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Effect of Toxicant on One Prey and Two Competing Predators
with Beddington-DeAngelis Functional Response

Kavita Makwana1,∗, Raveendra Babu A.2, and B.P.S. Jadon3

1,3Department of Mathematics, S.M.S. Govt. Model Science College, Gwalior 474009, India
2Department of Information & technology, Prestige Institute of Management and Research, Gwalior 474020, India

ABSTRACT. This study investigates the dynamical behaviour of a prey-predator systemwith two competing predators,
incorporating the Beddington–DeAngelis functional response and the effects of environmental toxicants. Analytical
analysis ensures the boundedness of solutions, guaranteeing biologically feasible population dynamics. Equilibrium
points are identified, and their stability is examined using local and global stability analyses. Numerical simulations
validate the analytical findings, demonstrating that as the competition coefficient b1 increases, the system transitions
from a stable equilibrium to periodic oscillations and eventually to chaotic behaviour. Furthermore, the impact of the
toxicant uptake rate d1 is explored to assess its role in system stability. The results indicate that low levels of toxicant
absorption promote oscillatory dynamics, while higher values of d1 suppress population growth and restore stability.
This highlights the dual role of toxicants in ecological systems, where moderate exposure disrupts equilibrium, but
excessive accumulation can lead to stabilization. Bifurcation diagrams and time-series simulations further reinforce
these transitions, revealing critical thresholds where stability is lost or regained. The study provides valuable insights
into the complex interplay between toxicant dynamics, predator-prey interactions, and bifurcation phenomena. The
findings emphasize the ecological implications of toxicant exposure and interspecies competition, offering potential
applications in environmental management and conservation strategies.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction

Understanding the dynamics of predator-prey interactions
is a fundamental topic in ecological modelling, with extensive
studies incorporating various functional responses, delays, en-
vironmental effects, and stochastic influences [1]. One widely
studied functional response in this domain is the Beddington–
DeAngelis type, which effectively describes predator-prey inter-
actions by considering mutual interference among predators.
Several studies have explored its impact on ecological systems,
revealing diverse dynamical behaviours ranging from stability to
chaos.

Zhang et al. [2] investigated the influence of the fear effect
and prey refuge in a fractional-order predator-prey system with
the Beddington–DeAngelis functional response. Their study em-
ployed fractional calculus to analyse chaotic behaviour and sta-
bility. Similarly, Shao and Kong [3] extended this framework by
incorporating multiple delays in deterministic and stochastic en-
vironments, providing insights into the role of time-dependent
interactions in predator-prey models. Meng and Wang [4] exam-
ined a delayed diffusive model with the Beddington–DeAngelis
response, focusing on bifurcation and stability properties.

Further modifications to classical models have also been
explored. Rahmi et al. [5] introduced a modified Leslie–
Gower model integrating the Beddington–DeAngelis functional
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response along with the double Allee effect and memory influ-
ence, highlighting how these factors contribute to ecosystem
stability. Yu and Chen [6] analysed a competitive system with
Beddington–DeAngelis interactions, revealing its complex dy-
namical behaviors through bifurcation analysis.

Multi-species predator-prey interactions have also been ex-
tensively studied. Babu and Gayathri [7] examined a system
involving one prey and two competing predators, incorporat-
ing distributed delay to analyse stability and bifurcations. Ma-
jeed and Naji [8] explored the effects of prey refuge and the
Beddington–DeAngelis response in a two-predator, one-prey sys-
tem, employing bifurcation analysis and numerical simulations.
Zhou and Chen [9] extended these findings to a discrete amensal-
ism system, incorporating the Allee effect for unaffected species
and demonstrating its impact on stability.

The role of environmental factors such as fear, toxicity, and
fluctuations has also been a key area of research [10, 11]. Das
et al. [12] analysed predator-prey interactions under the influ-
ence of fear, toxicity, and environmental carry over effects, using
dynamical system modelling and bifurcation analysis. Liu et al.
[13] studied a fractional-order predator-prey model incorporat-
ing toxic effects, examining bifurcation and stability properties.
Misra and Babu [14–16] also studied on predator prey model with
toxicant and distributed delay.

Stochastic modelling approaches have provided additional
perspectives on ecological dynamics. Danane et al. [17] de-
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veloped a three-species stochastic prey-predator model driven
by Levy jumps, combining Holling-II and Beddington–DeAngelis
functional responses. Their findings emphasized the significance
of stochastic influences on predator-prey interactions.

Additionally, bifurcation theory has been widely applied to
study dynamical transitions in ecological systems. Bosi and Des-
marchelier [18] provided a theoretical characterization of local bi-
furcations in three and four-dimensional systems, extending their
applications to economic and ecological models. Wang et al. [19]
conducted a bifurcation analysis of predator-prey models, detail-
ing critical transitions in system behaviour. Kaur et al. [20] fo-
cused on chaos control in plankton dynamics by considering ad-
ditional food availability, seasonality, and time delays, offering
insights into the mitigation of chaotic oscillations in ecological
models.

Recent advancements in fractional calculus have signifi-
cantly enhanced the modeling of ecological systems, particu-
larly in capturing complex interactions such as toxicant effects,
prey refuge, and predator-prey dynamics. Fractional-order mod-
els provide a more accurate representation of memory effects
and non-local interactions, making them valuable for ecologi-
cal modelling [21]. According to Bhatter et al. [22], a modified
Atangana-Baleanu fractional derivative was applied to model hu-
man liver function, demonstrating the effectiveness of fractional
calculus in biological systems. This approach highlights the po-
tential benefits of fractional-order derivatives in ecological mod-
els, where non-integer dynamics can better describe long-term
species interactions and environmental perturbations. Similarly,
Kumawat et al. [23] developed a fractional-order model for age-
based COVID-19 transmission, employing Chebyshev polynomi-
als and stability analysis to examine disease spread. Their use
of fractional derivatives in epidemiological modeling aligns with
the need for more precise representations of predator-prey in-
teractions under environmental stress. Meena et al. [24] further
explored fractional-order modelling by investigating tuberculo-
sis transmission using the Caputo fractional derivative and gen-
eralized Euler’s method, showcasing how fractional-order mod-
els improve the understanding of disease dynamics and control
strategies. These studies collectively reinforce the importance
of fractional calculus in ecological research, providing a strong
foundation for extending classical predator-prey models. In this
study, we incorporate fractional derivatives into a predator-prey-
toxicant model to analyse the effects of toxic stress on species
stability and bifurcation structures.

By incorporating toxicant effects, two competing predator
species [25], and a modified Beddington–DeAngelis functional
response, this study expands on previous predator-prey mod-
els. Misra and Babu [16] studied the role of toxicants in a prey-
predator system, whereas Babu and Gayathri [7] studied predator
competition with distributed delays. This research, however, did
not completely take into consideration how inter specific com-
petition, environmental contamination, and toxicant accumula-
tion all affect system stability. By incorporating toxicant dynam-
ics from the prey population and the surrounding environment,
our model builds upon previous frameworks and takes into con-
sideration indirect detrimental effects on higher trophic levels.
This study aims to extend existing models by incorporating tox-
icant effects and exploring their influence on stability and bifur-

cation structures. We provide analytical and numerical results
that reveal new dynamical behaviours in predator-prey interac-
tions under toxic stress, contributing to both theoretical ecology
and applied bio-mathematics.

2. Model construction

2.1. Mathematical model

We consider a three-species predator-prey system incorpo-
rating the effects of toxicants in both the environment and or-
ganisms. The functional response of the predators follows the
Beddington-DeAngelis type, which accounts for both mutual in-
terference among predators and prey-dependent predation rates.
The system consists of one prey population (N) and two preda-
tor populations (P1) and (P2), where toxicants influence both or-
ganismal health and environmental conditions. This model builds
on the structure of [7], which analyzed a similar predator-prey
system, and extends the approach of [16] by incorporating the
toxicant effects on multiple predator species and the environ-
ment.

The state variables and parameters:

The prey population N follows a logistic growth pattern, regu-
lated by the intrinsic growth rate a0 and the carrying capacity
limitation b0. However, exposure to toxicants reduces the prey’s
intrinsic growth rate, which is accounted for by the parameter c0.
The two predator species P1 and P2 rely on the prey for suste-
nance. The predation rates of P1 and P2 on the prey are given by
a1 and a2, respectively. The efficiency with which the consumed
prey biomass is converted into predator growth is represented
by b1 for P1 and c1 for P2. The natural mortality rates of the
two predator species are denoted by b2 and c2, respectively. Ad-
ditionally, the presence of mutual interference among predators
affects their predation efficiency, modelled by the terms α1P2

and α2P1, which represent the extent of interference from com-
peting predators. The environmental toxicant concentration, de-
noted by E, changes due to an external input rate q0, as well as
natural washout at a rate e3. Toxicants are also transferred to
the prey population through uptake from the environment at a
rate d1. The concentration of toxicants within organisms, repre-
sented byO, accumulates due to prey exposure to environmental
toxicants. The rate of toxicant elimination from organisms due
to metabolic processes is given by e1, while the removal of tox-
icants due to prey mortality occurs at a rate e2. The dynamics
of the system are governed by the following set of differential
equations:

dN

dT
= a0N − b0N

2 − a1NP1

1 +N + α1P2
− a2NP2

1 +N + α2P1

− c0NO,

dP1

dT
=

b1a1NP1

1 +N + α1P2
− b2P1,

dP2

dT
=

c1a2NP2

1 +N + α2P1
− c2P2,

dO

dT
= d1NE − e1O − e2NO,

dE

dT
= q0 − e3E − d1NE + e2NO,

(1)
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with the initial conditions:

N(0) > 0, P1(0) > 0, P2(0) > 0, O(0) = 0, E(0) ≥ 0.

2.2. Incorporation of the Beddington-DeAngelis functional response

The predation terms in the prey equation and predator
equations follow the Beddington-DeAngelis functional response,
which modifies the traditional Holling Type-II response by incor-
porating mutual interference among predators. This is repre-
sented as:

a1NP1

1 +N + α1P2
,

a2NP2

1 +N + α2P1
,

where, the denominator 1 +N + α1P2 and 1 +N + α2P1 rep-
resent the effects of both prey density and predator interference
on predation efficiency. α1 and α2 capture the mutual interfer-
ence effect, reducing predation efficiency as predator density in-
creases.

2.3. Biological interpretation of the model

The formulated system of differential equations represents
the interactions between prey, two predator species, and the tox-
icant in both organisms and the environment. Each equation cor-
responds to a biological process that governs species survival and
toxicant accumulation.

1. Prey Population N : The term −b0N2 represents the lo-
gistic growth of the prey, where higher prey density leads
to stronger competition for resources, reducing the growth
rate. This ensures that the prey population does not grow
indefinitely and stabilizes at a carrying capacity. However,
exposure to toxicants affects its survival, modeled by the
toxicant-dependent mortality term c0NO. Predation by
the two predator species follows the Beddington-DeAngelis
functional response, incorporating both prey availability and
predator interference.

2. Predator PopulationsP1, P2: The two predator species con-
sume prey at the rates of a1 and a2, converting consumed
biomass into their own growth with efficiencies b1 (for P1)
and c1 (for P2). Each predator faces natural mortality, given
by b2P1 and c2P2. The presence of mutual interference
α1andα2 reduces the predation efficiency when predator
densities are high.

3. Toxicant in Organisms O and Environment E: The en-
vironmental toxicant E accumulate from external sources
q0 and degrade at a rate e3E. Prey absorb toxicants
through environmental exposure d1NE, and these accumu-
late internally within organism. Toxicant elimination occurs
through metabolic processes e1O and prey mortality e2NO.
These factors together determine toxicant persistence in the
ecosystem.

This biological interpretation strengthens the connection be-
tween the mathematical framework and real-world ecological
conditions, emphasizing how toxicant interactions influence
species survival and the system stability.

2.4. Non-dimensionalization of the model
To simplify the system, we introduce the following dimen-

sionless variables:

N =
a0x

b0
, P1 =

y

α2
, P2 =

z

α1
, T =

t

a0
,

E =
a0ce
d1

, O =
a0cp
e2

, a =
a0
b0
, g =

c0
e2
,

b =
a1
a0α2

, c =
a2
a0α1

, p =
b1a1
b0

, q =
b2
a0
,

r =
c1a2
b0

, s =
c2
a0
, p0 =

e2
b0
, p1 =

e1
a0
,

t1 =
d1q0
a20

, t2 =
e3
a0
, t3 =

d1
b0
.

Using these transformations, the rescaled non-dimensionalized
system is given by:

dx

dt
= x(1− x)− gxcp −

bxy

1 + ax+ z
− cxz

1 + ax+ y
(2)

dy

dt
=

pxy

1 + ax+ z
− qy (3)

dz

dt
=

rxz

1 + ax+ y
− sz (4)

dcp
dt

= p0xce − p1cp − p0xcp (5)

dce
dt

= t1 − t2ce − t3xce + t3xcp (6)

subject to initial conditions:

x(0) > 0, y(0) > 0, z(0) > 0, p(0) = 0, q(0) > 0.

3. Boundedness of Model
In this section, we derive upper bounds for prey, preda-

tor populations, and toxicant concentrations. Using comparison
techniques and integral estimates, we demonstrate that the so-
lutions of the system remain finite for all time. These results
ensure that the model accurately reflects ecological dynamics
and remains mathematically well-posed. The following theorem
presents our findings formally.

Theorem 1. The set Ω = {(x, y, z, cp, ce) ∈ R5
+ : x(t) ≤

1, prx(t)+ bry(t)+ cpz(t) ≤ m1, t3cp(t)+ p0ce(t) ≤ m2},
where m1 = 2pr

ϕ1
and ϕ1 = min{1, q, s}, m2 = p0t1

ϕ2
and

ϕ2 = min{p1, t2}.

Proof. Let us consider

w1(t) = prx(t) + bry(t) + cpz(t).

By differentiating both the sides, we get,

dw1

dt
= pr

dx

dt
+ br

dy

dt
+ cp

dz

dt
,

from eqs. (2) to (4), obtained

dw1

dt
+ ϕ1w1 ≤ 2prx,
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where ϕ1 = min{1, q, s} & then by the comparison theorem,
t→ ∞, w1 ≤ 2pr

ϕ1
and hence,

prx(t) + bry(t) + cpz(t) ≤ m1,

wherem1 =
2pr

ϕ1
. Now we will consider

w2(t) = t3cp + p0ce.

By differentiating both the sides, we get,

dw2

dt
= t3

dcp
dt

+ p0
dce
dt
,

from eqs. (5) and (6), we get,

dw2

dt
+ ϕ2w2 ≤ p0t1,

where ϕ2 = min{p1, t2}& then by the comparison theorem, t→
∞, w2 ≤ p0t1

ϕ2
and hence,

t3cp + p0ce ≤ m2,

wherem2 = p0t1
ϕ2

.
Hence the solution of system is bounded in the region

Ω. The boundedness of solutions confirms that the populations
and toxicant concentrations remain within realistic limits, ensur-
ing that the model does not predict ecological collapse or un-
bounded growth.

4. Existence of Equilibria
Equilibrium points play a crucial role in understanding the

long-term behavior of ecological systems. These points represent
states where the population densities and toxicant concentra-
tions remain constant over time. For our model, we have identi-
fied five equilibrium points, each corresponding to different eco-
logical scenarios:
1. Trivial Equilibrium: Ẽ1(0, 0, 0, 0, c̃e) – Represents the ex-

tinction of all species.
2. Prey-Only Equilibrium: Ė2(ẋ, 0, 0, ċp, ċe) – Indicates a sce-

nario where only the prey population survives.
3. Prey and First Predator Coexistence: Ë3(ẍ, ÿ, 0, c̈p, c̈e) –

Represents the coexistence of prey and the first predator
while the second predator is absent.

4. Prey and Second Predator Coexistence: Ē4(x̄, 0, z̄, c̄p, c̄e) –
Describes a scenario where the prey and the second preda-
tor coexist, but the intermediate predator is absent.

5. Full Coexistence Equilibrium: E5(x, y, z, cp, ce) – Repre-
sents a stable state where all species coexist.

The existence of these equilibria is analyzed through algebraic
conditions derived from the system equations. In the following
subsections, we establish the necessary conditions for each equi-
librium to exist and discuss their biological significance.

4.1. Existence of Ẽ1(0, 0, 0, 0, c̃e)

From eq. (6), we obtain,

c̃e =
t1
t2
> 0.

Remark 1. The equilibrium concentration c̃e = t1
t2

indicates
that the environmental toxicant level is solely determined
by the balance between its external input and removal rate.
This implies that even in the absence of biological activity,
the environment retains a persistent level of contamination.

4.2. Existence of Ė2(ẋ, 0, 0, ċp, ċe)

From eq. (2), we get,

ċp =
(1− ẋ)

g
.

with ċp > 0 if ẋ < 1.

Remark 2. The equilibrium concentration of the toxicant
within the organism is given by ċp =

(1−ẋ)
g , which depends

on the prey population size (ẋ) and the toxicant uptake fac-
tor (g). This expression indicates that as the prey popula-
tion increases (ẋ → 1), the internal toxicant concentration
decreases. Biologically, this suggests that a higher prey den-
sity dilutes the per capita toxicant burden, possibly due to
a lower relative intake per individual or a reduced exposure
effect. Conversely, if the prey population is low (ẋ→ 0), the
toxicant concentration within individuals rises, highlighting
the vulnerability of small populations to toxicant accumula-
tion.

Then, by solving equations eqs. (5) and (6), we obtain

ċe =
t1p0g − p1t3(1− ẋ)

p0t2g
.

ċe > 0, if t1p0g > p1t3(1 − ẋ). Furthermore, from eq. (5), the
following polynomial equation is obtained

(p1t3 + p0t2)ẋ
2 + (p0(t1g − t2)− p1(t3 − t2))ẋ− p1t2 = 0.

This gives one positive root always.

4.3. Existence of Ë3(ẍ, ÿ, 0, c̈p, c̈e)

From eq. (3), we get,

ẍ =
q

p− aq
,

ẍ > 0 if p > aq.

Remark 3. Biologically, this result signifies that the preda-
tor’s conversion efficiency (p) must be sufficiently large rel-
ative to the product of its mortality rate (q) and the prey’s
regulatory effect (a) for a stable coexistence. If the preda-
tor’s efficiency is too low (p ≤ aq), it cannot sustain itself,
leading to possible collapse of the predator-prey interaction.

From eq. (2), we get,

c̈p =
(1− ẍ)(1 + aẍ)− bÿ

g(1 + aẍ)
,
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where c̈p > 0 if (1− ẍ)(1 + aẍ) > bÿ or ÿ < p(p−(a+1)q)
b(p−aq)2 . Next,

from eqs. (5) and (6), we obtained,

c̈e =
p0t1g(1 + aẍ) + p1t3bÿ − p1t3(1− ẍ)(1 + aẍ)

g(1 + aẍ)p0t2
,

where c̈e > 0, if p0t1g(1 + aẍ) + p1t3bÿ > p1t3(1− ẍ)(1 + aẍ).
Lastly, from eq. (5), we have,

ÿ =
(1 + aẍ)((1− ẍ)(t2(p1 + p0ẍ) + p1t3ẍ)− p0t1gẍ)

p1t3bẍ+ t2b(p1 + p0ẍ)
,

ÿ > 0, if satisfied (1− ẍ)(t2(p1 + p0ẍ) + p1t3ẍ) > p0t1gẍ.

4.4. Existence of Ē4(x̄, 0, z̄, c̄p, c̄e)

From eq. (4), we get,

x̄ =
s

r − as
,

with x̄ > 0 if r > as.

Remark 4. Biologically, this result indicates that the prey
population can sustain itself at equilibrium only if the pre-
dation pressure is not excessively high relative to the preda-
tor’s natural death rate. If r ≤ as, the prey population may
decline to extinction, destabilizing the ecosystem.

From eq. (2), we get,

c̄p =
r(r − (1 + a)s)− (r − as)2cz̄

rg(r − as)
,

c̄p > 0 if (1 − x̄)(1 + ax̄) > cz̄. Then, from eqs. (5) and (6), we
obtained,

c̄e =
t1p0g(1 + ax̄)− p1t3(1− x̄)(1 + ax̄) + p1t3cz̄

p0t2g(1 + ax̄)
,

z̄ =
(1 + ax̄)((1− x̄)(t2(p1 + p0x̄) + p1t3x̄)− p0t1x̄)

p1t3cx̄+ t2c(p1 + p0x̄)
,

with z̄ > 0, if (1− x̄)(t2(p1 + p0x̄) + p1t3x̄) > p0t1x̄.

4.5. Existence of E5(x, y, z, c0, ce)

From eqs. (2) to (6), we obtained

z =
x(p− aq)− q

q
,

y =
(r − as)x− s

s
,

cp =
(1− x)(1 + ax+ z)(1 + ax+ y)− by(1 + ax+ y)

g(1 + ax+ z)(1 + ax+ y)

− cz(1 + ax+ z)

g(1 + ax+ z)(1 + ax+ y)

= h3(x),

ce =
p0t1 − p1t3h3(x)

p0t2
= h4(x),

x =
p1h3(x)

p0(h4(x)− h3(x))
= h5(x).

z, y, cp, ce, x > 0, if each satisfied x(p−aq) > q, (r−as)x >
s, (1−x)(1+ax+z)(1+ax+y) > by(1+ax+y)+cz(1+ax+z),
p0t1 > p1t3h3(x), h3(x) < h4(x).

5. Local Stability Analysis of Equilibria
This section examines the stability of equilibrium points by

evaluating the Jacobian matrix. Stability is determined by the
eigenvalues. We analyze the characteristic equation and discuss
the biological implications of stability conditions. The Jacobian
matrix is given by:

J =


A11 A12 A13 A14 0
A21 A22 A23 0 0
A31 A32 A33 0 0
A41 0 0 A44 A45

A51 0 0 A54 A55

 ,
A11 = 1− 2x− gcp −

by(1 + z)

(1 + ax+ z)2
− cz(1 + y)

(1 + ax+ y)2
,

A12 =
−bx

1 + ax+ z
+

cxz

(1 + ax+ y)2
,

A13 =
bxy

(1 + ax+ z)2
− cx

(1 + ax+ y)
,

A14 = − gx, A21 =
py(1 + z)

(1 + ax+ z)2
,

A22 =
px

1 + ax+ z
− q, A23 =

−pxy
(1 + ax+ z)2

,

A31 =
rz(1 + y)

(1 + ax+ y)2
, A32 =

−rxz
(1 + ax+ y)2

,

A33 =
rx

(1 + ax+ y)
− s, A41 = p0(ce − cp),

A44 = − (p1 + p0x), A45 = p0x,

A51 = t3(cp − ce), A54 = t3x,

A55 = − (t2 + t3x).

To determine the eigenvalues, we solve the characteristic equa-
tion:

det(J − λI) = 0.

The eigenvalues determine the local stability of equilibrium
points. If all the eigenvalues have negative real parts, the equi-
librium is asymptotically stable. If at least one eigenvalue has a
positive real part, then the equilibrium will be unstable.

5.1. Local stability of equilibrium Ẽ1(0, 0, 0, 0, c̃e)

The local stability of the equilibrium point Ẽ1(0, 0, 0, 0, c̃e)
by examining the Jacobianmatrix J1. The Jacobianmatrix is given
by:

J1 =


1 0 0 0 0
0 −q 0 0 0
0 0 −s 0 0
p0t1
t2

0 0 −p1 0
−t1t3
t2

0 0 0 −t2

 . (7)

The stability of Ẽ1 is determined by analyzing the eigenvalues of
J1, which are:

λ1 = 1, λ2 = −q, λ3 = −s, λ4 = −p1, λ5 = −t2.

Since one of the eigenvalue, λ1 = 1, is positive, the equilibrium
point Ẽ1 is unstable.
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5.2. Local stability of equilibrium Ė2(ẋ, 0, 0, ċp, ċe)

Remark 5. The condition
(
N < b2

a1b1−b2

)
implies that for

the predator (P1) to persist, the prey population must re-
main below a specific threshold. This threshold is deter-
mined by the balance between the natural death rate of (P1)
and its ability to convert consumed prey into its own popu-
lation growth. If the prey population exceeds this limit, (P1)
may not sustain itself, potentially leading to its decline.

Remark 6. Similarly, the condition Ė2

(
N < c2

c1a2−c2

)
sug-

gests that the second predator, (P2), also requires the prey
population to remain below a certain level for its stability.
This threshold is influenced by the natural mortality rate of
(P2) and its predation efficiency. If the prey population sur-
passes this limit, (P2) may struggle to survive, leading to
possible extinction or reduced population levels.

We analyze the local stability of the equilibrium point
Ė2(ẋ, 0, 0, ċp, ċe) by examining the Jacobian matrix J2, which is
given by:

J2 =


A11 A12 A13 A14 0
0 A22 0 0 0
0 0 A33 0 0
A41 0 0 A44 A45

A51 0 0 A54 A55

 ,
A11 = 1− 2ẋ− gċp, A12 =

−bẋ
1 + aẋ

,

A13 =
−cẋ

(1 + aẋ)
, A14 = −gẋ,

A22 =
pẋ

1 + aẋ
− q, A33 =

rẋ

(1 + aẋ)
− s,

A41 = p0(ċe − ċp), A44 = −(p1 + p0ẋ),

A45 = p0ẋ, A51 = −t3(ċe − ċp),

A54 = t3ẋ, A55 = −(t2 + t3ẋ)

(8)

To determine the stability of Ė2, we compute the eigenval-
ues of J2. Out of five eigenvalues two of the eigenvalues are:

λ1 =
pẋ

1 + aẋ
− q, λ2 =

rẋ

1 + aẋ
− s.

These eigenvalues are negative if the following conditions hold:

λ1 < 0, if
pẋ

1 + aẋ
< q, λ2 < 0, if

rẋ

1 + aẋ
< s.

The remaining three eigenvalues are obtained from the charac-
teristic polynomial:

λ3 + T1λ
2 + T2λ+ T3 = 0.

The coefficients are given by:

T1 = (p1 + p0ẋ)− (1− 2ẋ− gċp) + (t2 + t3ẋ),

T2 = p0gẋ(ċe − ċp)− p0t3ẋ
2 + (p1 + p0ẋ)(t2 + t3ẋ)− (1− 2ẋ

− gċp)(p1 + p0ẋ+ t2 + t3ẋ),

T3 = − (1− 2ẋ− gċp)(p1(t2 + t3ẋ) + p0t2ẋ) + p0gẋt2(ċe − ċp).

The equilibrium Ė2 is locally asymptotically stable if T1 >
0, T2 > 0, T3 > 0 and T1T2 > T3 hold.

5.3. Local stability of equilibrium Ë3(ẍ, ÿ, 0, c̈p, c̈e)

To analyze the local stability of the equilibrium Ë3, we con-
sider the Jacobian matrix J3:

J3 =


B11 B12 B13 B14 0
B21 B22 B23 0 0
0 0 B33 0 0
B41 0 0 B44 B45

B51 0 0 B54 B55

 ,
B11 = 1− 2ẍ− gc̈p −

bÿ

(1 + aẍ)2
, B12 =

−bẍ
1 + aẍ

,

B13 =
bẍÿ

(1 + aẍ)2
− cẍ

(1 + aẍ+ ÿ)
, B14 = −gẍ,

B21 =
pÿ

(1 + aẍ)2
, B22 =

pẍ

1 + aẍ
− q,

B23 =
−pẍÿ

(1 + aẍ)2
, B33 =

rẍ

(1 + aẍ+ ÿ)
− s,

B41 = p0(c̈e − c̈p), B44 = −(p1 + p0ẍ),

B45 = p0ẍ, B51 = −t3(c̈e − c̈p),

B54 = t3ẍ, B55 = −(t2 + t3ẍ).

Out of five eigenvalues the one eigenvalue of the Jacobian matrix
J3 is:

λ1 =
rẍ

1 + aẍ+ ÿ
− s.

This eigenvalue is negative if the following condition hold:

λ1 < 0, if
rẍ

1 + aẍ+ ÿ
< s.

The remaining four eigenvalues are determined from the charac-
teristic equation:

λ4 +R1λ
3 +R2λ

2 +R3λ+R4 = 0.

The coefficients are given by:

R1 = (t2 + t3ẍ) + (p1 + p0ẍ)−
(
1− 2ẍ− gc̈p −

bÿ

(1 + aẍ)2

+
pẍ

1 + aẍ
− q

)
,

R2 = − (t2 + t3ẍ+ p1 + p0ẍ)

(
1− 2ẍ− gc̈p −

bÿ

(1 + aẍ)2

+
pẍ

1 + aẍ
− q

)
+ p0t3ẍ

2 + (t2 + t3ẍ)(p1 + p0ẍ)

+ p0gẍ(c̈e − c̈p) +
bpẍÿ

(1 + aẍ)3
,

R3 = − (p0t3ẍ
2 + (t2 + t3ẍ)(p1 + p0ẍ))

(
1− 2ẍ− gc̈p

− bÿ

(1 + aẍ)2
+

pẍ

1 + aẍ
− q

)
+ (p1 + p0ẍ+ t2

+ t3ẍ)

(
1− 2ẍ− gc̈p −

bÿ

(1 + aẍ)2

)(
pẍ

1 + aẍ
− q

)
,
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R4 = (p0t3ẍ
2 + (t2 + t3ẍ)(p1 + p0ẍ))

(
1− 2ẍ− gc̈p

− bÿ

(1 + aẍ)2

)(
pẍ

1 + aẍ
− q

)
− p0gẍ(c̈e − c̈p)

(
pẍ

1 + aẍ

− q

)
(t2 + 2t3ẍ).

The equilibrium point Ë3 is locally assymptotically slable ifR1 >
0, R2 > 0, R3 > 0, R4 > 0, R1R2 > R3 and R1R2R3 > (R2

3 +
R2

1 +R4) hold.

5.4. Local stability of equilibrium Ē4(x̄, 0, z̄, c̄p, c̄e)

To analyze the local stability of the equilibrium Ē4, we con-
sider the Jacobian matrix J4:

J4 =


C11 C12 C13 C14 0
0 C22 0 0 0
C31 C32 C33 0 0
C41 0 0 C44 C45

C51 0 0 C54 C55

 ,
C11 = 1− 2x̄− gc̄p −

−cz̄
(1 + ax̄)2

, C13 = − cx̄

(1 + ax̄)
,

C12 =
−bx̄

1 + ax̄+ z̄
+

cx̄z̄

(1 + ax̄)2
, C14 = −gx̄,

C22 =
px̄

1 + ax̄+ z̄
− q, C31 =

rz̄

(1 + ax̄)2
,

C32 =
−rx̄z̄

(1 + ax̄)2
, C33 =

rx̄

(1 + ax̄)
− s,

C41 = p0(c̄e − c̄p), C44 = −(p1 + p0x̄),

C45 = p0x̄, C51 = −t3(c̄e − c̄p),

C54 = t3x̄, C55 = −(t2 + t3x̄).

Out of five eigenvalues the one eigenvalue of the Jacobian matrix
J4 is given by

λ1 =
px̄

1 + ax̄+ z̄
− q.

This eigenvalue is negative if the following condition hold:

λ1 < 0, if
px̄

1 + ax̄+ z̄
< q.

The remaining four eigenvalues are determined from the charac-
teristic equation:

λ4 + S1λ
3 + S2λ

2 + S3λ+ S4 = 0.

The coefficients are given by:

S1 = (t2 + t3x̄) + (p1 + p0x̄)−
(
1− 2x̄− gc̄p − cz̄

(1 + ax̄)2

− rx̄

1 + ax̄
− s

)
,

S2 = p0t3x̄
2 + (p1 + p0x̄)(t2 + t3x̄) + p0gx̄(c̄e − c̄p)−

(
1

− 2x̄− gc̄p − cz̄

(1 + ax̄)2
− rx̄

1 + ax̄
− s

)
(t2 + t3x̄+ p1

+ p0x̄)−
(
1− 2x̄− gc̄p − cz̄

(1 + ax̄)2

)(
rx̄

1 + ax̄
+ s

)
+

crx̄z̄

(1 + ax̄)3
,

S3 = − (p0t3x̄
2 + (p1 + p0x̄)(t2 + t3x̄))

(
1− 2x̄− gc̄p

− cz̄

(1 + ax̄)2
− rx̄

1 + ax̄
− s

)
− (p1 + p0x̄+ t2 + t3x̄)(

1− 2x̄− gc̄p − cz̄

(1 + ax̄)2

)(
rx̄

1 + ax̄
+ s

)
+ (p1

+ p0x̄+ t2 + t3x̄)
crx̄z̄

(1 + ax̄)3
+ p0gx̄(c̄e − c̄p)

(
t2

+ 2t3x̄+

(
rx̄

1 + ax̄
+ s

))
,

S4 = −
(
1− 2x̄− gc̄p − cz̄

(1 + ax̄)2

)(
rx̄

1 + ax̄
+ s

)
(p0t3x̄

2

+ (p1 + p0x̄)(t2 + t3x̄)) + p0gx̄

(
rx̄

1 + ax̄
+ s

)
(c̄e − c̄p)(t2

+ 2t3x̄) +
crx̄z̄

(1 + ax̄)3
(p0t3x̄+ (p1 + p0x̄)(t2 + t3x̄)).

The equilibrium point E4 is locally assymptotically slable if S1 >
0, S2 > 0, S3 > 0, S4 > 0, S1S2 > S3 and S1S2S3 > (S2

3 +
S2
1S4) hold.

5.5. Local stability of equilibrium E5(x, y, z, cp, ce)

To analyze the local stability of the equilibriumE5, we con-
sider the Jacobian matrix J5:

J5 =


A11

−bx
α + cxz

β2
bxy
α2 − cx

β −gx 0
pϕ
α2

px
α − q −pxy

α2 0 0
rψ
β2

rxz
β2

rx
β − s 0 0

p0γ 0 0 −ξ p0x
−t3γ 0 0 t3x −ω

 ,

A11 = 1− 2x− gcp −
bϕ

α2
− cψ

β2
, α = (1 + ax+ z),

β = (1 + ax+ y), γ = (ce − cp),

ξ = (p1 + p0x), ω = (t2 + t3x),

ϕ = y(1 + z), ψ = z(1 + y).

The eigenvalues are determined from the characteristic equation:

λ5 + P1λ
4 + P2λ

3 + P3λ
2 + P4λ+ P5 = 0.

The coefficients are given by:

P1 = ω + ξ −A11 −
(
px

α
− q +

rx

β
− s

)
,

P2 = − p0x(t3x+ γg) + ξω −A11(ω + ξ) +
(px
α

− q
)(

rx

β

− s

)
−

(
px

α
− q +

rx

β
− s

)
(ω + ξ −A11)−

prx2yz

α2β2

− pϕ

α2

(
−bx
α

+
cxz

β2

)
− rψ

β2

(
bxy

α2
+
cx

β

)
,

P3 = [(t3x+ γg)p0x+ (ω + ξ)A11 − ξω]

(
px

α
− q +

rx

β
− s

)
+ (ω + ξ −A11)

(px
α

− q
)(

rx

β
− s

)
− p

α2

[
(ω + ξ)ϕ

−
(
rx

β
− s

)
ϕ− rxyψ

β2

](
−bx
α

+
cxz

β2

)
− r

β2

[
(ω2

+ ξ)ψ − pxz

α2
ϕ−

(px
α

− q
)
ψ

](
bxy

α2
− cx

β

)
− (ω + ξ
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−A11)
prx2yz

α2β2
+ p0γgx(t3x− ω) +A11(p0t3x

2 − ξω),

P4 = [(ξω − p0t3x
2)A11 + p0γgx(ω − t3x)]

(
px

α
− q +

rx

β

− s

)(
px

α
− q +

rx

β
− s

)
+ [ξω −A11(ω + ξ)

− p0x(t3x+ γg)]
(px
α

− q
)(

rx

β
− s

)
+

p

α2

[
(p0t3x

2

− ξω)ϕ+ (ω + ξ)ϕ

(
rx

β
− s

)
+ (ω + ξ)

rxyψ

β2

](
−bx
α

− cxz

β2

)
+

r

β2

[
(p0t3x

2 − ξω)ψ + (ω + ξ)ψ
(px
α

− q
)

+ (ω + ξ)
pxzϕ

α2

](
bxy

α2
− cx

β

)
+

(
(t3x+ γg)p0x+ (ω

+ ξ)A11 − ξω

)
prx2yz

α2β2
,

P5 = [(t3x− ω)p0γgx+ (p0t3x
2 − ξω)A11]

(px
α

− q
)(

rx

β

− s

)
+

p

α2
(ξω − p0t3x

2)

[
ϕ

(
rx

β
− s

)
+
rxyψ

β2

](
−bx
α

+
cxz

β2

)
+

r

β2
(ξω − p0t3x

2)

[
ψ
(px
α

− q
)
+
pxzϕ

α2

](
bxy

α2

− cx

β

)
+ [(ω − t3x

2)p0γg + (ξω − p0t3x
2)A11].

The equilibrium point E5 is locally assymptotically slable if P1 >
0, P2 > 0, P3 > 0, P4 > 0, P5 > 0, P1P2 > P3, P1P2P3 >
(P 2

3 + P 2
1P4) and (P3P4 − P2P5)(P1P2 − P3) > (P1P4 − P5)

2

hold.

6. Global Stability
In this section, we establish the global stability of the equi-

librium point E5(x, y, z, cp, ce) within the bounded region Ω. By
constructing a suitable Lyapunov function and applying LaSalle’s
Invariance Principle [26], we derive sufficient conditions under
which the system converges globally to this equilibrium. The
following theorem presents the necessary conditions for global
asymptotic stability.

Theorem 2. In the region Ω, if the following conditions hold:

a(
by

σ1
− cz

σ2
) < 1, (9)

p1 + p0x > 0, (10)

t2 + t3x > 0, (11)

(1− aby

σ1
− acz

σ2
)(t2 + t3x) > A4t

2
3(ce − cp)

2, (12)

where

σ1 = (1 + ax+ z)(1 + ax+ z),

σ2 = (1 + ax+ y)(1 + ax+ y),

A1 =
bσ2(1 + ax+ z − σ1cz)

p(1 + z)σ2
> 0,

A2 =
cσ1(1 + ax+ y − σ2by)

r(1 + y)σ1
> 0,

A3 =
g

p0(ce − cp)
,

A4 =
−g

t3(ce − cp)
,

then E5(x, y, z, cp, ce) will be globally asymptotically stable in
the region Ω.

Proof. Let us consider the following Lyapunov function:

V11 =
[
x− x− x log

(x
x

)]
+A1

[
y − y − y log

(
y

y

)]
+A2

[
z − z

− z log
(z
z

) ]
+
A3

2
(cp − cp)

2 +
A4

2
(ce − ce)

2.

Differentiating both side with respect to t, we get,

dV11
dt

=

(
x− x

x

)
dx

dt
+A1

(
y − y

y

)
dy

dt
+A2

(
z − z

z

)
dz

dt

+A3(cp − cp)
dcp
dt

+A4(ce − ce)
dce
dt
.

From eqs. (2) to (6), we get,

dV11
dt

= − (x− x)2 − g(x− x)(cp − cp)−
b

σ1
(x− x)(y − y)

− ab

σ1
x(x− x)(y − y) +

ab

σ1
y(x− x)2 − b

σ1
z(x− x)(y

− y) +
b

σ1
y(x− x)(z − z)− c

σ2
(x− x)(z − z)

− ac

σ2
x(x− x)(z − z) +

ac

σ2
z(x− x)2 − c

σ2
y(x− x)(z

− z) +
c

σ2
z(y − y),

where

σ1 = (1+ ax+ z)(1+ ax+ z), σ2 = (1+ ax+ y)(1+ ax+ y),

and choosing

A1 =
bσ2(1 + ax+ z − σ1cz)

p(1 + z)σ2
> 0,

A2 =
cσ1(1 + ax+ y − σ2by)

r(1 + y)σ1
> 0,

A3 =
g

p0(ce − cp)
,

A4 =
−g

t3(ce − cp)
.

Now, dV11

dt can be written as

dV11
dt

≤ −
[
b11
2

(x− x)2 + b15(x− x)(ce − ce) +
b55
2

(ce − ce)
2

+ b44(cp − cp)
2

]
,

where,

b11 = 1− aby

σ1
− acz

σ2
,

b44 = A3p1 +A3p0x,

b55 = A4t2 +A4t3x,

b15 = A4t3ce −A4t3cp.
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By the Sylvester’s criteria, we get that dV11

dt will be negative func-
tion with the inequalities:

b11 > 0, (13)

b44 > 0, (14)

b55 > 0, (15)

b11b55 > b215. (16)

We note that the inequalities, eq. (9) ⇒ eq. (13), eq. (10) ⇒
eq. (14), eq. (11) ⇒ eq. (15) and eq. (12) ⇒ eq. (16). Hence V11
of E5 in Ω. Proved theorem.

From the above analysis, it follows that under the given
conditions, the equilibrium point E5 is globally asymptotically
stable. The constructed Lyapunov function demonstrates that
the system’s trajectories eventually settle at E5, ensuring long-
term persistence and stability of the interacting populations.
Thus, the system exhibits a globally stable dynamical behaviour,
reinforcing the robustness of equilibrium under perturbations.

7. Numerical Simulation
In this section, we perform a comprehensive numerical

analysis to validate the analytical results obtained for the sys-
tem’s equilibrium points. We present stability graphs for equi-
libria E2, E3, E4 and E5, illustrating their dynamical behavior
under different initial conditions. Additionally, we analyze bi-
furcation patterns to explore critical parameter thresholds that
lead to qualitative changes in system dynamics. Sensitivity anal-
ysis is also conducted to examine the impact of key parameters
on system stability and behavior. These numerical simulations
provide deeper insights into the model’s real-world applicability
and reinforce the analytical findings.

7.1. Stability analysis
The stability of equilibrium points is a fundamental aspect

of dynamical systems, as it determines whether small perturba-
tions around an equilibrium will decay or grow over time. In this
section, we analyze the stability of equilibrium points,E2, E3, E4

and E5 by computing their corresponding eigenvalues and inter-
preting their significance in the context of the system’s dynamics.
Furthermore, we verify that these results satisfy the conditions
of local stability obtained in our calculations.

Example 1. For the given parameter values, which are as-
sumed to ensure biologically realistic dynamics and to facili-
tate the study of system behavior under various conditions:

a0 = 10, b0 = 1.5, c0 = 1.8, a1 = 1.5,

r1 = 1, a2 = 1.2, r2 = 0.8, b1 = 0.5,

b2 = 2.5, c1 = 0.5, c2 = 1.5, d1 = 2.8,

e1 = 0.5, e2 = 1.5, q0 = 2.5, e3 = 1.2,

the system attains an equilibrium point at:

E2(4.1549, 0.0000, 0.0000, 2.0929, 1.2114).

The stability of this equilibrium is confirmed by the com-

puted eigenvalues:

λ = (−18.6802, −6.3711, −0.7467, −1.8955, −1.0164),

all of which have negative real parts, indicating that E2 is
locally asymptotically stable. The corresponding stability
graph is presented in Figure 1, which visually confirms the
equilibrium’s stability.

Example 2. For the given parameter values, which are as-
sumed to ensure biologically realistic dynamics and to facili-
tate the study of system behavior under various conditions:

a0 = 10, b0 = 1.2, c0 = 1.5, a1 = 1.5,

r1 = 1, a2 = 1.2, r2 = 0.8, b1 = 2.1,

b2 = 2.63, c1 = 0.5, c2 = 1.5, d1 = 2.8,

e1 = 0.5, e2 = 1.5, q0 = 2.5, e3 = 1.2,

the system attains an equilibrium point at:

E3(5.0670, 3.0543, 0.0000, 2.1086, 1.2053).

The stability of this equilibrium is confirmed by the com-
puted eigenvalues:

λ = (−22.6574, −5.4725, −0.0586, −0.7469, −1.1428),

all of which have negative real parts, indicating that E3 is
locally asymptotically stable. The corresponding stability
graph is presented in Figure 2, which visually confirms the
equilibrium’s stability.

Example 3. For the given parameter values, which are as-
sumed to ensure biologically realistic dynamics and to facili-
tate the study of system behavior under various conditions:

a0 = 10, b0 = 1.2, c0 = 1.5, a1 = 1.5,

r1 = 1, a2 = 1.2, r2 = 0.8, b1 = 2.1,

b2 = 2.63, c1 = 1.5, c2 = 1.51, d1 = 2.8,

e1 = 0.5, e2 = 1.5, q0 = 2.5, e3 = 1.2,

the system attains an equilibrium point at:

E4(5.4024, 0.0000, 1.8505, 2.1149, 1.2016).

The stability of this equilibrium is confirmed by the com-
puted eigenvalues:

λ = (−24.1057, −6.2587, −0.0042, −0.7451, −0.5680),

all of which have negative real parts, indicating that E4 is
locally asymptotically stable. The corresponding stability
graph is presented in Figure 3, which visually confirms the
equilibrium’s stability.
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Figure 1. Stable dynamics of the system at equilibrium
E2(N, 0, 0, O,E), where species P1 and P2 go
extinct while other variables stabilize.
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Figure 2. Stable dynamics of the system at equilibrium
E3(N,P1, 0, O,E), where species P2 goes ex-
tinct while P1 persists along with other variables.
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Figure 3. Stable dynamics of the system at equilibrium
E4(N, 0, P2, O,E), where species P1 goes ex-
tinct while P2 persists along with other variables.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7
N
P1
P2
O
E

Figure 4. Stable dynamics of the system at equilibrium
E5(N,P1, P2, O,E), where both species P1 and
P2 coexist with other variables stabilizing.
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Figure 5. Stable dynamics of the system at equilibrium
E3(N,P1, 0, O,E), where species P2 is absent
and other variables stabilizing after initial oscilla-
tions.
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Figure 6. Phase trajectories of the system for different values of b1. As b1 increases from 1.5 to 1.65, the system transitions from a stable
equilibrium to a stable limit cycle, indicating a Hopf bifurcation.

1.5 1.55 1.6 1.65 1.7 1.75 1.8
Bifurcation Parameter (b

1
)

0

1

2

3

4

5

6

St
ea

dy
 S

ta
te

 o
f 

P
re

y 
(N

)

Figure 7. Bifurcation diagram for prey population N with
respect to b1.
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Figure 8. Bifurcation diagram for predator population P1

with respect to b1.
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Figure 9. Time series dynamics of N and P1 for varying b1 values.
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Figure 10. Phase trajectories of prey N and toxicant O for different values of d1, showing system dynamics and stability variations.
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Figure 11. Bifurcation diagram showing the steady-state
behavior of prey N as the bifurcation parame-
ter d1 varies.
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Figure 12. Bifurcation diagram depicting the steady-state
levels of toxicant O with respect to the bifurca-
tion parameter d1.
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Figure 13. Time series dynamics of prey N and toxicant O populations for different values of the bifurcation parameter d1.

Example 4. For the given parameter values, which are as-
sumed to ensure biologically realistic dynamics and to facili-
tate the study of system behavior under various conditions:

a0 = 10.5, b0 = 1.2, c0 = 1.5,
a1 = 1.5, r1 = 1.2, a2 = 1.5,
r2 = 1.2, b1 = 2.515, b2 = 1.63,
c1 = 2.515, c2 = 1.63, d1 = 2.8,
e1 = 0.5, e2 = 1.5, q0 = 2.5,
e3 = 1.2,

the system attains an equilibrium point at:

E5(5.1057, 4.7591, 4.7591, 2.1103, 1.2039).

The stability of this equilibrium is confirmed by the com-
puted eigenvalues:

λ = (−22.8260, −5.5664, −0.9141, −0.7411, −0.7878),

all of which have negative real parts, indicating that E5 is
locally asymptotically stable. The corresponding stability
graph is presented in Figure 4, which visually confirms the
equilibrium’s stability.

Example 5. For the given parameter values, which are as-
sumed to ensure biologically realistic dynamics and to facili-
tate the study of system behavior under various conditions:

a0 = 10, b0 = 1.2, c0 = 1.5,
a1 = 1.5, r1 = 1, a2 = 1.2,
r2 = 0.8, b1 = 1.55, b2 = 1.63,
c1 = 1.5, c2 = 1.51, d1 = 2.8,
e1 = 0.5, e2 = 1.5, q0 = 2.5,
e3 = 1.2,
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the system attains an equilibrium point at:

E3(2.3455, 9.2493, 0.0000, 2.0261, 1.2388).

The stability of this equilibrium is confirmed by the com-
puted eigenvalues:

λ = (−10.9235, −0.7138, −1.1171, −0.0281± 1.4490i),

all of which have negative real parts, indicating that E3 is
locally asymptotically stable. The corresponding stability
graph is presented in Figure 5, which visually confirms the
equilibrium’s stability.

7.2. Bifurcation analysis

Bifurcation refers to a qualitative change in the long-term
behavior of a dynamical system as a parameter is varied [28, 29].
In particular, a Hopf bifurcation occurs when a stable equilibrium
loses stability, giving rise to a periodic solution (limit cycle). This
transition is significant in ecological modeling as it helps iden-
tify conditions under which populations shift from stable states
to oscillatory or chaotic dynamics. To analyze the effect of pa-
rameter variation, we study the system’s behavior for different
values of b1 of Example 5. The phase portraits shown in Fig-
ure 6 illustrate the trajectories of the system for different values
of b1, specifically for b1 = 1.5, 1.55, 1.6, 1.65. At b1 = 1.5, the
trajectory converges to the equilibrium, confirming its stability.
However, as b1 increases to 1.55, a small periodic orbit appears,
indicating the onset of a Hopf bifurcation. Further increments in
b1 to 1.6 and 1.65 lead to more pronounced oscillatory behavior,
signifying a transition to complex dynamics. To understand the
system’s long-term behavior, bifurcation diagrams are presented
in Figures 7 and 8. These diagrams depict the steady states of the
preyN and predator P1 populations as functions of b1. For lower
values of b1, the equilibrium remains stable. As b1 increases and
crosses a threshold around 1.55, a Hopf bifurcation occurs, lead-
ing to the emergence of oscillations. With further increments
in b1, period-doubling bifurcations appear, eventually resulting
in chaotic dynamics. To complement this analysis, the time se-
ries behavior of the prey and predator populations is shown in
Figure 9. For b1 = 1.5, the populations stabilize at equilibrium.
However, as b1 increases, oscillations emerge and become more
pronounced. Beyond b1 = 1.65, irregular fluctuations suggest a
transition to chaotic behavior. This extended analysis highlights
the crucial role of b1 in influencing the system’s stability and dy-
namics. The results confirm that the system undergoes a Hopf
bifurcation, followed by period-doubling bifurcations leading to
chaos. These findings provide deeper insights into the system’s
complex behavior under parameter variations and emphasize the
significance of bifurcation analysis in ecological modeling. For
the given parameter values, as in Example 5, we analyze the effect
of varying d1 on the system’s dynamics while keeping all other
parameters constant. The phase portraits Figure 10 illustrate the
trajectories of the system for different values of d1. At lower val-
ues of d1 , such as d1 = 1, the prey populationN and organismal
toxicant O exhibit sustained oscillations, forming closed trajec-
tories that indicate the presence of a limit cycle and instability in
the system. As d1 increases to 1.5 and 2, the oscillatory behav-

ior persists but becomes more structured. However, at d1 = 3,
the oscillations diminish significantly, and the trajectory stabi-
lizes, indicating a transition toward a steady-state equilibrium.
This suggests that increasing d1 enhances the stability of the sys-
tem. To further understand the impact of d1 , bifurcation dia-
grams Figures 11 and 12, depict the steady-state values of prey
N and organismal toxicant O as functions of d1. For lower val-
ues of d1, the prey population undergoes complex oscillations,
and bifurcations appear, signifying an unstable regime. As d1
increases, the oscillations gradually reduce, leading to a stable
equilibrium. Similarly, the toxicant concentration O fluctuates
at smaller d1 values but stabilizes at higher d1, confirming that
an increase in d1 mitigates toxicant accumulation and supports
a balanced prey population. The time series analysis Figure 13
provides additional insight into the system’s long-term behavior.
For smaller values of d1, such as d1 = 1 and d1 = 1.5, the pop-
ulations of prey N and toxicant O exhibit sustained oscillations,
indicating periodic behavior. As d1 increases, the amplitude of
these oscillations decreases, suggesting a transition toward sta-
bility. At d1 = 3, both prey and toxicant populations reach a
steady-state equilibrium, reinforcing the conclusion that higher
values of d1 contribute to system stabilization. Overall, this anal-
ysis highlights the critical role of d1 in influencing system sta-
bility. Initially, lower d1 values lead to oscillatory and unstable
dynamics, but as d1 increases, the system undergoes a transi-
tion toward stability. This finding suggests that an appropriate
increase in d1 can help regulate toxicant accumulation and pro-
mote a stable ecological balance.

8. Conclusion

This study presents a comprehensive mathematical analy-
sis of a prey-predator system with two competing predators, in-
corporating the Beddington–DeAngelis functional response and
the effects of environmental toxicants. Analytical investigations
established the boundedness of the system, ensuring biologi-
cally feasible solutions. Equilibrium points were determined, and
their stability was analysed through eigenvalue computations,
confirming that stability depends on key system parameters.

Numerical simulations validated the analytical findings by
demonstrating the system’s dynamic transitions under parameter
variations. Phase trajectory analysis revealed that as b1 increased,
the system transitioned from a stable equilibrium to periodic os-
cillations and eventually to chaotic behaviour. This progression
was further confirmed through bifurcation diagrams, which high-
lighted critical thresholds where stability was lost. Time-series
simulations illustrated how fluctuations in predator-prey popula-
tions intensified with increasing b1, reinforcing the presence of
Hopf and period-doubling bifurcations.

Additionally, the role of the toxicant uptake rate d1 was ex-
amined to assess its influence on system stability. The results
revealed that for lower values of d1 , oscillatory behaviour per-
sisted due to reduced toxicant accumulation in prey, allowing
predator populations to fluctuate. However, as d1 increased, the
intensified toxicant exposure led to reduced prey availability, ul-
timately stabilizing the system. Beyond a certain threshold, the
system transitioned from periodic oscillations to a stable equi-
librium, as excessive toxicant absorption suppressed prey and
predator population growth. These findings highlight the dual
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role of toxicants, while moderate toxicant uptake induces insta-
bility, excessive uptake can stabilize population dynamics.

From an ecological perspective, this study underscores the
critical influence of toxicant absorption and interspecies compe-
tition on population stability. The results suggest that while in-
creased toxicant levels may initially disrupt ecological balance,
they can also impose a stabilizing effect by limiting population
growth. Understanding these non-linear interactions is essential
for ecological management, particularly in environments affected
by pollution.

Overall, this study integrates analytical analysis and numer-
ical simulations to provide a deeper understanding of the inter-
play between toxicants, predator-prey interactions, and bifurca-
tion phenomena. The findings contribute to ecological modelling
by emphasizing the importance of toxicant dynamics in shaping
ecosystem stability and offer potential insights for environmental
conservation and pollution control strategies.

In order to evaluate their effects on system stability and
bifurcation dynamics, future studies can expand on this work
by investigating different functional responses, such as ratio-
dependent, sigmoidal, or other generic predator-prey interac-
tions. In order to gain a better understanding of inter specific
competition and cohabitation in multi-predator environments,
the model can be extended to incorporate more than two com-
peting predators. Prey refuge mechanisms, in which a portion
of the prey population is shielded from predators, are another
crucial avenue that can drastically change population dynamics
and stability conditions. Can extend this model by incorporating
fractional-order derivatives to capture memory effects in ecologi-
cal interactions, as demonstrated by Manivel et al. [27] in disease
modelling. These advancements could enhance ecological mod-
elling and inform better conservation policies.
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