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Implementation of non-standard finite difference on a
predator prey model considering cannibalism on predator and
harvesting on prey

Prisalo Luis1, Putri Zahra Kamalia1, Olumuyiwa James Peter2,3, and Dipo Aldila1,∗

1Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
2Department of Mathematical and Computer Sciences, University of Medical Sciences, Ondo City, Ondo State, Nigeria
3Department of Epidemiology and Biostatistics, School of Public Health, University of Medical Sciences, Ondo City, Ondo State, Nigeria

ABSTRACT. The type of interaction between two different species in the same ecosystem plays an important role in
the coexistence between these species. One type of interaction between species is predator-prey interaction. Several
important factors are crucial to guarantee the existence of predator and prey in the same ecosystem, such as the
carrying capacity of the ecosystem for the survival of prey, the intensity of predation, cannibalism in the predator
population, and many other factors. External factors such as human intervention, such as harvesting, increase the
complexity of the problem. Here in this article, we discuss a predator-prey model that takes predation and harvesting
in prey populations into account. We implement a Non-Standard Finite Difference (NSFD) numerical scheme to solve
our model due to it good performance on stability and approximation. Mathematical analysis on the existence and
stability of equilibrium points from the discrete model was analyzed in detail. We implement a Nonstandard Finite
Difference (NSFD) scheme to ensure numerical stability across various simulation scenarios. It is shown that NSFD
has a better numerical stability compared to the standard numerical scheme like Euler or fourth-order Runge-Kutta
method. From the sensitivity of autonomous simulation, we have shown that increases of cannibalism in predator
populations will reduce predator populations, and as a result, the population of prey will increase due to the lack of
number of predators. We also showed that increasing harvesting in prey populations may cause extinction in prey and
predator populations. Furthermore, we have shown how periodic harvesting on prey populations may cause a critical
condition on the existence of prey populations that takes a longer period to get recovered.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction
Predator-prey models are crucial for understanding ecolog-

ical dynamics, specifically species interactions within an ecosys-
tem. These models usually incorporate characteristics such as
predation rates, population growth, and carrying capacity. How-
ever, real-world ecosystems exhibit more complex behaviours,
such as predator cannibalism and human-induced interventions
like prey species harvesting. Incorporating such variables into
mathematical models increases their utility and provides addi-
tional insight into population dynamics [1].

A recent study underlined the relevance of functional re-
sponses in predator-prey systems, particularly when cannibalism
occurs. Functional responses, such as the Holling Type-II model,
describe the nonlinear interactions between species, including
satiation effects at enormous prey densities, such mechanisms
provides insights into how predator populations self-regulate
through cannibalism, limiting resource depletion and competi-
tion with limited prey supply [2, 3]. Studies have revealed how
prey harvesting strategies influence system dynamics, underlin-
ing the importance of setting sustainable harvesting levels to
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avoid catastrophic collapses. These advancements emphasize
the need for numerical methods that can preserve the qualita-
tive characteristics of these complicated models to give accu-
rate simulations of real-world ecosystems. This study examines
a predator-prey system that incorporates predator cannibalism
and prey harvesting. Predator cannibalism, defined by a Holling
Type-II functional response, is a self-limiting component of preda-
tor population development, whereas harvesting exerts external
pressure on the prey population [4, 5]. The model builds on the
framework presented in previous publications [6], encompassing
these important ecological processes.

Another important thing that was discussed by authors in
the predator-prey interaction is the existence of disease in prey
or predator populations. Authors in [7] involved disease in preda-
tor population in their model. The existence and local stability
analysis of their model were conducted in detail. Beay et al. [8]
introduced a three-dimensional ordinary differential equation to
model predator-prey interaction that involves harvesting in both
populations and disease in the predator population. The effect of
some important parameters on the dynamics of the population is
discussed through numerical experiments. Furthermore, authors
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Figure 1. Interaction diagram between predator and prey for model in (1)

in [9] incorporated diseases in the prey population with the inter-
vention of quarantine in their proposed model. The calculation
of the reproduction number, which determines the persistence
of disease, was discussed by the authors.

In addition to theoretical advances, predator-prey models
are increasingly being applied in practical ecological manage-
ment and conservation. To balance ecosystem sustainability and
resource exploitation, integrated harvesting policies have been
devised [10], considering both economic benefits and ecologi-
cal restrictions. These models are especially useful in marine en-
vironments, where overfishing regularly produces predator-prey
imbalances that can propagate across food webs. Cannibalism
has been proven to provide a buffer against overharvesting, al-
lowing predator populations to sustain themselves even when
prey is scarce [23]. For readers who are interested a further read-
ing on predator prey model can check [11–15] for predator-prey
model with harvesting, [16–19] for predator prey model with dis-
eases, and [20–22] for a more complex model. However, the
relationship between harvesting techniques and self-regulation
mechanisms such as cannibalism is poorly understood, and it is
the primary subject of this study.

To understand this phenomenon, we modify the predator-
prey model introduced by the authors in [24] and later modi-
fied by the authors in [25]. We incorporate harvesting in the
prey population, which we assume may affect the dynamics of
the predator population. To investigate the dynamics of this ex-
panded model, we use a Non-Standard Finite Difference (NSFD)
scheme. NSFD approaches are effective in retaining qualitative
aspects of continuous systems, especially stability and positiv-
ity under different situations [26]. Our analysis shows that the
NSFD scheme has better numerical stability than typical numeri-
cal methods such as Euler or fourth-order Runge-Kutta. Further-
more, we conduct a thorough examination of equilibrium points,
their stability, and the effects of critical parameters, such as can-
nibalism and harvesting rates, on system behaviour.

This study advances ecological modelling by introducing a
robust numerical approach for simulating predator-prey interac-
tions under realistic ecological conditions. Our findings highlight
the need of sustainable harvesting procedures, as well as the im-
pact of intrinsic behaviours like cannibalism on population bal-
ance and ecosystem stability.

2. Model construction
Let us denote N and P represent the number of prey and

predator population, respectively. The interaction diagram of the
model is represented in Figure 1. Model construction is given as
follow. We assume that the prey population growth follows a lo-
gistic equation with b and K representing intrinsic growth rate
and carrying capacity, respectively. On the other hand, the preda-
tor population growth following negative exponential function
in the absence of prey population, where β is the natural death
rate of predator. We assume that there are no alternative food
predator except the prey population. Hence, with the absence
of predation and cannibalism, we have the dynamic of prey given
by dN

dt = bN
(
1− N

K

)
and for predator is given by dP

dt = −βP .
With a predation of predator to prey with a specific suc-

cessful contact rate is given by m, then the prey population will
decreases due to predation with a rate of mNP. Assuming the
conversion energy from predation activity, then we assume that
the predator population will increases due to predation with a
constant energy conversion of c0. Hence, the predator increases
in a rate of c0mNP . Since m and c0 are constant, then we sim-
plify c0m into c2. Furthermore, due to cannibalism, the predator
population will also decreases with a specific rate of c3. We use
a Functional response Holling type-2 to describe the cannibalism
term, with d representing the saturation term. Hence, the can-
nibalism term is given by c3P

2

d+P . Due to this cannibalism, then
predator population will increasss with a specific constant rate
c1. In several special circumstances, it is possible that human play
an important role in the balance of ecosystem. One of the inter-
vention by human is population control with targeted harvesting.
Hence, we include a prey-harvesting in our model with a specific
constant rate µ. Based on the above assumption and interaction
diagram in Figure 1, our mathematical model of predator-prey
interaction considering cannibalism and prey harvesting is given
by:

dN

dt
= bN

(
1− N

K

)
−mNP − µN,

dP

dt
= c1P + c2NP − βP − c3P

2

d+ P
,

(1)

with a non-negative initial condition N(0) > 0, P (0) > 0. Im-
plementing the Non Standard Finite Difference (NSFD) on eq. (1),
then we have:

Nn+1 =
NnK(bϕ+ 1)

K(1 + ϕ(µ+mPn) + bϕNn
,
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Pn+1 = Pn + ϕ

(
c1Pn + c2Nn+1Pn − βPn+1 −

c3Pn+1Pn

Pn + d

)
,

(2)

where ϕ = ϕ(h) is the denominator function such that ϕ(h) =
h + O(h2) with h represent the discretized time step size. This
model had been constructed in [24], [25], without harvesting and
involving predator cannibalism and/or refugees.

3. Model Analysis
By direct calculation, there are four type of equilibrium

points of model in (2).
1. Extinction of predator and prey. This equilibrium represent

a condition where both predator and prey extinct from the
population after long period of time, and is given by

E0 = (N0, P0) = (0, 0). (3)

To analyze the local stability of E0, we analyzed it using the
Jacobian matrix of our model, and linearized it around E0.
This calculation gives us:

J(E0) =


ϕb+ 1

ϕµ+ 1
0

0
ϕc1 + 1

ϕβ + 1

 .

For a two-dimension system, we have the equilibrium point
is locally asymptotically stable if |λi| < 1 for i = 1, 2. The
eigenvalues of J(E0(0, 0)) is given by it diagonal entries.
Hence, J(E0(0, 0)) is locally asymptotically stable if b < µ
and c1 < β.

2. Extinction of prey. Different with E0, this equilibrium, de-
noted by E1 represent a condition when only prey popula-
tion extinct from the population, while predator may still
exist. This equilibrium is given by:

E1 = (N1, P1) =

(
0,

d(c1 − β)

c3 + β − c1

)
. (4)

To have a biological interpretation, E1 should be in R2
≥0.

Hence, P1 should be positive and fulfilled only if 0 < c1 −
β < c3. From a direct calculation, the Jacobian matrix of
system (2) evaluated at E1 is given by:

J (E1) =

[
J1 0
J2 J3

]
,

J1 =
bϕ+ 1

−d (β−c1)mϕ
β−c1+c3

+ µϕ+ 1
,

J2 =
d(β − c1)ϕc2(bϕ+ 1)

L1
,

J3 =
(c21 − 2βc1 + β(β + c3))ϕ+ c3

c3(ϕc1 + 1)
,

L1 = (((−dm+ µ)c1 + (dm− µ)β − µc3)ϕ− β + c1

− c3)(ϕc1 + 1).

It was found that E1 will locally asymptotically stable if

0 < (1 + L1) (L3) < 4, (5)

where

L2 =
(1 + bϕ)(β − c1 + c3)

(1 + µϕ)(β − c1 + c3)− dmϕ(β − c1)
,

L3 =
((β − c1)

2 + c3β)ϕ+ c3(ϕc1 + 1)

c3(ϕc1 + 1)
.

3. Extinction of predator. This equilibrium represent a condi-
tion where predator extinct from the population after long
period of time, and is given by

E2 = (N2, P2) =

(
K(b− µ)

b
, 0

)
. (6)

E2 ∈ R+
2 if b > µ is satisfied. The Jacobian matrix of our

model evaluated in E2 gives us:

J (E2) =


µϕ+ 1

bϕ+ 1
−ϕm(b− µ)K

(bϕ+ 1)b

0
((c2K + c1)b−Kµc2)ϕ+ b

(βϕ+ 1)b

 .

Hence, E2 is locally asymptotically stable if

0 <

(
ϕ(µ+ b) + 2

bϕ+ 1

)(
1 +

(Kc2(b− µ) + bc1)ϕ+ b

b(1 + βϕ)

)
< 4.

(7)
4. Existence of predator and prey. This equilibrium represent

a condition where both predator and prey still exist in the
population after a long period of time. The equilibrium
called coexistence point, and is given by

E3 = (N3, P3) =

(
K(b− µ−mP3)

b
, P+

3

)
, (8)

where P+
3 is taken from the positive roots of

a2P
2
3 + a1P3 + a0 = 0, (9)

with a2 = Kmc2, a1 = Kdmc2 + Kµc2 − Kbc2 + βb −
bc1+bc3, and a0 = Kdµc2−Kdbc2+βdb−c1db. Assuming
b > µ+, P+

3 > 0, then system (2) has
(a) unique coexistence equilibrium if a0 < 0,
(b) multiple coexistence equilibrium if a0 > 0, a1 < 0,

and a21 − 4a2a0 ≥ 0.
(c) no coexistence equilibrium otherwise.

Due to complexity expression of E3, the local stability anal-
ysis conducted numerically using the following parameter
values: b = 10,K = 10, c2 = 3, µ = 0.4, β = 1.5, c1 =
1, c3 = 1.5, d = 1,m = 1, ϕ(h) = 1. With this parame-
ter values, we have E3 = (0.61, 8.98) and the corresponds
eigenvalues are λ1,2 = 0.81 ± 0.503i, which indicates the
stability of E3.

4. Numerical experiments
We conduct our numerical simulations in this section us-

ing the NSFD method, and compared it with the Euler and the
fourth order Runge-Kutta method. The numerical experiments
conducted in several scenarios as follows. We choose ϕ(h) = h
for our NSFD method, and use the following parameter values
except it is stated differently:

K = 100, b = 0.5, m = 0.05, µ = 0.1, c1 = 0.02, c2 = 0.01,

β = 0.1, c3 = 0.01, d = 1, h = 0.01.
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Comparison of NSFD, Euler, and RK4 Methods when =1.7
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Comparison of NSFD, Euler, and RK4 Methods when =5
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Figure 2. Comparison between NSFD, Euler and fourth order Runge-Kutta method using various value of ϕ: (a) 0.1, (b) 0.4, (c) 0.7, (d) 1,
(e) 1.7, and (f) 5 .
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Figure 3. Autonomous simulation of system (2) for prey population (top) and predator population (bottom), with various value of canni-
balism rate (c3).
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Figure 4. Autonomous simulation of system (2) for prey population (top) and predator population (bottom), with various value of har-
vesting rate (µ).
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Figure 5. Autonomous simulation of system (2) for prey population (middle) and predator population (bottom), with time-dependent
harvesting rate (µ(t)) shown at top figure.
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Figure 6. Autonomous simulation of system (2) for prey population (middle) and predator population (bottom), with time-dependent
harvesting rate (µ(t)) shown at top figure.
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Figure 7. Autonomous simulation of system (2) for prey population (middle) and predator population (bottom), with time-dependent
harvesting rate (µ(t)) shown at top figure.

Each simulations conducted for 300 days.

1. Comparison between the NSFD, Euler, and fourth order
Runge-Kutta method. For the first simulation, we aim to
compare the performance of the NSFD, Euler, and fourth-
order Runge-Kutta numerical schemes. We use the pre-
viously mentioned parameter values, with ϕ varying as
0.1, 0.4, 1, 1.7, and 5. The results are presented in Figure 2.
When ϕ = 0.1, as shown in Figure 2a, the results from each
numerical scheme are consistent, with all curves converging
to the same equilibrium points. However, as ϕ increases to
0.4, differences in the solutions begin to emerge, becoming
more pronounced at ϕ = 1, as shown in Figure 2b. At this
stage, the NSFD method reaches the equilibrium faster than
the other methods. When ϕ is increased to 1.7, as depicted
in Figure 2d, the Euler method fails, while the NSFD and
fourth-order Runge-Kutta methods avoid divergence. When
φ is increased to 1.7, as shown in Figure 2d, the simula-
tion becomes more sensitive due to the increased nonlin-
earity or stiffness in the system dynamics. Under this condi-
tion, the Euler method—which is a first-order method with
limited stability—fails to produce accurate results and di-
verges from the expected behavior, meaning its numerical
solution grows without bound or becomes erratic. In con-
trast, the Nonstandard Finite Difference (NSFD) scheme and
the fourth-order Runge-Kutta (RK4) method are more robust
and stable, allowing them to maintain numerical accuracy
and avoid divergence, even under this more extreme param-
eter setting. Furthermore, at ϕ = 5 as shown in Figure 2e,
the fourth-order Runge-Kutta method fails to converge to

the equilibrium points, whereas only the NSFD method pro-
duces consistent solutions, tending toward the coexistence
equilibrium.
From this numerical experiments, we can see that the NSFD
technique outperforms the Euler and fourth-order Runge-
Kutta methods in terms of stability and consistency. For
tiny ϕ, all approaches work similarly, but as ϕ rises, vari-
ations become noticeable. Both the fourth-order Runge-
Kutta method and the Euler method fail to converge to the
equilibrium points at ϕ = 5 and ϕ = 1.7, respectively. On
the other hand, even at greater ϕ levels, the NSFD tech-
nique constantly converges to the coexistence equilibrium,
demonstrating its dependability. This demonstrates how re-
liable the NSFD approach is in situations with higher param-
eter values of time steps ϕ.

2. Effect of cannibalism (c3). For the second numerical exper-
iment, we conduct simulations to investigate the impact of
cannibalism on the predator population by varying the val-
ues of c3. Figure 3 displays the findings for four distinct
values of c3: 0.01, 0.05, 0.1, and 0.2. The NSFD technique
is employed for the numerical calculations, and all other pa-
rameter values stay the same as in the prior experiment. At
equilibrium, an increase in the cannibalism rate (c3) bene-
fits the prey population while having a detrimental effect
on the predator population. The amount of prey increases
and the number of predators decreases as cannibalism rates
rise. Moreover, as c3 increases, the time required for both
populations to reach their stable equilibrium also increases.
This suggest that cannibalism slows down the process of
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predator-prey population to reach their stable condition.
3. Effect of a constant prey harvesting (µ). The final set of

numerical experiments was conducted for various values
of the harvesting rate µ. All other parameter values re-
main the same as in the previous simulations, except for
µ = 0.05, 0.2, 0.4, and 0.6. The results are presented in
Figure 4. It is clearly observed that increasing the harvest-
ing rate in the prey population leads to a reduction in the
equilibrium levels of both prey and predator populations. A
higher value of µ also increases the time required for each
population to reach its equilibrium point. When the harvest-
ing rate becomes excessively high (µ = 0.9), extinction oc-
curs not only in the prey population but also in the predator
population—with the predator going extinct even earlier.
These results highlight the critical role of properly managing
the harvesting rate to prevent the collapse of both species
and preserve ecosystem stability.

4. Effect of periodic harvesting rate (µ(t)) For the last scenario
of numerical experiment, we perform a time step periodic
harvesting intervention on prey population. The time de-
pendent periodic harvesting is define as the following func-
tion:

f(d) =

{
a, 1 ≤ (d mod 30) ≤ 10

b, 11 ≤ (d mod 30) ≤ 30
. (10)

We conduct three types of scenarios. The first scenario is
for a = 0.3 and b = 0.1, where the results are shown in Fig-
ure 5; the second scenario is when a = 1 and b = 0.1, where
the results are depicted in Figure 6; and the third scenario
is when a = 1.4 and b = 0.1, where the results are given in
Figure 7. The first scenario is implemented when the lower
bound for the harvesting rate is 0.1, and the highest rate is
only 0.3. With these types of scenarios, we can see that the
dynamic of prey and predator can reach periodic behaviour
much faster. The peaks of the prey and predator popula-
tions remain the same in each repeated periodic cycle. If we
compare to scenario 2, where the upper bound for the har-
vesting rate increased up to a = 1 for the first 10 days, the
dynamics are more interesting. The periodic solutions are
more varied compared to the first scenario in Figure 5. No-
tably, there are two distinct peaks for the prey and predator
populations in each repeated cycle. Additionally, harvesting
prey has a more pronounced effect on the predator popu-
lation, as the minimum predator population is lower than
in the first scenario. The more extreme cases are shown
by Scenario 3 in Figure 7. The upper bound of the harvest-
ing rate is taken much higher, which is a = 1.4. Here, the
prey population becomes critically low, nearing extinction
by day 500. Consequently, the predator population also ap-
proaches extinction. As time increases, the prey population
starts to recover, as well as the predator population. How-
ever, the predator population needs a longer time to get
recovered from the over-harvesting in the prey population.

5. Conclusion
In this article, we have modified the predator-prey model

introduced by the authors in [25] by incorporating a harvesting
factor in the prey population. The mathematical analysis of the

existence and local stability of equilibrium points has been car-
ried out both analytically and numerically. We identified four
types of equilibrium: extinction of both predator and prey popu-
lations, extinction of only the prey population, extinction of only
the predator population, and coexistence of predator and prey in
the ecosystem.

For numerical simulations, we employed the non-standard
finite difference (NSFD) numerical scheme and compared it with
the Euler method and the fourth-order Runge-Kutta method. Our
numerical experiments demonstrated that the NSFD scheme is
more stable and reliable, even with larger time steps. Addition-
ally, we observed that as cannibalism increases within the preda-
tor population, the prey population begins to recover due to the
reduced pressure from predators. Moreover, the system reaches
equilibrium faster with higher rates of cannibalism.

We also analyzed numerically how the harvesting rate im-
pacts not only the prey population but also the predator popula-
tion over time. Our findings indicate that excessive and uncon-
trolled harvesting of the prey population can lead to a significant
decline, potentially causing extinction. The extinction of the prey
population, in turn, poses a severe threat to the predator popu-
lation, increasing the likelihood of its extinction as well. These
results underscore the critical importance of sustainable harvest-
ing management for maintaining a balanced ecosystem.
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