment at the rate qα. Asymp-
tomatic infected individuals with Diphtheria infection progressed
to the symptomatic class at the rate σ. The rate µ is the human
natural death rate, and it is the same in all human compartments.
The rate η1 is the treatment rates of asymptomatic infected indi-
viduals, and η2 is the treatment rate of symptomatic infected in-

dividuals with Diphtheria infection. The rate δ is the diseased in-
duced death rate of symptomatic infected individuals with Diph-
theria infection. Treated individuals die from the disease at the
rate θδ, where θ is the modification parameter that accounts for
reduction in Diphtheria death due to treatment. A treated indi-
vidual recovers from Diphtheria infection at the rate ω. Recov-
ered individuals are re-infected with Diphtheria infection at the
rate ελ, where ε is the modification parameter that accounts for
re-infection. The rate fε is the fraction of re-infected individuals
that are asymptomatic, while (1 − f)ε is the remaining fraction
of re-infected that are symptomatic. Recovered individuals are
vaccinated at the rate ψ.

The concentration of Corynebacterium Diphtheriae in the en-
vironment is generated by the shedding of the bacteria into the
environment by asymptomatic and symptomatic infected individ-
uals with Diphtheria infection at the rate κ1 and κ2 respectively.
The rate δB is the decay rate of Corynebacterium Diphtheriae in the
environment.

Base on the above formulations and assumptions, the dy-
namics of the Diphtheria model is governed by a system of non-
linear differential equations given by

dS

dt
= π − λS − (ϕ+ µ)S + γV,

dV

dt
= ϕS + ψR− (γ + µ)V,

dE

dt
= λS − (α+ µ)E,

dIA
dt

= (1− q)αE − σIA − (η1 + µ)IA + fελR,

dIS
dt

= qαE + σIA − (η2 + δ + µ)IS + (1− f)ελR,

dT

dt
= η1IA + η2IS − (ω + θδ + µ)T,

dR

dt
= ωT − (ελ+ ψ + µ)R,

dB

dt
= κ1IA + κ2IS − δBB,

(1)
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where

λ =
β (IA + IS)

N
+

βdB

K +B

2.1. Basic Properties of the Model
1. Positivity of solution

For the Diphtheria model in eq. (1) to be biologically mean-
ingful, the solution of the system must remain non-negative
for all values of time t. Therefore, it is essential to demon-
strate that all the state variables of the Diphtheria model in
eq. (1) are positive for all t > 0 within the feasible regionD,
defined as follows:

D = DH ∪ DB ⊂ R7
+ × R1

+, (2)

where

DH =

{
(S, V,E, IA, IS , T, R) ∈ R7

+ : N ≤ π

µ

}
,

DB =

{
B ∈ R1

+ : B ≤ κ∗

δB

(
π

µ

)}
.

Theorem 1. Let the initial data for the Diphtheria model in
eq. (1) be S(0) > 0, V (0) ≥ 0, E(0) ≥ 0, IA(0) ≥ 0,
IS(0) ≥ 0, T (0) ≥ 0,R(0) ≥ 0, andB(0) ≥ 0. Then the
solution (S, V,E, IA, IS , T, R,B) of the Diphtheria model
in eq. (1) are non-negative for all time t > 0.

Proof. Let tf = sup{t > 0 : (S > 0, V > 0, E > 0, IA > 0,
IS > 0, T > 0, R > 0, B > 0 ∈ [0, t]}. Thus, tf > 0.
From the first equation of Diphtheria model system in
eq. (1), we have

dS

dt
= π − λS − (ϕ+ µ)S + γV.

Solving the above equation, we obtained

d

dt

{
S(t)

[
exp

( ∫ t
0
λ(r)dr = (π + γV ) exp

( ∫ t
0
λ (r) dr

+(ϕ+ µ)t
)]}

+(ϕ+ µ)t
) .

(3)
Integrating the above equation at the range [0, tf ], we ob-
tained{

S(t) exp
[ ∫ tf

0
λ(r)dr = (π + γV )

∫ tf
0

exp
[ ∫ z

0
λ(r)dr

+(ϕ+ µ)tf
]}

− S(0) +(ϕ+ µ)z
]
dz

.

(4)
So that

S(t) = S(0) exp
[
−
(∫ tf

0

λ(r)dr + (ϕ+ µ)tf

)]
+ exp

[
−
(∫ tf

0

λ(r)dr + (ϕ+ µ)tf

)]
× (π + γV )

∫ tf

0

exp
[∫ z

0

λ(r)dr + (ϕ+ µ)z

]
dz > 0.

(5)

Similarly, it can be shown that V > 0, E > 0, IA > 0,
IS > 0, T > 0, R > 0, B > 0.

2. Invariant region

Lemma 1. The region D = DH ∪ DB ⊂ R7
+ × R1

+ is
positively invariant and attracts all solution in R8

+.

Proof. By summing the equations for the human population
and the concentration of Corynebacterium Diphtheriae in the
environmental compartments of the Diphtheria model in
eq. (1), the rates of change for the human population and
the concentration of Corynebacterium Diphtheriae in the envi-
ronment are expressed as follows:

dN

dt
= π − µN − δIS − θδT,

dB

dt
= κ1IA + κ2IS − δBB.

We have that

dN

dt
≤ π − µN,

dB

dt
≤ κ∗

(
π

µ

)
− δBB,

where κ∗ = max (κ1, κ2).
A standard comparison theorem described in [20] can be
used to show that

N(t) ≤ N(0)e−µt +
π

µ

(
1− e−µt

)
,

B(t) ≤ B(0)e−δBt +
κ∗

δB

(
π

µ

)(
1− e−δBt

)
.

It follows that if N(0) ≤ π
µ , and B(0) ≤ κ∗

δB

(
π
µ

)
, then

N(t) ≤ π
µ , and B(t) ≤ κ∗

δB

(
π
µ

)
. Thus, the region D is pos-

itively invariant and attracts all solutions in R8
+. Therefore,

the Diphtheria model eq. (1) is both biologically and math-
ematically well-posed within the region D. Consequently,
it is appropriate to examine the dynamics of the Diphtheria
model in eq. (1) in the region D [21].

3. Model Analysis
3.1. Disease-free Equilibrium

The Disease-free equilibrium (DFE) represents a steady
state where Diphtheria is absent from the population. To deter-
mine this, the infected variables in the diphtheria model in eq. (1)
are set to zero, and the right-hand side of equation in eq. (1) is set
to zero as well. Then, the non-infected variables are solved for.
The Disease-free equilibrium of the diphtheria model in eq. (1) is
given by:

ξ0 = (S∗, V ∗, E∗, I∗A, I
∗
S , T

∗, R∗, B∗)

=

(
π(γ + µ)

µ(γ + ϕ+ µ)
,

πϕ

µ(γ + ϕ+ µ)
, 0, 0, 0, 0, 0, 0

)
(6)

3.2. Basic Reproduction Number
The basic reproduction number, denoted by (R0), is a cru-

cial threshold parameter that governs the spread of a disease
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within a population. It provides insights into the peak and final
magnitude of an epidemic and reflects the stability of the disease-
free equilibrium (DFE) in a model [22]. The basic reproduction
number is defined as the expected number of secondary infec-
tions caused by the introduction of a single infectious individual
into a fully susceptible population.

The next-generation operator method, as outlined in [22],
can be employed to compute the basic reproduction number.
Using the methodology described in [22], we obtain the non-
negative matrix F and the non-singular matrix V, which repre-
sent the new infection terms and the remaining transition terms,
respectively, at the disease-free equilibrium point:

F =


0 βS∗

S∗+V ∗
βS∗

S∗+V ∗ 0 βdS
∗

K

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ,

V =


(α+ µ) 0 0 0 0

−(1− q)α (σ + η1 + µ) 0 0 0

−qα −σ (eta2 + δ + µ) 0 0

0 −η1 −η2 (ω + θδ + µ) 0

0 −κ1 −κ2 0 δB

 .

Thus, as stated in [22], it follows that R0 = ρ
(
FV−1

)
,

where ρ denotes the spectral radius or the largest eigenvalue of
the matrix FV−1. Therefore,

R0 =
β(γ + µ) (A4A6 + qαA5 + σA4)

A3A5A6(γ + ϕ+ µ)

+
βdπ(γ + µ) (κ1A4A6 + κ2 (qαA5 + σA4))

KµδBA3A5A6(γ + ϕ+ µ)
,

(7)

where

A1 = ϕ+ µ,

A2 = γ + µ,

A3 = α+ µ,

A4 = (1− q)α,

A5 = σ + η1 + µ,

A6 = η2 + δ + µ,

A7 = ω + θδ + µ,

A8 = ψ + µ,

A9 = (1− f)ε.

3.3. Local Stability of the Disease-free Equilibrium

Theorem 2. The disease-free equilibrium (ξ0) of the Diphtheria
model in eq. (1) is locally asymptotically stable if R0 < 1, and
unstable if R0 > 1.

Proof. The local stability of the disease-free equilibrium can be
analyzed by obtaining the Jacobian matrix of the Diphtheria
model in eq. (1), evaluated at the disease-free equilibrium (ξ0),
given by

J (ξ0) =



−A1 γ 0 o1 o2 0 0 o3

ϕ −A2 0 0 0 0 ψ 0

0 0 −A3 o4 o5 0 0 o6

0 0 A4 −A5 0 0 0 0

0 0 qα σ −A6 0 0 0

0 0 0 η1 η2 −A7 0 0

0 0 0 0 0 ω −A8 0

0 0 0 κ1 κ2 0 0 −δB


,

o1 = −
βA2

(γ +A1)
, o4 =

βA2

(γ +A1)
,

o2 = −
βA2

(γ +A1)
, o5 =

βA2

(γ +A1)
,

o3 = −
βdπA2

Kµ(γ +A1)
, o6 = −

βdπA2

Kµ(γ +A1)
,

where

A1 = ϕ+ µ,

A2 = γ + µ,

A3 = α+ µ,

A4 = (1− q)α,

A5 = σ + η1 + µ,

A6 = η2 + δ + µ,

A7 = ω + θδ + µ,

A8 = ψ + µ,

A9 = (1− f)ε.

The eigenvalues of the Jacobian matrix J (ξ0) is given as
the roots of the characteristic polynomial given below

L(λ) = λ8 +m1λ
7 +m2λ

6 +m3λ
5 +m4λ

4 +m5λ
3 +m6λ

2

+m7λ+m8 = 0.

(8)

Where the expression form1,m2,m3,m4,m5,m6,m7, andm8

are in Appendix A.
Applying the Routh-Hurwitz criterion [23, 24] to the poly-

nomial in eq. (8), which states that all roots of the polynomial
in eq. (8) have negative real parts if and only if the coefficient
mi > 0, for i = 1, 2, 3, 4, 5, 6, 7, 8 . Clearly, for m8 > 0 ; then
R0 < 1 . Therefore, by Routh-Hurwitz criterion, the disease-free
equilibrium of the Diphtheria model in eq. (1) is locally asymp-
totically stable when R0 < 1.

Epidemiologically, Theorem 2 suggests that a small influx of
diphtheria-infected individuals into the population will not lead
to an outbreak if R0 < 1. However, it is important to note that
this conclusion depends on the initial number of infected indi-
viduals in the population.

3.4. Existence of Diphtheria Endemic Equilibrium Point
In this section, we will examine the existence of the Diph-

theria endemic equilibrium point, which occurs when the in-
fected variables are non-zero. To determine the conditions re-
quired for the existence of the Diphtheria endemic equilibrium
point, the Diphtheria model in eq. (1) is solved in terms of the
forces of infection, as defined by:

λ∗∗ =
β (I∗∗A + I∗∗S )

N∗∗ +
βdB

∗∗

K +B∗∗ . (9)
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Where

N∗∗ = S∗∗ + V ∗∗ + E∗∗ + I∗∗A + I∗∗S + T ∗∗ +R∗∗,

S∗∗ =
πA2A3A5A6A7 (ελ

∗∗ +A8)− λ∗∗πωA2A3Z2

O1 −O2
,

V ∗∗ =
πϕA3A5A6 (ελ

∗∗ +A8)− λ∗∗πωϕA3Z2 + λ∗∗πωψZ3

O1 −O2
,

E∗∗ =
λ∗∗πA2A5A6A7 (ελ

∗∗ +A8)− λ∗∗2πωA2Z2

O1 −O2
,

I∗∗A =
λ∗∗πA2A4A6A7 (ελ

∗∗ +A8) + λ∗∗2πωqαfεη2A2

O1 −O2

− λ∗∗2πωη2A2A4A9

O1 −O2
,

I∗∗S =
λ∗∗2πωη1A2A4A9 − λ∗∗2πωqαfεη1A2

O1 −O2

+
λ∗∗πA2A7 (ελ

∗∗ +A8) (qαA5 + σA4)

O1 −O2
,

T ∗∗ =
λ∗∗πA2 (ελ

∗∗ +A8) (η1A4A6 + η2(qαA5 + σA4))

O1 −O2
,

R∗∗ =
λ∗∗πωA2 (ελ

∗∗ +A8) (η1A4A6 + η2(qαA5 + σA4))

O1 −O2
,

B∗∗ =
λ∗∗πκ1A2A4A6A7 (ελ

∗∗ +A8) + λ∗∗2πωqαfεκ1η2A2

O1 −O2

− λ∗∗2πωκ1η2A2A4A9

O1 −O2
− λ∗∗2πωqαfεκ2η1A2

O3 −O4

+
λ∗∗πκ2A2A7 (ελ

∗∗ +A8) (qαA5 + σA4)

O3 −O4

+
λ∗∗2πωκ2η1A2A4A9

O3 −O4
,

O1 = A3A5A6A7Z1 (ελ
∗∗ +A8) ,

O2 = λ∗∗ω (ψγ (η1A4A6 + η2(qαA5 + σA4)) +A3Z1Z2) ,

O3 = δBA3A5A6A7Z1 (ελ
∗∗ +A8) ,

O4 = λ∗∗ωδB (ψγ (η1A4A6 + η2(qαA5 + σA4)) +A3Z1Z2) .

(10)

with

A1 = ϕ+ µ,

A2 = γ + µ,

A3 = α+ µ,

A4 = (1− q)α,

A5 = σ + η1 + µ,

A6 = η2 + δ + µ,

A7 = ω + θδ + µ,

A8 = ψ + µ,

A9 = (1− f)ε,

Z1 = (λ∗∗ +A1)A2 − ϕγ,

Z2 = η1fεA6 + η2(fεσ +A5A9),

Z3 = η1A4A6 + η2(qαA5 + σA4).

Substituting eq. (10) into eq. (9), we obtained

T(λ∗∗) = ∆1λ
∗∗4+∆2λ

∗∗3+∆3λ
∗∗2+∆4λ

∗∗+∆5 = 0, (11)

where

∆1 = χ1χ3,

∆2 = χ3χ9 + χ4χ8 − (χ1χ8 + χ3χ6),

∆3 = χ3χ10 + χ4χ9 + χ5χ8 − (χ1χ9 + χ2χ8 + χ4χ6 + χ3χ7) ,

∆4 = χ4χ10 + χ5χ9 − (χ1χ10 + χ2χ9 + χ5χ6 + χ4χ7) ,

∆5 = χ5χ10 − (χ2χ10 + χ5χ7) ,

= πµδBKA
2
3A

2
5A

2
6A

2
7A

2
8(γ + ϕ+ µ)2 (1−R0) ,

with

χ1 = πβ (εA2A7(A4A6 + qαA5 + σA4) + ωqαfεA2(η2 − η1)

+ωA2A4A9(η1 − η2)) ,

χ2 = πβA2A7A8(A4A6 + qαA5 + σA4),

χ3 = πεA2(A6A7(A4 +A5) +A7 + η2)(qαA5 + σA4)

+ η1A4A6 + πωA2 (A4A9(η1 − η2A2)

−η2 (fεσ +A5A9) + fε (η2qα− η1(A6 − qα))) ,

χ4 = π(η1A4A6 + η2(qαA5 + σA4)) (A2A8 + ω(A2 + ψ))

+ πA2A5A6A7(εA3 +A8) + πA2A7A8(A4A6 + qαA5

+ σA4)− πωA3 (η1A6fε+ η2(fεσ +A5A9)) (A2 + ϕ)

+ πεϕA3A5A6A7,

χ5 = πA3A5A6A7A8(A2 + ϕ),

χ6 = πβd (εA2A7(κ1A4A6 + κ2(qαA5 + σA4))

+ωA2 (κ1qαfεη2 + κ2η1A4A9))− πβdω (κ1η2A4A9

+κ2qαfεη1) ,

χ7 = πβdA2A7A8 (κ1A4A6 + κ2(qαA5 + σA4)) ,

χ8 = π (ωA2 (κ1qαfεη2 + κ2η1A4A9) + εA2A7(κ1A4A6

+κ2(qαA5 + σA4))) +K (εδBA2A3A5A6A7

−ωδBA2A3 (η1A6fε+ η2(fεσ +A5A9)))

− πωA2 (κ1η2A4A9 + κ2qαfεη1) ,

χ9 = K (εδBA3A5A6A7(A1A2 − ϕγ) + δBA3A5A6A7A8)

− ωδB (ψγ(η1A4A6 + η2(qαA5 + σA4)) +A3(A1A2

−ϕγ)(η1A6fε+ η2(fεσ +A5A9)))

+ πA2A7A8(κ1A4A6 + κ2(qαA5 + σA4)),

χ10 = δBKA3A5A6A7A8(A1A2 − ϕγ).

From eq. (11), it is evident that ∆1 > 0 (since all model
parameters are non-negative). Additionally, ∆5 > 0 whenever
R0 < 1. Therefore, the number of possible positive real roots
of the polynomial in eq. (11) is contingent on the signs of ∆2,
∆3, and ∆4. This can be analyzed using Descartes’ Rule of Signs
applied to the quartic equation f(x) = ∆1x

4 +∆2x
3 +∆3x

2 +
∆4x + ∆5 = 0 (with x = λ∗∗). Consequently, the following
results are established.

Theorem 3. The Diphtheria model in eq. (1)
1. Has a unique endemic equilibrium if R0 > 1 and either of

the following holds
(a) ∆2 > 0, ∆3 > 0, ∆4 > 0;
(b) ∆2 < 0, ∆3 < 0, ∆4 < 0;
(c) ∆2 > 0, ∆3 < 0, ∆4 < 0;
(d) ∆2 > 0, ∆3 > 0, ∆4 < 0;
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2. Could have more than one endemic equilibrium if R0 > 1
and either of the following
(a) ∆2 < 0, ∆3 > 0, ∆4 < 0;
(b) ∆2 < 0, ∆3 < 0, ∆4 > 0;
(c) ∆2 > 0, ∆3 < 0, ∆4 > 0;
(d) ∆2 < 0, ∆3 > 0, ∆4 > 0;

3. Could have 2 or more endemic equilibria ifR0 < 1 and any,
or all, ∆2, ∆3, and ∆4 are negative.

Item 3 of Theorem 3 suggests the existence of multiple en-
demic equilibria when R0 < 1, which typically points to the oc-
currence of a backward bifurcation [24–30]. Backward bifurca-
tion is a phenomenon where both a stable disease-free equilib-
rium (DFE) and a stable endemic equilibrium can coexist, even
when the reproduction number of the model is less than one.
This phenomenon has been observed in various disease trans-
mission models, including those for vector-borne diseases, ex-
ogenous re-infection, imperfect vaccination, and multi-group in-
teractions. The presence of this phenomenon in the Diphtheria
model will be formally investigated in the following section.

3.5. Possibility of the Existence of Backward Bifurcation
In this section, wewill investigate the potential existence of

a backward bifurcation by applying the CenterManifold Theorem,
a concept thoroughly explored by Castillo-Chavez and Song in
their work [31].

Theorem 4. The model of system in eq. (1) exhibits backward
bifurcation at R0 = 1.

Proof. To apply the Center Manifold Theorem, we will make cer-
tain changes to the state variables of the Diphtheria model in
eq. (1). We define the variables as follows: S = x1, V = x2,
E = x3, IA = x4, IS = x5, T = x6, R = x7, and
B = x8. Using vector notation, we express the state as x =
(x1, x2, x3, . . . , x8)

T and the system of equations as dx
dt = F (x),

where F = (f1, f2, f3, . . . , f8)
T . Hence the Diphtheria model in

eq. (1) becomes

dx1
dt

≡ f1 = π − λx1 − (ϕ+ µ)x1 + γx2,

dx2
dt

≡ f2 = ϕx1 + ψx7 − (γ + µ)x8,

dx3
dt

≡ f3 = λx1 − (α+ µ)x3,

dx4
dt

≡ f4 = (1− q)αx3 − (σ + η1 + µ)x4 + fελx7,

dx5
dt

≡ f5 = qαx3 + σx4 − (η2 + δ + µ)x5 + (1− f)ελx7,

dx6
dt

≡ f6 = η1x4 + η2x5 − (ω + θδ + µ)x6,

dx7
dt

≡ f7 = ωx6 − (ελ+ ψ + µ)x7,

dx8
dt

≡ f8 = κ1x4 + κ2x5 − δBx8,

(12)

where

λ =
β (x4 + x5)

x1 + x2 + x3 + x4 + x5 + x6 + x7
+

βdx8
K + x8

.

We Considered β = β∗, as the bifurcation parameter at R0 = 1.
Solving for β = β∗ at R0 = 1, we obtained

β∗ =
M1 −M2

KµδB(γ + µ) (A4A6 + qαA5 + σA4)
,

M1 = KµδBA3A5A6(γ + ϕ+ µ),

M2 = βdπ(γ + µ) (κ1A4A6 + κ2 (qαA5 + σA4)) ,

(13)

where

A1 = ϕ+ µ,

A2 = γ + µ,

A3 = α+ µ,

A4 = (1− q)α,

A5 = σ + η1 + µ,

A6 = η2 + δ + µ,

A7 = ω + θδ + µ,

A8 = ψ + µ,

A9 = (1− f)ε.

Computing the Jacobian of the transformed system in eq. (12) at
the disease-free equilibrium (DFE), denoted as (ξ0) with β = β∗,
yields:

J (ξ0) |β=β∗ =



p1 γ 0 p2 p3 0 0 p4
ϕ p5 0 0 0 0 ψ 0
0 0 p6 p7 p8 0 0 p9
0 0 p10 p11 0 0 0 0
0 0 qα σ p12 0 0 0
0 0 0 η1 η2 p13 0 0
0 0 0 0 0 ω p14 0
0 0 0 κ1 κ2 0 0 p15


,

p1 = −A1, p9 = − βdπA2

Kµ(γ +A1)
,

p2 = − β∗A2

(γ +A1)
, p10 = A4,

p3 = − β∗A2

(γ +A1)
, p11 = −A5,

p4 = − βdπA2

Kµ(γ +A1)
, p12 = −A6,

p5 = −A2, p13 = −A7,

p6 = −A3, p14 = −A8,

p7 =
β∗A2

(γ +A1)
, p15 = −δB .

p8 =
β∗A2

(γ +A1)
,

where

A1 = ϕ+ µ,

A2 = γ + µ,

A3 = α+ µ,

A4 = (1− q)α,

A5 = σ + η1 + µ,
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A6 = η2 + δ + µ,

A7 = ω + θδ + µ,

A8 = ψ + µ,

A9 = (1− f)ε.

The right eigenvector, denoted as

w = (w1, w2, w3, w4, w5, w6, w7, w8)
T
,

corresponding to the simple zero eigenvalue, can be derived from
J (ξ0) |β=β∗w = 0, given by

0 = −A1w1 + γw2 −
β∗A2w4

(γ +A1)
− β∗A2w5

(γ +A1)
− βdπA2w8

Kµ(γ +A1)
,

0 = ϕw1 −A2w2 + ψw7,

0 = −A3w3 +
β∗A2w4

(γ +A1)
+
β∗A2w5

(γ +A1)
+

βdπA2w8

Kµ(γ +A1)
,

0 = A4w3 −A5w4,

0 = qαw3 + σw4 −A6w5,

0 = η1w4 + η2w5 −A7w6,

0 = ωw6 −A8w7,

0 = κ1w4 + κ2w5 − δBw8.

(14)

Solving the above eq. (14), we obtained

w1 = w1 > 0,

w2 =
ϕA5A6A7A8w1 + ψω(η1A4A6 + η2(qαA5 + σA4))w3

A2A5A6A7A8
,

w3 = w3 > 0,

w4 =
A4w3

A5
,

w5 =
(qαA5 + σA4)w3

A5A6
,

w6 =
(η1A4A6 + η2(qαA5 + σA4))w3

A5A6A7
,

w7 =
ω(η1A4A6 + η2(qαA5 + σA4))w3

A5A6A7A8
,

w8 =
(κ1A4A6 + κ2(qαA5 + σA4))w3

δBA5A6
.

(15)

Likewise, the left eigenvector, denoted as

v = (v1, v2, v3, v4, v5, v6, v7, v8) ,

satisfying v.w = 1, associated with the simple zero eigenvalue,
can be determined from vJ (ξ0) |β=β∗ = 0, given by

0 = −A1v1 + ϕv2,

0 = γv1 −A2v2,

0 = −A3v3 +A4A4 + qαv5,

0 = − β∗A2v1
(γ +A1)

+
β∗A2v3
(γ +A1)

−A5v4 + σv5 + η1v6 + κ1v8,

0 = − β∗A2v1
(γ +A1)

+
β∗A2v3
(γ +A1)

−A6v5 + η2v6 + κ2v8,

0 = −A7v6 + ωv7,

0 = ψv2 −A8v7,

0 = − βdπA2v1
Kµ(γ +A1)

+
βdπA2v3

Kµ(γ +A1)
− δBv8.

(16)

Solving the above eq. (16), we obtained

v1 = v1 > 0, v5 =
A3v3 −A4v4

qα
,

v2 =
(A1 − γ)v1
ϕ−A2

, v6 =
ψω(A1 − γ)v1
(ϕ−A2)A7A8

,

v3 = v3 > 0, v7 =
ψ(A1 − γ)v1
(ϕ−A2)A8

,

v4 = v4 > 0, v8 =
βdπA2(v3 − v1)

KµδB(γ +A1)
.

(17)

The non-zero partial derivatives of f1, f2, f3, . . . , f8 at the
disease-free equilibrium are presented in Appendix B.

The direction of the bifurcation at R0 = 1 is determined
by the sign of the bifurcation coefficients a and b, which can be
obtained by using the partial derivatives in Appendix B. The bi-
furcation coefficients a and b are given respectively by

a =

n∑
k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(ξ0) , (18)

a =
2(v3 − v1)w1w3β

∗ϕµΨ1

πA5A6(γ +A1)
+

2(v1 − v3)w
2
3β

∗µA2Ψ1

πA5A6(γ +A1)

+
2(v1 − v3)w

2
3β

∗µA2Ψ1Ψ2(A8 + ω)

πA2
5A

2
6A7A8(γ +A1)

+
2(v1 − v3)w3β

∗µΨ1(ϕA5A6A7A8w1 + ψωΨ2w3)

πA2
5A

2
6A7A8(γ +A1)

+
2(v1 − v3)w

2
3β

∗µA2(A
2
4A

2
6 + (qαA5 + σA4)

2)

πA2
5A

2
6(γ +A1)

+
4(v1 − v3)w

2
3β

∗µA2A4(qαA5 + σA4)

πA2
5A6(γ +A1)

+
2(v3 − v1)w1w3βdΨ3

KδBA5A6
+

2(v1 − v3)w
2
3βdπA2Ψ

2
3

K2µδ2BA
2
5A

2
6(γ +A1)

− 2v1w
2
3β

∗µεψωΨ1Ψ2(A1 − γ)

πA2
5A

2
6A7A8(ϕ−A2)

+
2v1w

2
3β

∗µfεωΨ1Ψ2

πA2
5A

2
6A7A8

− 2v1w
2
3βdεψωΨ2Ψ3(A1 − γ)

KδBA2
5A

2
6A7A8(ϕ−A2)

+
2v1w

2
3βdfεωΨ2Ψ3

KδBA2
5A

2
6A7A8

+
2(A3v3 −A4v4)w

2
3β

∗µωA9Ψ1Ψ2

πqαA2
5A

2
6A7A8

+
2(A3v3 −A4v4)w

2
3βdωA9Ψ2Ψ3

KqαδBA2
5A

2
6A7A8

, (19)

b =

n∑
k,i=1

vkwi
∂2fk
∂xi∂β∗ (ξ0) , (20)

b =
(v3 − v1)w3A2(A4A6 + qαA5 + σA4)

A5A6(γ +A1)
> 0, (21)
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where

Ψ1 = A4A6 + qαA5 + σA4,

Ψ2 = η1A4A6 + η2(qαA5 + σA4),

Ψ3 = κ1A4A6 + κ2(qαA5 + σA4).

Since the bifurcation coefficient b is positive, it follows
from theorem 4.1 in [31] that the Diphtheria model in eq. (1) un-
dergoes backward bifurcation at R0 = 1 whenever a > 0. Fig-
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Figure 2. Backward bifurcation of the Diphtheria model.

ure 2 shows the bifurcation diagram of Diphtheria model, where
the parameter values used are β = 0.35 other parameters are
as in Table 2. The backward bifurcation shows a locally stable
disease-free equilibrium point and a stable endenmic equilibrium
point whenR0 < 1, it illustrates the possible number of positive
roots of the polynomial in eq. (11).

3.6. Global Stability of the Disease-free Equilibrium: Special Case

Some of the primary causes of backward bifurcation include
imperfect vaccination, vector-borne diseases, and re-infection of
recovered individuals [24, 29, 31]. Models that incorporate re-
infection of recovered individuals are known to lose the backward
bifurcation property when the re-infection parameters are set to
zero. Therefore, the role of re-infection (ε) in the occurrence of
backward bifurcation will be investigated. Thus the Diphtheria
model can be re-written as

dU

dt
= P(U,W ),

dW

dt
= G(U,W ),

(22)

where U = (S, V,R) and W = (E, IA, IS , T, B) with U ∈ R3
+

denoting the number of uninfected compartments and W ∈
R5

+ denoting the number of infected compartments. Let ξ0 =
(U∗, 0) represents the disease-free equilibrium point of the sys-
tem. The disease-free equilibrium (ξ0) is globally asymptotically
stable for the Diphtheria model if it satisfies condition S1 and S2
below.

S1 :
dU

dt
= P(U, 0), U∗ is globally asymptotically stable,

S2 :
dW

dt
= BWG(U∗, 0)− Ĝ(U,W ), Ĝ(U,W ) ≥ 0 ∀ (U,W ) ∈ D,

(23)

where BWG(U∗, 0) is the Jacobian of G(U,W ) tak-
ing in (E, IA, IS , T, B) and evaluated at (U∗, 0) =((

π(γ+µ)
µ(γ+ϕ+µ) ,

πϕ
µ(γ+ϕ+µ) , 0

)
, 0
)
. If system (22) satisfies the

condition, then the following theorem holds.

Theorem 5. The equilibrium point (U∗, 0) of the system in
eq. (22) is globally asymptotically stable ifR0 ≤ 1, and condition
S1 and S2 are satisfied.

Proof. From system eq. (1), we obtained P(U,W ) and G(U,W )

P(U,W ) =

π − λS − (ϕ+ µ)S + γV
ϕS + ψR− (γ + µ)V
ωT − (ψ + µ)R

 ,

G(U,W ) =



(
β(IA+IS)

N + βdB
K+B

)
S − (α+ µ)E

(1− q)αE − σIA − (η1 + µ)IA
qαE + σIA − (η2 + δ + µ)IS
η1IA + η2IS − (ω + θδ + µ)T

κ1IA + κ2IS − δBB

 .

Now, we consider dU
dt = P(U∗, 0) the reduced system from

condition S1

dS

dt
= π − (ϕ+ µ)S + γV,

dV

dt
= ϕS − (γ + µ)V,

dR

dt
= 0,

(24)

U∗ =
(

π(γ+µ)
µ(γ+ϕ+µ) ,

πϕ
µ(γ+ϕ+µ) , 0

)
is a globally asymptotically sta-

ble equilibrium point for the reduced system dU
dt = P (U, 0) in

eq. (24). We note that this asymptotic dynamics is independent
of the initial condition in D. Therefore, the convergence of the
solution of the reduced system in eq. (24) is global in D. Hence,
we compute

BWG(U, 0) =


q1 q2 q3 0 q4
q5 q6 0 0 0
qα σ q7 0 0
0 η1 η2 q8 0
0 κ1 κ2 0 −δB

 ,

Ĝ(U,W ) =


q9 + q10

0
0
0
0

 ,
q1 = − (α+ µ), q5 = (1− q)α,

q2 =
β(γ + µ)

(γ + ϕ+ µ)
, q6 = −(σ + η1 + µ),
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q3 =
β(γ + µ)

(γ + ϕ+ µ)
, q7 = −(η2 + δ + µ),

q4 =
βdπ(γ + µ)

Kµ(γ + ϕ+mu)
, q8 = −(ω + θδ + µ),

q9 = β(IA + IS)

(
β(γ + µ)

(γ + ϕ+ µ)
− S

N

)
,

q10 = βdB

(
βdπ(γ + µ)

(γ + ϕ+ µ)
− S

K +B

)
.

Here, since S
N ≤ (γ+µ)

(γ+ϕ+µ) and S
K+B ≤ π(γ+µ)

Kµ(γ+ϕ+µ) , it is clear

Ĝ(U,W ) ≥ 0 that for all (U,W ) ∈ D. Therefore, by Lasalle
invariance principle [32], this proves that the disease-free equi-
librium is globally asymptotically stable whenever R0 ≤ 1. This
result indicates that Diphtheria elimination is independent of the
initial sizes of the infected individuals in the population.

3.7. Sensitivity Analysis

In this section, we aim to perform a sensitivity analysis on
the key parameters that affect the basic reproduction number of
the Diphtheria model in eq. (1). The goal is to evaluate how each
parameter influences the transmission dynamics of Diphtheria.
To do so, we follow the approach described in [10, 24, 33]. In
line with the methodology outlined in [10, 24, 33], we utilize
the normalized forward sensitivity index of a variable ’u’, which
shows differential dependence on the parameter ’v’, as defined
by:

Qu
v =

∂u

∂v
× v

u
(25)

Therefore, the sensitivity index of the basic reproduction number
for the Diphtheria model in eq. (1) with respect to the parameter
’v’ can be calculated as follows:

QR0
v =

∂R0

∂v
× v

R0
(26)

Therefore, the sensitive indices of the basic reproduction number
with respect to the basic parameters is computed as follows;

QR0

β =

(
(γ + µ) (αqΦ1 + σ(1− q)α+ (1− q)αΦ2)

Φ1Φ2Φ3(α+ µ)

)
β

÷
(
β(γ + µ) (αqΦ1 + σ(1− q)α+ (1− q)αΦ2)

Φ1Φ2Φ3(α+ µ)

+
βdπ(γ + µ) (κ1(1− q)αΦ2 + κ2(αqΦ1 + σ(1− q)α))

KδBµΦ1Φ2Φ3(α+ µ)

)
,

Φ1 = σ + η1 + µ,

Φ2 = η2 + δ + µ,

Φ3 = γ + ϕ+ µ.

(27)

We have that

QR0

β = 0.5767. (28)

Following a similar approach, we derived the sensitivity indices
for the other key parameters that make up the basic reproduction
number, which are given by:

QR0

βd
= 0.4233, QR0

q = −0.0105, QR0
κ1

= 0.2643,

QR0
κ2

= 0.159, QR0

δB
= −0.4233, QR0

σ = −0.0109,

QR0
η1

= − 0.5645, QR0
η2

= −0.3622, QR0

δ = −0.0084,

QR0
α = 0.0417, QR0

γ = 0.0114, QR0
π = 0.4233,

QR0

ϕ = − 0.0121, QR0

K = −0.4233, QR0
µ = −0.5181.

(29)

3.7. Interpretation of the sensitivity indices

The bar chart in Figure 3 shows the sensitivity indices of
the basic reproduction number for the Diphtheria model. Param-
eters with positive indices have a significant impact on accelerat-
ing the spread of the disease. Specifically, as the values of these
parameters rise, while keeping other parameters constant, there
is a marked increase in the basic reproduction number. As a re-
sult, higher values of these parameters lead to greater disease
transmission. In contrast, parameters with negative indices help
reduce the disease burden. When these parameters increase,
the basic reproduction number decreases, indicating a reduced
spread of the disease.

4. Optimal Control Theory

Based on the results from the sensitivity analysis, we in-
troduced two time-dependent control measures to mitigate the
spread of diphtheria. These control measures represent preven-
tive actions, such as public enlightenment campaigns to sensitize
and educate the general public about the dynamics of diphtheria
and the importance of proper personal hygiene, including regu-
lar handwashing to prevent susceptible individuals from acquir-
ing diphtheria, denoted by u1(t), and environmental sanitation
practices such as cleaning surfaces, clothes, materials, and door
handles to reduce the concentration of Corynebacterium diph-
theriae in the environment, denoted by u2(t). Therefore, the
diphtheria model in eq. (1) with the time-dependent control mea-
sures becomes:

dS

dt
= π − (1− u1(t))λS − (ϕ+ µ)S + γV,

dV

dt
= ϕS + ψR− (γ + µ)V,

dE

dt
= (1− u1(t))λS − (α+ µ)E,

dIA
dt

= (1− q)αE − σIA − (η1 + µ)IA + (1− u1(t))fελR,

dIS
dt

= qαE + σIA − (η2 + δ + µ)IS + (1− u1(t))(1− f)ελR,

dT

dt
= η1IA + η2IS − (ω + θδ + µ)T,

dR

dt
= ωT − ((1− u1(t))ελ+ ψ + µ)R,

dB

dt
= κ1IA + κ2IS − (δB + u2(t))B,

(30)

where

λ =
β (IA + IS)

N
+

βdB

K +B
.
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Figure 3. Sensitivity index of the basic reproduction number of the Diphtheria model

For this, we considered the objective functional

J [u1, u2] =

∫ tf

0

[
b1IA + b2IS +

1

2

(
b3u

2
1(t) + b4u

2
2(t)

)]
dt

(31)
Here, the parameter bi, (i = 1, 2, 3, 4) are the weight factors to
help balance each terms in the integrand in eq. (31), so that none
of the terms dominate. The terms in the integrand in eq. (31) are
explained as follows;
1. The term b1IA + b2IS , denotes the expenses in monitoring

infected individuals at all stages.
2. The term b3u

2
1(t) + b4u

2
2(t), represents the cost associated

with the public health awareness campaign to educate the
public on personal hygiene, sanitation and ways to prevent
Diphtheria infection.

The objective is to minimize the total number of infected individ-
uals, while simultaneously minimizing the costs associated with
the implemented controls (u1(t) and u2(t)). The goal is to find
an optimal control (u∗1(t) and u

∗
2(t)) such that

J [u∗1, u
∗
2] = min

u1,u2∈D∗
J [u1, u2], (32)

where

D∗ =
{
(u1(t), u2(t) ∈ L1(0, tf )|a1 ≤ u1(t) ≥ b1, a2 ≤ u2(t) ≥ b2

}
(33)

is lesbgue measurable.

4.1. Analysis of the Optimal Control Model
The necessary conditions that an optimal control must sat-

isfy comes from the Pontryagin’s Maximum Principle [34]. This
principle converts eq. (30) and eq. (31) into a problem of min-
imizing pointwise a Hamiltonian H, with respect to the con-
trols (u1(t), u2(t)). First we formulate the Hamiltonian from the
objective functional in eq. (31) and the governing dynamics in

eq. (30) to obtain the optimality conditions, given by

H = b1IA + b2IS +
1

2

(
b3u

2
1(t) + b4u

2
2(t)

)
+Θ1

[
π − (1− u1(t))

(
β (IA + IS)

N
+

βdB

K +B

)
S

− (ϕ+ µ)S + γV

]
+Θ2 [ϕS + ψR− (γ + µ)V ]

+ Θ3

[
(1− u1(t))

(
β (IA + IS)

N
+

βdB

K +B

)
S

− (α+ µ)E

]
+Θ4

[
(1− q)αE − σIA − (η1 + µ)IA

+ (1− u1(t))fε

(
β (IA + IS)

N
+

βdB

K +B

)
R

]

+Θ5

[
qαE + σIA − (η2 + δ + µ)IS

+ (1− u1(t))(1− f)ε

(
β (IA + IS)

N
+

βdB

K +B

)
R

]

+Θ6

[
η1IA + η2IS − (ω + θδ + µ)T

]
+Θ7

[
ωT

−
(
(1− u1(t))ε

(
β (IA + IS)

N
+

βdB

K +B

)
+ ψ + µ

)
R

]
+Θ8 [κ1IA + κ2IS − (δB + u2(t))B] ,

(34)

where Θ1, Θ2, Θ3, Θ4, Θ5, Θ6, Θ7, and Θ8 are the adjoint func-
tions associated with the state variables of the model in eq. (30).
By applying Pontryagin’s Maximum Principle [34] and utilizing the
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existence result for the optimal control pair u1(t) and u2(t), we
have derived the following theorem:

Theorem 6. There exists an optimal control pairu∗1(t) andu
∗
2(t),

and corresponding solution (S∗, V ∗, E∗, I∗A, I
∗
S , T

∗, R∗, and
B∗) that minimizeJ (u1(t), u2(t)) overD∗. Furthermore, there
exist adjoint functions, Θi, (i = 1, 2, 3, ..., 8) such that;

dΘ1

dt
= B1,

dΘ2

dt
= B2,

dΘ3

dt
= B3,

dΘ4

dt
= B4,

dΘ5

dt
= B5,

dΘ6

dt
= B6,

dΘ7

dt
= B7,

dΘ8

dt
= B8,

(35)

where the expression for B1, B2, B3, B4, B5, B6,B7, and B8

are in Appendix C. With transerversality conditions

Θi(tf ) = 0, i = 1, 2, 3, ..., 8. (36)

The following characterization holds;

u∗1(t) = max {0,min (1,M1)} ,

u∗2(t) = max
{
0,min

(
1,

1

b4
(Θ1 −Θ2)S

∗
)}

,
(37)

where

M1 =
1

b3

(
(Θ3 −Θ1)

(
β(I∗A + I∗S)

N∗ +
βdB

∗

K +B∗

)
S∗ +

(
Θ4fε

+Θ5(1− f)ε−Θ7ε
)(β(I∗A + I∗S)

N∗ +
βdB

∗

K +B∗

)
R∗
)

(38)

Preposition 1 Corollary 4.2 of (Fleming and Rashel 1975 [35] gives
the existence of an optimal control sets(u1(t), and u2(t)) due to
the convexity of the integrand of J with respect of (u1(t), and
u2(t)), a prior boundedness of the state solutions, and the local
Lipschitz property of the model in eq. (30) with respect to the vari-
ables.

Proof. Using the Pontryagin’s Maximum Principles, we obtained

dΘ1

dt
= −∂H

∂S
, Θ1(tf ) = 0,

dΘ2

dt
= −∂H

∂V
, Θ2(tf ) = 0,

dΘ3

dt
= −∂H

∂E
, Θ3(tf ) = 0,

dΘ4

dt
= − ∂H

∂IA
, Θ4(tf ) = 0,

dΘ5

dt
= − ∂H

∂IS
, Θ5(tf ) = 0,

dΘ6

dt
= −∂H

∂T
, Θ6(tf ) = 0,

dΘ7

dt
= −∂H

∂R
, Θ7(tf ) = 0,

dΘ8

dt
= −∂H

∂B
, Θ8(tf ) = 0,

(39)

and considering the optimality condition;

∂H
∂u1

= 0,
∂H
∂u2

= 0. (40)

This optimal control sets(u1(t) and u2(t)) can be solved for sub-
ject to the state variables. Taking into account the bounds on the
controls, the characterization can be solved as follows;
For the control u1(t), we have

∂H
∂u1

= u1b3 − (Θ3 −Θ1)

(
β(I∗A + I∗S)

N∗ +
βdB

∗

K +B∗

)
S∗

− (Θ4fε−Θ7ε)

(
β(I∗A + I∗S)

N∗ +
βdB

∗

K +B∗

)
R∗

−Θ5(1− f)ε

(
β(I∗A + I∗S)

N∗ +
βdB

∗

K +B∗

)
R∗ = 0,

so that

u∗1(t) =
1

b3

(
(Θ3 −Θ1)

(
β(I∗A + I∗S)

N∗ +
βdB

∗

K +B∗

)
S∗ +

(
Θ4fε

+Θ5(1− f)ε−Θ7ε
)(β(I∗A + I∗S)

N∗ +
βdB

∗

K +B∗

)
R∗
)
(41)

For the control u2(t), we have

∂H
∂u2

= u2b4 −Θ1S
∗ +Θ2S

∗ = 0

we have that
u∗2(t) =

1

b4
(Θ1 −Θ2)S

∗ (42)

Clearly, the optimality conditions obtained by taking the deriva-
tives of the Hamiltonian with respect to the controls on hold in
the interior of the control set. This end the proof.

4.2. Numerical Illustration
The computational approach for determining the optimal

control solution utilizes the forward-backward sweep method.
The algorithm begins with an initial guess for the optimal con-
trols and advances the state variables forward in time using the
fourth-order Runge-Kutta method. After this forward simulation,
the state variables and the initial control assumption are used
to solve the adjoint equation eq. (35) backward in time, start-
ing from a specified final condition. This backward integration
is performed using the fourth-order Runge-Kutta method in re-
verse. The controls, u1(t) and u2(t), are then updated and used
to resolve the state and adjoint systems once again. This itera-
tive process continues until a satisfactory level of convergence is
achieved for the state, adjoint, and control variables, as detailed
in previous studies [36–38]. The parameter values utilized for
the numerical illustration specifically align with those delineated
in Table 2 and the initial conditions used are S(0) = 360000,
V (0) = 1000, E(0) = 600, IA(0) = 70, IS(0) = 30, T (0) = 60,
R(0) = 0, and B(0) = 5000. Furthermore, numerical simula-
tions with several control strategies are given, such as:
1. Strategy A: control with u1 only (see Figure 5).
2. Strategy B: control with u2 only (see Figure 6).
3. Strategy C: Control with both u1(t) and u2(t) (see Figure 7).
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Table 2. Parameter values for model (1).

Parameter Value Source
π 0.03661 [39]
α 2

7
[18]

β 0.00003 [16]
βd 0.03 Assumed
µ 0.01243 [40]
γ 0.2 Assumed
ω 1

28
[18]

σ 0.08 [17]
κ1 0.9 [18]
κ2 0.8 [18]
f 0.52 Assumed
δB 0.0345 [18]
psi 0.1 [17]
θ 0.34 Assumed
η1 0.214 [17]
η2 0.214 [17]
ε 0.42 Assumed
ϕ 1

385
[18]

δ 0.005 Assumed
q 0.2 [18]
K 10000 Assumed
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Figure 4. Simulation of the (a) Control profile u1 (b) Control profile u2

Discussion of Results

Figure 5 is the simulation of the effect of the control u1(t)
on the human population and the concentration of Corynebac-
terium Diphtheriae in the environment. In the presence of the
control measure u1(t), the number of the susceptible individu-
als increases up to 150000 within 40 days, the vaccinated indi-
viduals reduces to below 6500 within 60 days, and the exposed
individuals reduces below 8000 in 40 days. It is also observed
that in the presence of the control measure u1(t), the number
of asymptomatic infected individuals and the number of symp-
tomatic infected individuals decreases to below 4000 and 2500
within 80 days respectively. Furthermore, in the presence of the
control measure u1(t), the number of treated individuals and
the number of recovered individuals reduces below 40000 and
12000 within 60 days respectively. It is also observed that in
the presence of the control measure u1(t), the concentration of
Corynebacterium Diphtheriae in the environment decreases to
below 200000 within 80 days.

Figure 6 depicts the simulation of the effect of the con-
trol u2(t) on the human population and the concentration of
Corynebacterium Diphtheriae in the environment. In the pres-
ence of the control measure u2(t), the number of the suscepti-
ble individuals increases up to 125000 within 40 days, the vacci-
nated individuals reduces to below 8000 within 60 days, and the
exposed individuals reduces below 10000 in 40 days. It is also
observed that in the presence of the control measure u2(t), the
number of asymptomatic infected individuals and the number of
symptomatic infected individuals decreases to below 3000 and
2200 within 80 days respectively. Furthermore, in the presence
of the control measure u2(t), the number of treated individuals
and the number of recovered individuals reduces below 44000
and 14000 within 60 days respectively. It is also observed that
in the presence of the control measure u2(t), the concentration
of Corynebacterium Diphtheriae in the environment decreases to
below 10000 within 80 days.

Figure 7 is the simulation of the effect of both the controls
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Figure 5. Simulation of the (a) effect of u1(t) on the susceptible individuals (b) effect of u1(t) on the vaccinated individuals (c) effect of
u1(t) on the exposed individuals (d) effect of u1(t) on asymptomatic infected individuals with Diphtheria (e) effect of u1(t)

on symptomatic infected individuals with Diphtheria (f) effect of u1(t) on the treated individuals (g) effect of u1(t) on the
recovered individuals (h) effect of u1(t) on the Concentration of Corynebacterium Diphtheriae in the environment.
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Figure 6. Simulation of the (a) effect of u2(t) on the susceptible individuals (b) effect of u2(t) on the vaccinated individuals (c) effect of
u2(t) on the exposed individuals (d) effect of u2(t) on asymptomatic infected individuals with Diphtheria (e) effect of u2(t)

on symptomatic infected individuals with Diphtheria (f) effect of u2(t) on the treated individuals (g) effect of u2(t) on the
recovered individuals (h) effect of u2(t) on the Concentration of Corynebacterium Diphtheriae in the environment.
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Figure 7. Simulation of the (a) effect of u1(t) and u2(t) on the susceptible individuals (b) effect of u1(t) and u2(t) on the vaccinated
individuals (c) effect of u1(t) and u2(t) on the exposed individuals (d) effect of u1(t) and u2(t) on asymptomatic infected
individuals with Diphtheria (e) effect of u1(t) and u2(t) on symptomatic infected individuals with Diphtheria (f) effect of u1(t)

and u2(t) on the treated individuals (g) effect of u1(t) and u2(t) on the recovered individuals (h) effect of u1(t) and u2(t) on
the Concentration of Corynebacterium Diphtheriae in the environment.

JJBM | Jambura J. Biomath Volume 6 | Issue 1 | March 2025



F. A. Oguntolu et al. – Mathematical Modeling on the Transmission Dynamics of Diphtheria with Optimal Control Strategies… 18

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5
x 10

5

Time (in days)

C
u

m
u

la
ti
v
e

 N
e

w
 C

a
s
e

s
 o

f 
D

ip
h

th
e

ri
a

 

 

φ = 0.1 

φ = 0.3

φ = 0.5

φ = 0.7

φ = 0.9

Figure 8. The effect of the vaccination rate (ϕ) on the cumulative new cases of Diphtheria
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Figure 9. The effect of the Corynebacterium Diphtheriae dacay rate in the environment (δB ) on the cumulative new cases of Diphtheria.

u1(t) and u2(t) on the human population and the concentration
of Corynebacterium Diphtheriae in the environment. In the pres-
ence of the control measures u1(t) and u2(t), the number of the
susceptible individuals increases up to 170000 within 40 days,
the vaccinated individuals reduces to below 4800 within 60 days,
and the exposed individuals reduces below 5000 in 40 days. It is
also observed that in the presence of the control measures u1(t)
and u2(t), the number of asymptomatic infected individuals and
the number of symptomatic infected individuals decreases to be-
low 1800 and 1000 within 80 days respectively. Furthermore, in
the presence of the control measures u1(t) and u2(t), the num-

ber of treated individuals and the number of recovered individ-
uals reduces below 22000 and 7500 within 60 days respectively.
It is also observed that in the presence of the control measures
u1(t) and u2(t), the concentration of Corynebacterium Diphtheriae
in the environment decreases to below 9000 within 80 days.

It is important to note that the number of the vaccinated in-
dividuals declined when the control measure was implemented,
this is due to the fact that in the presence of the control measure
the number of infected individuals decreases drastically, which
means that the prevalence of Diphtheria decreases. This reduced
the necessity for vaccination. Furthermore, the treated individu-
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als and recovered individuals reduces also when the control mea-
sure was implemented, this is because the number of infected
individuals reduced when the control measure was implemented
thereby reducing the number of individuals receiving treatment
as well as the number of recovered individuals.

Figure 8 and Figure 9 depicts the simulations of the ef-
fect of the vaccination rate (ϕ) and the decay rate (δB ) of the
Corynebacterium Diphtheriae in the environment on the cumulative
new cases of Diphtheria respectively. It is observed in Figure 8
that as the vaccination rate (ϕ) increases, the cumulative new
cases of Diphtheria decreases. Furthermore, it is observed that
if the vaccination rate (ϕ) can be stepped up to 70%, the cumu-
lative new cases of Diphtheria will be reduced to below 100000
within 80 days. Similarly, in Figure 9, it is observed that as the
decay rate (δB ) increases, the cumulative new cases of Diphtheria
reduces, and if the decay rate (δB ) is increased to 50%, the cumu-
lative cases will be reduced to below 250000 within 80 days.

Conclusively, our results indicates that the best strategy to
mitigate and curb the spread of diphtheria is to properly imple-
ment the combination of the two control measures as well as
increase the vaccination rate and the decay rate of the Corynebac-
terium Diphtheriae in the environment.

5. Conclusion

In this study, we formulated and rigorously analyzed a de-
terministic epidemiological mathematical model to gain insight
into the transmission dynamics of Diphtheria infection, incor-
porating the concentration of Corynebacterium Diphtheriae in the
environment, dividing the infected compartments into asymp-
tomatic and symptomatic, and also account for re-infection af-
ter recovery. The analysis of the model begins with the com-
putation of the basic reproduction number and the examination
of the local stability of the disease-free equilibrium using the
Routh-Hurwitz criterion. It was observed that whenever the ba-
sic reproduction number is less than one (R0 < 1), the disease-
free equilibrium point is locally asymptotically stable and unsta-
ble whenever the basic reproduction number is greater than one
(R0 < 1). The existence and stability of the endemic equilib-
rium point was determined using the Centre Manifold Theorem.
It was revealed that the model undergoes the phenomenon of
backward bifurcation when the basic reproduction number is less
than one. This characteristic makes effective control Diphtheria
infection within the population difficulty. However, under the
assumption of no re-infection of Diphtheria infection after recov-
ery, the disease-free equilibrium point is globally asymptotically
stable whenever the basic reproduction number is less than or
equal to one (R0 ≤ 1). Furthermore, the sensitivity analysis of
the basic reproduction number was carried out in order to de-
termine the impact of each of the model basic parameters that
contribute to the transmission of the disease. We were able to
identify the parameters with positive indices, which indicate that
they have significant impact on increasing the spread of the dis-
ease if their values are increasing. The parameters with negative
indices are responsible for mitigating the burden of the disease
as their values increases while the others are left constant. We
employed the optimal control theory to investigate the optimal
intervention strategy for curbing the spread of the disease. We
introduced two time dependent control measures to mitigate the

spread of Diphtheria. These control measures represent preven-
tive actions, such as public enlightenment campaigns to sensitize
and educate the general public about the dynamics of diphtheria
and the importance of proper personal hygiene, including regular
handwashing to prevent susceptible individuals from acquiring
diphtheria, and environmental sanitation practices such as clean-
ing surfaces, clothes, materials, and door handles to reduce the
concentration of Corynebacterium Diphtheriae in the environment.
The results from the numerical simulations reveal that Diphtheria
infection can successfully be controlled and mitigated within the
population if we can increase the vaccination rate and the decay
rate of Corynebacterium Diphtheriae in the environment, as well
as properly and effectively implementing these optimal control
measures simultaneously.
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Appendix

A.

m1 = A1 +A2 +A3 +A5 +A6 +A7 +A8 + δB ,

m2 = A1 (A2 +A3 +A5 +A6 +A7 +A8 + δB) +A2(A3 +A5 +A6

+A7 +A8 + δB) +A3 (A5 +A6 +A7 +A8 + δB) +A5(A6

+A7 +A8 + δB) +A6 (A7 +A8 + δB) +A7 (A8 + δB) +A8δB

− ϕγ −
βA2(qα+A4)

(γ +A1)
,

m3 = (A1A2 − ϕγ) (A3 +A5 +A6 +A7 +A8 + δB) +A3(A1

+A2) (A5 +A6 +A7 +A8 + δB) +A5(A1 +A2 +A3)(A6

+A7 +A8 + δB) +A6(A1 +A2 +A3 +A5) (A7 +A8 + δB)

+A7 (A1 +A2 +A3 +A5 +A6) (A8 + δB) +A8δB(A1 +A2

+A3 +A5 +A6 +A7)−
βdπA2(κ1A4 + κ2qα)

Kµ(γ +A1)

−
βA2qα (A1 +A2 +A5 +A7 +A8 + δB)

(γ +A1)

−
βA2A4 (σ +A1 +A2 +A6 +A7 +A8 + δB)

(γ +A1)
,

m4 = A1A2A3(A5 +A6 +A7 +A8 + δB) +A5(A1A2 +A1A3

+A2A3)(A6 +A7 +A8 + δB) +A6(A1(A2 +A3 +A5)

+A2(A3 +A5) +A3A5))(A7 +A8 + δB) +A8δB(A5A6

+A5A7 +A6A7) +A7(A1(A2 +A3 +A5 +A6) +A2(A3

+A5 +A6) +A3(A5 +A6) +A5A6)(A8 + δB) +A8δB(A1

+A2 +A3)(A5 +A6 +A7) +A8δB(A1A2 +A1A3 +A2A3)

+
βϕγA2(qα+A4)

(γ +A1)
− ϕγA3(A5 +A6 +A7 +A8 + δB)

− ϕγA5(A6 +A7 +A8 + δB)− ϕγA6(A7 +A8 + δB)

− ϕγ(A7A8 +A7δB +A8δB)−
βA2A4A7(A8 + δB)

(γ +A1)

−
βA2A4A8δB

(γ +A1)
−
βA2A4σ(A1 +A2 +A7 +A8 + δB)

(γ +A1)

−
βA2A4(A1 +A2)(A6 +A7 +A8 + δB)

(γ +A1)

−
βdπκ2A2 (qα(A1 +A2 +A5 +A7 +A8) + σA4)

Kµ(γ +A1)

−
βA2(A7 +A8 + δB)(A4A6 + qαA5)

(γ +A1)
−
βA1A2

2A4

(γ +A1)

−
βqαA1A2(A2 +A5 +A7 +A8 + δB)

(γ +A1)

−
βqαA2(A7A8 +A7δB +A8δB)

(γ +A1)
−
βqαA2

2(A5 +A7 +A8 + δB)

(γ +A1)
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−
βdπκ1A2A4(A1 + A2)

Kµ(γ + A1)
−

βdπκ1A2A4(A6 + A7 + A8)

Kµ(γ + A1)
,

m5 = A1A2A3A5(A6 + A7 + A8 + δB) + A6(A1A2(A3 + A5)

+ A3A5(A1 + A2))(A7 + A8 + δB) + A7(A1A2(A3 + A5 + A6)

+ A1A3(A5 + A6) + A1A5A6 + A2A3(A5 + A6) + A5A6(A2

+ A3))(A8 + δB) + A6A7A8δB(A3 + A5) + A5A8δB(A2

+ A3)(A6 + A7) + A8δB(A1A2 + A1A3 + A2A3)(A5 + A6 + A7)

+ A2A8δB(A1A3 + A6A7) + A1A8δB(A5A6 + A5A7 + A6A7)

−
βqαA2A5(A1 + A2)(A7 + A8 + δB)

(γ + A1)
−

βqαA2A7A8δB(A1 + A2)

(γ + A1)

−
βqαA2A7(A1 + A2 + A5)(A8 + δB)

(γ + A1)
−

βqαA2A7A8δB(A5 + A7)

(γ + A1)

−
βqαA2(A1A2 − ϕγ)(A5 + A7 + A8 + δB)

(γ + A1)
−

βdπqακ2A2A7A8

Kµ(γ + A1)

−
βσA1A2A4(A2 + A7 + A8 + δB)

(γ + A1)
+

βdπϕγκ1A2A4

Kµ(γ + A1)

−
βA2A4A7(σ + A1 + A2)(A8 + δB)

(γ + A1)
−

βdπqακ2A2A5(A7 + A8)

Kµ(γ + A1)

−
βA2A4(σA2 + A1A2 + A1A6 + A2A6)(A7 + A8 + δB)

(γ + A1)

−
βA2A4A8δB(σ + A1 + A2 + A7)

(γ + A1)
−

βdπqακ2A
2
2(A5 + A7 + A8)

Kµ(γ + A1)

−
βA2A4A6(A7A8 + A7δB + A8δB)

(γ + A1)
+

βdπqακ2A2ϕγ

Kµ(γ + A1)

−
βdπqακ2A1A2(A2 + A5 + A7 + A8)

Kµ(γ + A1)
−

βdπκ1A2A4(A1A2 − ϕγ)

Kµ(γ + A1)

−
βdπσκ2A2A4(A1 + A2 + A7 + A8)

Kµ(γ + A1)
− ϕγA6(A3 + A5)(A7

+ A8 + δB) −
βdπκ1A2A4(A6A7 + A6A8 + A7A8)

Kµ(γ + A1)
− ϕγA3A5(A6

+ A7 + A8 + δB) +
βϕγA2A4(σ + A6 + A7 + A8 + δB)

(γ + A1)

− ϕγA7(A3 + A5 + A6)(A8 + δB) − ϕγA8δB(A3 + A5 + A6 + A7),

m6 = A1A2A3A5A6(A7 + A8 + δB) + A7(A1A2A3(A5 + A6)

+ A5A6(A1A2 + A1A3 + A2A3))(A8 + δB) + A5A8δB(A6

+ A7)(A1A2 + A1A3 + A2A3) + A5A6A7A8δB(A2 + A3)

+ A1A6A7A8δB(A2 + A3 + A5) + A1A2A3A8δB(A5 + A6 + A7)

+ A2A3A6A7A8δB −
βA1A

2
2(qαA5 + σA4)(A7 + A8 + δB)

(γ + A1)

−
βqαA2A7(A1(A2 + A5) + A2A5)(A8 + δB)

(γ + A1)

+
βqαϕγA2A5(A7 + A8 + δB)

(γ + A1)
−

βσA2A8δB(A2 + A7)

(γ + A1)

−
βqαA2A8δB(A1(A2 + A5 + A7) + A2(A5 + A7) + A5A7)

(γ + A1)

−
βqαA2A4A7(2σA4 + A1A2 + 2σA2)(A8 + δB)

(γ + A1)

+
βqαϕγA2(A7A8 + A7δB + A8δB)

(γ + A1)
−

βσA1A2A4A8δB

(γ + A1)

−
βσA1A

2
2A4(σ + A6)(A7 + A8 + δB)

(γ + A1)
−

βdπqακ2A1A2A7A8

Kµ(γ + A1)

−
βqαA2A4A8δB(σ(A1 + A2 + A7) + A1A2)

(γ + A1)

−
βdπqακ2A2(A1A2 − ϕγ)(A5 + A7 + A8)

Kµ(γ + A1)

−
βdπκ2A2(σA2A4 + qαA5(A1 + A2))(A7 + A8)

Kµ(γ + A1)

−
βdπqακ2A2A7A8(A2 + A5)

Kµ(γ + A1)
−

βdπA2A4(κ1A6A7A8 − κ2ϕγσ)

Kµ(γ + A1)

−
βdπκ2A2A4(A7A8 + A1(A2 + A7 + A8))

Kµ(γ + A1)

−
βdπκ1A2A4(A1A2 − ϕγ)(A6 + A7 + A8)

Kµ(γ + A1)
− ϕγA3A8δB(A5 + A6

+ A7) − ϕγA6A7A8δB +
βϕγA2

2A4(σ + A6)(A7 + A8 + δB)

(γ + A1)

−
βdπκ1A2A4(A1 +A2)(A6A7 +A6A8 +A7A8)

Kµ(γ +A1)

−
βA2A4A6A7(A1 +A2)(A8 + δB)

(γ +A1)
−
βA1A2A4A8δB(A6 +A7)

(γ +A1)

−
βA2A4A8δB(A2A6 +A2A7 +A6A7)

(γ +A1)
− ϕγA7(A3A5 +A3A6

+A5A6)(A8 + δB) +
βϕγA2A4(A7A8 +A7δB +A8δB)

(γ +A1)

− ϕγA5A8δB(A6 +A7)− ϕγA3A5A6(A7 +A8 + δB),

m7 = A1A2A3A5A6A7(A8 + δB) +A1A2A3A5A8δB(A6 +A7)

+A1A5A6A7A8δB(A2 +A3) +A2A3A6A7A8δB(A1 +A5)

−
βA1A2

2(A7A8 +A7δB +A8δB)(A4A6 + qαA5 + σA4)

(γ +A1)

−
βdπA1A2

2A4(A7 +A8)(κ1A6 + κ2σ)

Kµ(γ +A1)
−
βA1A2

2A4A7A8δB

(γ +A1)

−
βA2A4A7A8δB(A1 +A2(σ +A6)

(γ +A1)
−
βdπκ1A1A2

2A4A7A8

Kµ(γ +A1)

−
βdπA2A7A8(A1 +A2)(κ1A4A6 + κ2(qαA5 + σA4))

Kµ(γ +A1)

−
βqαA2A7A8δB(A1A2 +A1A5 +A2A5)

(γ +A1)

−
βdπqακ2A1A2

2(A5A7 +A5A8 +A7A8)

Kµ(γ +A1)

+
βϕγA2(A7A8 +A7δB +A8δB)(A4A6 + qαA5 + σA4)

(γ +A1)

+
βϕγA2A7A8δB(A4 + qα)

(γ +A1)
− ϕγA3A5A6(A7A8 +A7δB

+A8δB)− ϕγA7A8δB(A3(A5 +A6) +A5A6),

m8 = A3A5A6A7A8δB(A1A2 − ϕγ)(1−R0).

B.

∂2f1

∂x1∂x4
=

∂2f1

∂x4∂x1
=

∂2f1

∂x1∂x5
=

∂2f1

∂x5∂x1
=

β∗µ(γ + µ)

π(γ + ϕ+ µ)
−
β∗µ

π
,

∂2f1

∂x2∂x4
=

∂2f1

∂x4∂x2
=

∂2f1

∂x3∂x4
=

∂2f1

∂x4∂x3
=

∂2f1

∂x4∂x6
=

∂2f1

∂x6∂x4

=
∂2f1

∂x4∂x7
=

∂2f1

∂x7∂x4
=

β∗µ(γ + µ)

π(γ + ϕ+ µ)
,

∂2f1

∂x1∂x8
=

∂2f1

∂x8∂x1
= −

βd

K
,
∂2f1

∂x28
=

2βdπ(γ + µ)

K2µ(γ + ϕ+ µ)
,

∂2f1

∂x2∂x5
=

∂2f1

∂x5∂x2
=

∂2f1

∂x3∂x5
=

∂2f1

∂x5∂x3
=

∂2f1

∂x5∂x6
=

∂2f1

∂x6∂x5

=
∂2f1

∂x5∂x7
=

∂2f1

∂x7∂x5
=

β∗µ(γ + µ)

π(γ + ϕ+ µ)
,

∂2f1

∂x4∂x5
=

∂2f1

∂x5∂x4
=
∂2f1

∂x24
=
∂2f1

∂x25
=

2β∗µ(γ + µ)

π(γ + ϕ+ µ)
,

∂2f3

∂x1∂x4
=

∂2f3

∂x4∂x1
=

∂2f3

∂x1∂x5
=

∂2f3

∂x5∂x1
=
β∗µ

π
−

β∗µ(γ + µ)

π(γ + ϕ+ µ)
,

∂2f3

∂x1∂x8
=

∂2f3

∂x8∂x1
=
βd

K
,
∂2f3

∂x28
= −

2βdπ(γ + µ)

K2µ(γ + ϕ+ µ)
,

∂2f3

∂x2∂x4
=

∂2f3

∂x4∂x2
=

∂2f3

∂x3∂x4
=

∂2f3

∂x4∂x3
=

∂2f3

∂x4∂x6
=

∂2f3

∂x6∂x4

=
∂2f3

∂x4∂x7
=

∂2f3

∂x7∂x4
= −

β∗µ(γ + µ)

π(γ + ϕ+ µ)
,

∂2f3

∂x2∂x5
=

∂2f3

∂x5∂x2
=

∂2f3

∂x3∂x5
=

∂2f3

∂x5∂x3
=

∂2f3

∂x5∂x6
=

∂2f3

∂x6∂x5

=
∂2f3

∂x5∂x7
=

∂2f3

∂x7∂x5
= −

β∗µ(γ + µ)

π(γ + ϕ+ µ)
,
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∂2f3

∂x4∂x5
=

∂2f3

∂x5∂x4
=
∂2f3

∂x24
=
∂2f3

∂x25
= −

2β∗µ(γ + µ)

π(γ + ϕ+ µ)
,

∂2f4

∂x4∂x7
=

∂2f4

∂x7∂x4
=

∂2f4

∂x5∂x7
=

∂2f4

∂x7∂x5
=
β∗µfε

π
,

∂2f4

∂x7∂x8
=

∂2f4

∂x8∂x7
=
βdfε

K
,

∂2f5

∂x7∂x8
=

∂2f5

∂x8∂x7
=
βd(1− f)ε

K
,

∂2f5

∂x4∂x7
=

∂2f5

∂x7∂x4
=

∂2f5

∂x5∂x7
=

∂2f5

∂x7∂x5
=
β∗µ(1− f)ε

π
,

∂2f7

∂x4∂x7
=

∂2f7

∂x7∂x4
=

∂2f7

∂x5∂x7
=

∂2f7

∂x7∂x5
= −

β∗µε

π
,

∂2f7

∂x7∂x8
=

∂2f7

∂x8∂x7
= −

βdε

K
,

∂2f1

∂x4∂β∗ =
∂2f1

∂x5∂β∗ = −
(γ + µ)

(γ + ω + µ)
,

∂2f3

∂x4∂β∗ =
∂2f3

∂x5∂β∗ =
(γ + µ)

(γ + ω + µ)
.

C.

B1 = − Θ1

(
(1 − u1(t))β(I

∗
A + I∗

S)S∗

N∗2 − (1 − u1(t))

(
β(I∗

A + I∗
S)

N∗

+
βdB

∗

K + B∗

)
− ϕ − µ

)
− Θ2ϕ + Θ3

(
(1 − u1(t))β(I

∗
A + I∗

S)S∗

N∗2

− (1 − u1(t))

(
β(I∗

A + I∗
S)

N∗ +
βdB

∗

K + B∗

))
+

Θ4(1 − u1(t))fεβ(I
∗
A + I∗

S)R∗

N∗2 −
Θ7(1 − u1(t))εβ(I

∗
A + I∗

S)R∗

N∗2

+
Θ5(1 − u1(t))(1 − f)εβ(I∗

A + I∗
S)R∗

N∗2 ,

B2 = − Θ1

(
(1 − u1(t))β(I

∗
A + I∗

S)S∗

N∗2 + γ

)
+ Θ2(γ + µ)

+
Θ3(1 − u1(t))β(I

∗
A + I∗

S)S∗

N∗2 +
Θ4(1 − u1(t))fεβ(I

∗
A + I∗

S)R∗

N∗2

+
Θ5(1 − u1(t))(1 − f)εβ(I∗

A + I∗
S)R∗

N∗2

−
Θ7(1 − u1(t))εβ(I

∗
A + I∗

S)R∗

N∗2 ,

B3 = −
Θ1(1 − u1(t))β(I

∗
A + I∗

S)S∗

N∗2 + Θ3

(
(1 − u1(t))β(I

∗
A + I∗

S)S∗

N∗2

+ α + µ

)
− Θ4

(
(1 − q)α −

(1 − u1(t))fεβ(I
∗
A + I∗

S)R∗

N∗2

)
− Θ5

(
qα −

(1 − u1(t))(1 − f)εβ(I∗
A + I∗

S)R∗

N∗2

)
−

Θ7(1 − u1(t))εβ(I
∗
A + I∗

S)R∗

N∗2 ,

B4 = − b1 + Θ1(1 − u1(t))

(
β

N∗
−
β(I∗A + I∗S)

N∗2

)
S
∗ − Θ6η1 − Θ8κ1

− Θ3(1 − u1(t))

(
β

N∗
−
β(I∗A + I∗S)

N∗2

)
S
∗
+ Θ4

(
σ + η1 + µ

− (1 − u1(t))fε

(
β

N∗
−
β(I∗A + I∗S)

N∗2

)
R

∗
)

− Θ5

(
σ + (1

− u1(t))(1 − f)ε

(
β

N∗
−
β(I∗A + I∗S)

N∗2

)
R

∗
)

+ Θ7(1

− u1(t))ε

(
β

N∗
−
β(I∗A + I∗S)

N∗2

)
R

∗
,

B5 = − b2 + Θ1(1 − u1(t))

(
β

N∗
−
β(I∗A + I∗S)

N∗2

)
S
∗ − Θ3(1

− u1(t))

(
β

N∗
−
β(I∗A + I∗S)

N∗2

)
S
∗ − Θ4(1 − u1(t))fε

(
β

N∗

−
β(I∗A + I∗S)

N∗2

)
R

∗
+ Θ7(1 − u1(t))ε

(
β

N∗
−
β(I∗A + I∗S)

N∗2

)
R

∗

+ Θ5

(
η2 + δ + µ− (1 − u1(t))(1 − f)ε

(
β

N∗
−
β(I∗A + I∗S)

N∗2

)
R

∗
)

− Θ6η2 − Θ8κ2,

B6 = −
Θ1(1 − u1(t))β(I

∗
A + I∗S)S∗

N∗2
+

Θ3(1 − u1(t))β(I
∗
A + I∗S)S∗

N∗2

+
Θ4(1 − u1(t))fεβ(I

∗
A + I∗S)R∗

N∗2
+ Θ6(ω + θδ + µ)

+
Θ5(1 − u1(t))(1 − f)εβ(I∗A + I∗S)R∗

N∗2

− Θ7

(
ω +

(1 − u1(t))εβ(I
∗
A + I∗S)R∗

N∗2

)
,

B7 = −
Θ1(1 − u1(t))β(I

∗
A + I∗S)S∗

N∗2
− Θ2ψ +

Θ3(1 − u1(t))β(I
∗
A + I∗S)S∗

N∗2

− Θ4

(
(1 − u1(t))fε

(
β(I∗A + I∗S)

N∗
+

βdB
∗

K + B∗

)
(1 − u1(t))fεβ(I

∗
A + I∗S)R∗

N∗2

)
− Θ5

(
(1 − u1(t))(1 − f)ε

(
β(I∗A + I∗S)

N∗

+
βdB

∗

K + B∗

)
−

(1 − u1(t))(1 − f)εβ(I∗A + I∗S)R∗

N∗2

)
+ Θ7

(
ψ + µ + (1 − u1(t))ε

(
β(I∗A + I∗S)

N∗
+

βdB
∗

K + B∗

)
−

(1 − u1(t))εβ(I
∗
A + I∗S)R∗

N∗2

)
,

B8 = Θ1(1 − u1(t))

(
βd

K + B∗
−

βdB
∗

(K + B∗)2

)
S
∗ − Θ3(1 − u1(t))

(
βd

K + B∗

−
βdB

∗

(K + B∗)2

)
S
∗ − Θ4(1 − u1(t))fε

(
βd

K + B∗
−

βdB
∗

(K + B∗)2

)
R

∗

− Θ5(1 − u1(t))(1 − f)ε

(
βd

K + B∗
−

βdB
∗

(K + B∗)2

)
R

∗

+ Θ7(1 − u1(t))ε

(
βd

K + B∗
−

βdB
∗

(K + B∗)2

)
R

∗
+ Θ8(δB + u2(t)).
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