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Modeling the Impact of Toxicants on a Plankton-Fish System
with Gompertz Growth Function

Raveendra Babu Annavarapu1, Kavita Makwana2,∗, and Bhanu Pratap Singh Jadon3

1Department of Information & technology, Prestige Institute of Management and Research, Gwalior 474020, India
2,3Department of Mathematics, S.M.S. Govt. Model Science College, Gwalior 474009, India

ABSTRACT. This study develops a mathematical model to investigate the dynamics of an aquatic ecosystem, incorpo-
rating key ecological features such as Gompertz growth, prey refuge, Holling Type II predation, and the Beddington-
DeAngelis functional response. The primary objective is to analyze the effects of toxicant accumulation and population
interactions on ecosystem stability.
Analytical techniques, including the Jacobian matrix, Routh-Hurwitz criteria, and Lyapunov functions—are employed
to examine equilibrium points, stability conditions, and bifurcation behavior. A Hopf bifurcation is observed when the
carrying capacityK exceeds a critical threshold, indicating a transition from stable to oscillatory behavior. Intraspe-
cific competition among fish is found to dampen chaotic dynamics, thereby enhancing system stability.
Numerical simulations confirm the theoretical findings and highlight that increased toxicant levels disrupt energy flow
through the food chain, causing population decline. These results underscore the importance of ecological regulation
in preserving ecosystem balance and mitigating the impact of environmental stressors.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction

The dynamics of plankton-fish interactions have been the
subject of several studies, with special focus on the roles played
by zooplankton and phytoplankton. Kaur et al. [1] investi-
gated the effects of zooplankton disease and environmental toxi-
city on harvesting strategies using a phytoplankton-zooplankton
model. They found that the optimal collecting techniques for
these planktonic species were significantly influenced by both
criteria. Panja used a phytoplankton-zooplankton-fish model to
study how fear affected fish and zooplankton harvesting. The
findings demonstrated that fear-induced behavioral alterations in
fish and zooplankton harvesting can lead to complex dynamics,
including system bifurcations and stability switches [2]. These
factors have the potential to upset the system and result in com-
plex population dynamics and oscillatory behaviors among fish,
zooplankton, and phytoplankton, according to Thakur et al.’s
analysis of plankton-fish dynamics, which considered top preda-
tor interference and multiple gestation delays [3].

Several studies have examined the effects of toxicants
on population dynamics using mathematical models. A three-
species food chain model with top predator intervention in a tox-
icant environment was studied by Babu et al. [4]. They showed
that toxicants reduce prey’s development rate and carrying ca-
pacity, which may lead to ecological instability. Sabastine et
al. [5] found that high levels of external toxicants can lead to
species extinction and adversely affect population persistence in
their study of the impacts of these substances on competitive set-
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tings. Functional responses are crucial in predator-prey models.
While the Holling Type-II response tracks saturation effects, the
Beddington-DeAngelis response accounts for predator interfer-
ence. System stability is demonstrated to be enhanced by preda-
tor interference (Zhang et al. [6], Shao and Kong [7], Meng and
Wang [8]).Rahmi et al. [9] found bistability and complex patterns,
whereas Yu and Chen [10] showed that mutual interference en-
hances species cohabitation. This study emphasizes the signif-
icance of functional responses in shaping population dynamics
under ecological pressures. Mukherjee et al. [11] found that
the presence of toxic prey significantly affects predator dynam-
ics, and incorporating imprecise (interval) parameters provides a
more realistic understanding of how toxicity and harvesting influ-
ence the stability and behavior of the ecosystem. Zhu and Xu [12]
found that toxicants can induce Turing and Turing–Hopf bifur-
cations, destabilize the system, create complex spatial patterns,
and even lead to species extinction.

Furthermore, prey refuge plays a crucial role in preserving
predator-prey dynamics by offering protection to a segment of
the prey population. It has been demonstrated that prey refuge
alters equilibrium densities and enhances population stability.
Majeed and Naji [13] found that prey refuge improves system sta-
bility, while Lajmiri et al. [14] showed that it can result in bifurca-
tion phenomena because of environmental stressors. Both prey
distribution and prey refuge have a significant influence on pop-
ulation stability and persistence (Berezovskaya et al. [15]). The
growth dynamics of primary producers are crucial for ecosystem
modeling since numerous growth functions are used to explain
population regulation under environmental stressors. Misra and
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Babu [16, 17] used the logistic growth function to show how tox-
icants reduce prey’s carrying capacity and growth rate, which im-
pacts a species’ ability to persist. Santra [18] employed the θ-
logistic growth function, which provides a more flexible frame-
work for population regulation with varied growth rates. How-
ever, Ahmed and Almatrafi [19] applied the Gompertz growth
function to herd behavior and demonstrated that it results in
Neimark-Sacker bifurcation and quasi-periodic oscillations. Rana
[20] also employed the Gompertz growth function, demonstrat-
ing how it leads to flip bifurcation and Neimark-Sacker bifurca-
tion, which lead to complex predator-prey dynamics.

Bifurcation analysis, particularly Hopf bifurcation, must be
thoroughly understood in order to comprehend stability transi-
tions in predator-prey systems. It is advantageous to look into
how ecological elements like toxicant concentration, fear effects,
and predation rates affect population dynamics. Rising toxicant
concentrations destabilize the system and create Hopf bifurca-
tion, which results in population oscillations, according to Liu
et al. [21], who studied a fractional-order predator-prey model
with toxic injections and fear effects. Bosi and Desmarchelier [22]
proposed a general framework for detecting local bifurcations in
three- and four-dimensional systems using Jacobian matrix mi-
nors. This approach provides information on both codimension-
one and codimension-two bifurcations with environmental impli-
cations. In their study of a predator-prey model, Wang et al. [23]
showed that a critical parameter d governs the system’s stability
and that transcritical, saddle-node, and Hopf bifurcations, which
result in periodic oscillations, occur when it crosses its critical
threshold. Makwana et al. [24] studied the bifurcation dynamics
of a prey–predator system with toxicants and found that increas-
ing the predation saturation parameter led to Hopf and period-
doubling bifurcations, causing transitions from stability to oscil-
lations and chaos. Their results also showed that higher toxicant
uptake could restore stability by suppressing population growth.
Cong et al. [25] investigated a three-species food chain model
with the fear effect and showed that the system undergoes Hopf
bifurcation, resulting in periodic population cycles. The fear ef-
fect significantly impacts system stability by changing prey be-
haviour, which can lead to oscillations in the populations of all
species.

Although several studies have explored toxicant effects
[4, 5, 12], functional responses [6–10], prey refuge [13–15], and
various growth dynamics [16–20] individually, there remains a
gap in the literature regarding integrated models that simulta-
neously consider Gompertz growth, prey refuge, Holling Type
II and Beddington-DeAngelis functional responses, and toxicant
accumulation. Such integration is essential for accurately cap-
turing the multi-layered dynamics of aquatic ecosystems. This
study aims to bridge this gap by formulating a comprehensive
model that combines these ecological factors, thereby providing
a deeper understanding of species persistence, stability, and bi-
furcation behavior under environmental stress.

2. Model Formulation

Understanding the complex interactions between different
species in an aquatic ecosystem is crucial for ecological balance
and sustainability. In this study, we develop a dynamical system
that models the interplay between Phytoplankton (P ), Zooplank-

ton (Z), Fish (F ), and a Toxicant (T ). Our model integrates key
ecological principles such as prey refuge, Holling Type II preda-
tion, Beddington-DeAngelis functional response, and toxicant ef-
fects to capture real-world dynamics effectively.

2.1. Phytoplankton Dynamics: The Base of the Food Chain
Phytoplankton, the primary producers, exhibit Gompertz

growth, which accounts for limited resource availability:

dP

dt
= rP ln

(
K

P

)
− a1(1− ρ)PZ

1 + b1P
− d1P − τPT.

1. Intrinsic Growth & Carrying Capacity: The Gompertz term
rP ln

(
K
P

)
ensures controlled growth, where r is the intrin-

sic growth rate andK is the carrying capacity of phytoplank-
ton.

2. Predation by Zooplankton: Zooplankton consume phyto-
plankton following a Holling Type II functional response,
where a1 is the predation rate and b1 is the handling time
parameter.

3. Toxicant Impact: The term−τPT accounts for the negative
effects of pollutants, where τ represents the toxicant impact
coefficient.

4. Mortality & Prey Refuge: A fraction ρ of phytoplankton es-
capes predation, and d1 represents the natural mortality rate
of phytoplankton.

2.2. Zooplankton Dynamics: The Primary Consumers
Zooplankton thrive by feeding on phytoplankton but are

preyed upon by fish:

dZ

dt
=

a2(1− ρ)PZ

1 + b1P
− a3ZF

1 + b2Z + c2F
− d2Z − e1Z

2.

1. Consumption of Phytoplankton: Governed by Holling Type II
functional response, where a2 represents the predation rate
on phytoplankton.

2. Predation by Fish: Modeled using the Beddington-DeAngelis
response, where a3 is the predation rate, b2 is the handling
time, and c2 represents predator interference.

3. Natural Mortality & Competition: Zooplankton experience
mortality at rate d2, and e1Z

2 ensures stability at high den-
sities due to intraspecific competition.

2.3. Fish Dynamics: The Top Predators
Fish depend on zooplankton as their primary food source:

dF

dt
=

a4ZF

1 + b2Z + c2F
− d3F − e2F

2.

1. Predation on Zooplankton: Follows a Beddington-DeAngelis
functional response, where a4 represents the predation rate
on zooplankton.

2. Mortality & Overcrowding: Fish experience a natural mor-
tality rate d3, while e2F

2 accounts for competition among
fish.

2.4. Toxicant Dynamics: The Silent Threat
The toxicant concentration in the ecosystem is affected by

external sources and biological interactions:

dT

dt
= S − d4T + γPT.
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1. External Input: The termS represents pollution entering the
system.

2. Natural Decay: The term −d4T represents toxicant reduc-
tion due to natural degradation, where d4 is the decay rate.

3. Phytoplankton Influence: Interaction with phytoplankton
(γPT )may indicate bioaccumulation or biotransformation,
where γ is the interaction coefficient.

2.5. Complete Model Representation with Initial Conditions

To simulate the ecosystem, we solve the following system
of equations:

dP

dt
= rP ln

(
K

P

)
− a1(1− ρ)PZ

1 + b1P
− d1P − τPT, (1)

dZ

dt
=

a2(1− ρ)PZ

1 + b1P
− a3ZF

1 + b2Z + c2F
− d2Z − e1Z

2, (2)

dF

dt
=

a4ZF

1 + b2Z + c2F
− d3F − e2F

2, (3)

dT

dt
= S − d4T + γPT, (4)

with initial conditions:

P (0) = P0 > 0, Z(0) = Z0 > 0, F (0) = F0 > 0,

T (0) = T0 > 0.

2.6. Biological Justification for Gompertz Growth

The Gompertz growth function is adopted instead of the
logistic model due to its ability to better represent the decelerat-
ing growth of phytoplankton under toxicant stress. Its nonlinear
structure captures more realistic dynamics and plays a key role in
determining the conditions for Hopf bifurcation, making it well-
suited for analyzing stability transitions in polluted aquatic sys-
tems.

In addition to its mathematical advantages, the Gompertz
growth function has been supported in ecological studies for
modeling primary producers under environmental stress [19, 20].
Its gradual slowing of growth aligns with empirical observations
of phytoplankton responses to increasing toxicant levels, where
growth is more strongly inhibited at higher densities. Therefore,
the Gompertz model offers both biological realism and analyt-
ical tractability for capturing population regulation in polluted
aquatic systems.

2.7. Biological Justification for Functional Responses

In this model, the interaction between phytoplankton and
zooplankton is represented using the Holling Type II functional
response, which captures the saturating feeding behavior com-
monly observed in herbivorous zooplankton. As prey density
increases, the consumption rate rises rapidly but levels off due
to handling time limitations. For the fish–zooplankton interac-
tion, the Beddington–DeAngelis response is used to reflect both
prey-dependent predation and the effect of predator interfer-
ence. This formulation is biologically appropriate for fish popu-
lations, where competition, territorial behavior, and interference
among predators can significantly influence feeding efficiency at
higher densities.

3. Boundedness of Model
In this section, we establish the boundedness of solutions

using the Comparison Theorem to ensure biological feasibility.
By constructing suitable differential inequalities, we derive ex-
plicit upper bounds for each state variable, confirming that the
system remains within a positively invariant region Ω. This guar-
antees that all solutions stay uniformly bounded for t ≥ 0, ensur-
ing the model’s validity for long-term analysis.

Theorem 1. Let (P (t), Z(t), F (t), T (t)) be a non-negative so-
lution of Model with positive initial conditions. Then, all solutions
remain uniformly bounded for all t ≥ 0 and ultimately enter a
positively invariant compact region Ω defined as:

Ω = {(P,Z, F, T ) ∈ R4
+ : P ≤ K, Z ≤ Zmax, F ≤ Fmax,

T ≤ Tmax},

where,

Zmax =
MZ − d2

e1
, Fmax =

AF

e2
, Tmax =

S

γK
,

MZ =
a2(1− ρ)K

1 + b1K
, AF =

a4(MZ − d2)

e1c2
− d3.

Proof. From eq. (1), ignoring the negative terms, we approximate,

dP

dt
≤ rP ln

(
K

P

)
.

By solving, the differential equation, we obtain

− ln
(
ln
(
K

P

))
≤ rt+ C,

P ≤ Ke−e−rt−C

.

Taking the limit as t → ∞, we obtain

P (t) ≤ K.

This confirms that P (t) is bounded.
From eq. (2), we approximate,

dZ

dt
≤ a2(1− ρ)PZ

1 + b1P
− d2Z − e1Z

2.

Since P (t) ≤ K, define,

MZ =
a2(1− ρ)K

1 + b1K
.

Then,
dZ

dt
≤ MZZ − d2Z − e1Z

2.

Solving this Riccati equation, we obtain

Z ≤ MZ − d2
e1(Ce−(MZ−d2)t + 1)

.

Taking the limit as t → ∞, we obtain

Z(t) ≤ MZ − d2
e1

= Zmax.
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This confirms that Z(t) is bounded.
From eq. (3), we approximate,

dF

dt
≤ AFF − e2F

2,

where

AF =
a4(MZ − d2)

e1c2
− d3.

Using partial fraction, integrating and solving, we obtain

F ≤ AF e
A2

F t+CAF

1 + eA
2
F t+CAF e2

.

Taking the limit as t → ∞, we obtain

F (t) ≤ AF

e2
= Fmax.

This confirms that F (t) is bounded.
From eq. (4), we approximate,

dT

dt
≤ S + γKT,

By solving this, we get,

T ≤ S

γK
+ CeγKT .

For boundedness, choosing C ≤ 0, we conclude

T ≤ S

γK
= Tmax.

This confirms that T (t) is bounded.
Since all variables are bounded, the solutions remain in the com-
pact region Ω, proving that the system is ultimately bounded.
This completes the proof.

4. Existence of Equilibrium Points
This study examines the existence of equilibrium points in

a system involving phytoplankton P , zooplankton Z, fish F , and
a toxicant T . We consider three possible equilibrium states:
1. E1(P, 0, 0, T ): Only phytoplankton and the toxicant are

present.
2. E2(P,Z, 0, T ): Phytoplankton and zooplankton coexist, but

fish are absent.
3. E3(P,Z, F, T ): All species coexist in the system.

By applying equilibrium existence theorems, we establish con-
ditions that ensure each equilibrium is biologically meaningful
(P, Z, F, T > 0). These findings help in understanding
species survival and the influence of toxicants on ecological bal-
ance.

Theorem 2. Equilibrium pointE1(P, 0, 0, T ) exists if d4 > γP .

Proof. From eq. (1)

r ln
(
K

P

)
− d1 − τT = 0.

After solving for P , we obtain,

P = Ke
−(d1+τT )

r .

Since exponential function is always positive, P > 0 ∀ K, r > 0
and finite d1 + τT .
Now, from eq. (4),

−d4T + γPT = 0.

After solving for T , we obtain,

T =
S

d4 − γP
.

T > 0 if d4 > γP .

Remark 1. The phytoplankton population P is negatively
impacted by increasing toxicant levels T , as described by
P = Ke

−(d1+τT )
r . While P remains positive as long as T is

finite, higher concentrations of the toxicant lead to a reduc-
tion in phytoplankton growth.

Remark 2. The toxicant concentration T is determined by
the phytoplankton population P , given by T = S

d4−γP . For
T to stay positive, the condition d4 > γP must be satis-
fied, meaning that if P becomes too large, T would become
negative, which is physically unrealistic.

Theorem 3. Equilibrium pointE2(P,Z, 0, T ) exists if d4 > γP
and a2(1− ρ)P > d2(1 + b1P ).

Proof. From eq. (1)

r ln
(
K

P

)
− a1(1− ρ)Z

1 + b1P
− d1 − τT = 0.

After solving for P , we obtain,

P = Ke
−
(

a1(1−ρ)Z

r(1+b1P )
+

(d1+τT )
r

)
.

Since exponential function is always positive, hence P > 0 al-
ways.
Now, from eq. (2),

a2(1− ρ)P

1 + b1P
− d2 − e1Z = 0.

After solving for Z, we obtain,

Z =
1

e1

(
a2(1− ρ)P

(1 + b1P )
− d2

)
.

Z > 0 if a2(1− ρ)P > d2(1 + b1P ).
This implies that zooplankton can only survive when the term in-
volving the phytoplankton population P is large enough to over-
come the natural death rate and other limiting factors.
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Now, from eq. (4),

S − d4T + γPT = 0.

After solving for T , we obtain,

T =
S

d4 − γP
.

T > 0 if d4 > γP .

Theorem 4. Equilibrium point E3(P,Z, F, T ) exists if d4 >
γP , (1 + b2)d3 < a4Z and (a3 + c2d2)F + d2 < f(P ),
where f(P ) = a2(1−ρ)P

1+b1P

Proof. From eq. (1)

r ln
(
K

P

)
− a1(1− ρ)Z

1 + b1P
− d1 − τT = 0.

After solving for P , we obtain,

P = Ke
−
(

a1(1−ρ)Z

r(1+b1P )
+

(d1+τT )
r

)
.

Since exponential function is always positive, hence P > 0 al-
ways.
Now, from eq. (2),

a2(1− ρ)P

1 + b1P
− a3F

1 + b2Z + c2F
− d2 − e1Z = 0,

f(P )− a3F

1 + b2Z + c2F
− d2 − e1Z = 0,

where

f(P ) =
a2(1− ρ)P

1 + b1P
.

After solving for Z, we obtain the quadratic equation,

0 = b2e1Z
2 + (b2d2 + e1 + c2e1F )Z + (d2 − f(P ) + (a3

+ c2d2)F ).

This equation has one positive root if (a3+c2d2)F +d2 < f(P ).
Now, from eq. (3),

a4Z

1 + b2Z + c2F
− d3 − e2F = 0.

After solving for F , we obtain the quadratic equation,

e2c2F
2 + (e2 + c2d3 + b2e2Z)F + ((1 + b2)d3 − a4Z) = 0.

This equation has one positive root if (1 + b2)d3 < a4Z.
Now, from eq. (4),

S − d4T + γPT = 0.

After solving for T , we obtain,

T =
S

d4 − γP
.

T > 0 if d4 > γP .

5. Local Stability
This section examines the local stability of equilibrium

points in the system involving phytoplankton (P ), zooplankton
(Z), fish (F ) and a toxicant (T ). To determine stability, we
compute the Jacobian matrix, which represents the system’s lin-
earized behavior around equilibrium points. The Jacobian matrix
is given by:

J =


A11 −a1(1−ρ)P

(1+b1P ) 0 −τP
a2(1−ρ)Z
(1+b1P )2 A22

−a3Z(1+b2Z)
(1+b2Z+c2F )2 0

0 a4F (1+c2F )
(1+b2Z+c2F )2 A33 0

γT 0 0 γP − d4

 ,

where

A11 = r ln
(
K

P

)
− a1(1− ρ)Z

(1 + b1P )
− τT − r − d1,

A22 =
a3b2ZF

(1 + b2Z + c2F )2
+

a2(1− ρ)P

(1 + b1P )
− a3F

(1 + b2Z + c2F )

− 2e1Z − d2,

A33 =
a4Z

(1 + b2Z + c2F )
− a4c2ZF

(1 + b2Z + c2F )2
− 2e2F − d3.

The stability of an equilibrium point is determined by ana-
lyzing the eigenvalues of J . If all eigenvalues have negative real
parts, the equilibrium is locally asymptotically stable, meaning
small perturbations will decay over time, and the system will re-
turn to equilibrium.

Theorem 5. The Equilibrium point E1(P, 0, 0, T ) is locally
asymptotically stable if it it satisfy the following conditions:

a2(1− ρ)P < d2(1 + b1P ),

r ln
(
K

P

)
+ γP < r + d1 + d4 + τT,

0 <

(
r ln

(
K

P

)
− r − d1

)
(γP − d4) + τd4T.

Proof. Jacobianmatrix of Equilibrium pointE1(P, 0, 0, T ) is given
by:

J =


r ln

(
K
P

)
− τT − r − d1 −a1(1−ρ)P

(1+b1P )
0 −τP

0 a2(1−ρ)P
(1+b1P )

− d2 0 0

0 0 −d3 0

γT 0 0 γP − d4

 .

Here,

λ3 = − d3 < 0,

λ2 =
a2(1− ρ)P

(1 + b1P )
− d2,

λ2 < 0 if a2(1−ρ)P < d2(1+b1P ). And other two eigen values
are given by the following quadratic equation:

λ2 +A1λ+B1 = 0, (5)
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where

A1 = − r ln
(
K

P

)
+ τT − γP + r + d1 + d4,

B1 =

(
r ln

(
K

P

)
− r − d1

)
(γP − d4) + τd4T.

According to the Routh-Hurwitz criterion, the polynomial equa-
tion is asymptotically stable if it satisfies the conditions: A1,
B1 > 0.

i. A1 > 0 if r ln
(
K
P

)
+ γP < r + d1 + d4 + τT ,

ii. B1 > 0 if
(
r ln

(
K
P

)
− r − d1

)
(γP − d4) + τd4T > 0.

Remark 3. The result of Theorem 5 implies that if the phyto-
plankton growth is limited and zooplankton cannot invade
(due to insufficient feeding efficiency or high death rates),
the ecosystem stabilizes at a state where only phytoplank-
ton and toxicant persist. Biologically, this reflects a collapse
of the food chain where toxicant stress and lack of viable
trophic transfer prevent higher species from surviving.

Theorem 6. The Equilibrium point E2 is locally asymptotically
stable under certain conditions.

Proof. Jacobian matrix of Equilibrium point E2(P,Z, 0, T ) is
given by:

J =


F1 − a1F2Z − F4 −a1F2P 0 −τP

a2F2Z
1+b1P

a2F2P − F3
−a3Z
1+b2Z

0

0 0 a4Z
1+b2Z

− d3 0

γT 0 0 γP − d4

 ,

where

F1 = r ln
(
K

P

)
, F3 = 2e1Z + d2,

F2 =
1− ρ

1 + b1P
, F4 = r + d1 + τT.

And

λ3 =
a4Z

(1 + b2Z)
− d3,

λ3 < 0 if a4Z < d3(1 + b2Z). And other three eigen values are
given by the following cubic equation:

A2λ
3 +B2λ

2 + C2λ+D2 = 0,

where

A2 = 1 + b1P,

B2 = (1 + b1P )(F1 + F3 + F4 + d4 − γP − a2F2P + a1F2Z),

C2 = (F3 + F4 − F1)(d4 − γP + b1d4P − b1γP
2) + [F3(F4 − F1)

+ a2F2P (F1 − F4 − d4) + a1F2Z(F3 − γP + d4)](1 + b1P )

+ b1γP
2(a2F2 + τT )− a1a2b1F

2
2 P

2Z,

D2 = (F4 − F1)(1 + b1P )[F3(d4 − γP )− a2F2P (a4 − γP )]

− γτP 2T (a2F2 − b1F3)− a1b1F2PZ(F3 − a2F2P )(γP

− d4) + a1d4F2F3Z − γτPT (a2b1F2P
2 − F3).

According to the Routh-Hurwitz criterion, the equation is asymp-
totically stable if it satisfies the conditions: A2, B2, D2 > 0 and
B2C2 −A2D2 > 0. Here

i. A2 > 0,B2 > 0 if,F1+F3+F4+d4+a1F2Z >γP+a2F2P .
ii. D2 > 0 if, F1 < F4, a2F2P (a4− γP ) < F3(d4− γP ), b1F3

< a2F2, γP < d4 or a2F2P < F3, a2b1F2P
2 < F3.

Remark 4. In Theorem 6, the ecosystem supports phyto-
plankton and zooplankton, but fish go extinct. The con-
dition a4Z < d3(1 + b2Z) means that fish cannot survive
if predation on zooplankton is too weak or their mortality
is too high. This reflects a partially degraded ecosystem,
where pollution or top-level stress prevents the persistence
of top predators, leading to trophic truncation.

Theorem 7. The Equilibrium point E3(P,Z, F, T ) is locally
asymptotically stable under certain conditions.

Proof. Jacobian matrix of Equilibrium point E3(P,Z, F, T ) is
given by:

J =


F1 − a1F2Z − F4 −a1F2P 0 −τP

a2F2Z
1+b1P

J22
−a3F6Z

(F5+F6−1)2 0

0 a4F5F
(F5+F6−1)2 J33 0

γT 0 0 F8

 ,

where

J22 =
a3b2ZF

(F5 + F6 − 1)2
+ a2F2P − a3F

F5 + F6 − 1
− F3,

J33 =
a4Z

F5 + F6 − 1
− a4c2ZF

(F5 + F6 − 1)2
− F7,

F1 = r ln
(
K

P

)
, F2 =

1− ρ

1 + b1P
, F3 = 2e1Z + d2,

F4 = r + d1 + τT, F5 = 1 + c2F, F6 = 1 + b2Z,

F7 = 2e2F + d3, F8 = γP − d4.

The eigen values of the above Jacobian matrix are given by the
equation:

A3λ
4 +B3λ

3 + C3λ
2 +D3λ+ E3 = 0, (6)

where

A3 = (1 + b1P )(F5 + F6 − 1)4,

B3 = (1 + b1P )(F5 + F6 − 1)4(F4 + a1F2Z − F1 − F8

− J22 − J33),

C3 = a1a2F
2
2PZ(F5 + F6 − 1)4 − a3a4F5F6ZF (1 + b1P )

+ (F5 + F6 − 1)4(1 + b1P )[γτPT + F8(F1 − F4

− a1F2Z) + J22J33] + (F5 + F6 − 1)4(1 + b1P )(F8

+ F1 − a1F2Z − F4)(J22 + J33),

D3 = J22J33(F4 + a1F2Z − F8 − F1)(1 + b1P )(F5 + F6 − 1)4
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+ (J22 + J33)[F8(F4 + a1F2Z − F1)− γτPT ](1

+ b1P )(F5 + F6 − 1)4 + a3a4F5F6ZF (F4 + a1F2Z

− F8 − F1)(1 + b1P ) + a1a2F
2
2PZ(F8 + J33)(F5

+ F6 − 1)4,

E3 = J22J33[F8(F1 − F4 − a1F2Z) + γτPT ](1 + b1P )(F5

+ F6 − 1)4 + a3a4F5F6ZF (1 + b1P )[γτPT + F8(F1

− a1F2Z − F4)] + a1a2F
2
2F8J33PZ(F5 + F6 − 1)4.

According to the Routh-Hurwitz criterion, the equation is asymp-
totically stable if it satisfies the conditions: A3, B3, C3, D3,
E3 > 0, A3D3 −B3C3 > 0, A3D

2
3 −B3C3D3 −B2

3E3 > 0.
i. A3 > 0, B3 > 0 if, F1 + F8 + J22 + J33 < F4 + a1F2Z,
ii. C3 > 0, D3 > 0, E3 > 0 if, a3a4F5F6F < a1a2F

2
2P ,

F1 + F8 < a1F2Z + F4, F4 + a1F2Z < F1.

Remark 5. Theorem 7 indicates that all species coexist sta-
bly when ecological interactions (like predator interference
and intraspecific competition) are strong enough to coun-
teract destabilizing effects of predation and toxicants. The
balance among growth, consumption, and decay prevents
large oscillations. Instability here would mean population
fluctuations or collapse due to imbalance, such as excessive
toxicant accumulation or weak self-regulation.

6. Global Stability
In this section, we establish the global stability of the

equilibrium point E3(P,Z, F, T ) within the bounded region
Ω. By constructing a suitable Lyapunov function and applying
Sylvester’s criteria, we derive sufficient conditions under which
the system converges globally to this equilibrium. The following
theorem presents the necessary conditions for global asymptotic
stability.

Theorem 8. In the region Ω, if the following conditions hold:

a2(1− ρ)b1Z < rσ2, (7)

a3b2F < e1σ1 (8)

γP < d4, (9)

σ2γ
2T 2 < (rσ2 − a1(1− ρ)b1Z)(γP − d4), (10)

where

σ1 = (1 + b2Z + c2F )(1 + b2Z + c2F ),

σ2 = (1 + b1P )(1 + b1P ),

A1 =
a1(1 + b1P )

a2
> 0,

A2 =
a1a3(1 + b1P )(1 + b2Z)

a2a4(1 + c2F )
> 0,

A3 = 1.

Then E3(P,Z, F, T ) will be globally asymptotically stable in the

region Ω.

Proof. Let us consider,

V11 =

[
P − P − P ln

(
P

P

)]
+A1

[
Z − Z − Z ln

(
Z

Z

)]
+A2

[
F − F − F ln

(
F

F

)]
+

A3

2
(T − T )2.

Differentiating both side with respect to t, we get,

dV11

dt
=

(
P − P

P

)
dP

dt
+A1

(
Z − Z

Z

)
dZ

dt
+A2

(
F − F

F

)
dF

dt

+A3(T − T )
dT

dt
.

From eqs. (1) to (4), we get,

dV11

dt
= r(− lnP + lnP )(P − P ) +

a1(1− ρ)b1Z

σ2
(P − P )2

− (1− ρ)

σ2

(
a1(1 + b1P )− a2A1

)
(P − P )(Z − Z)

+A1

(
a3b2F

σ1
− e1

)
(Z − Z)2 −A2

(
e2 +

a4c2Z

σ1

)
(F

− F )2 +A3(γP − d4)(T − T )2 +A3γT (P − P )

(T − T )− 1

σ1

(
a3A1(1 + b2Z)− a4A2(1 + c2F )X)

)
(Z

− Z)(F − F ),

where

σ1 = (1 + b2Z + c2F )(1 + b2Z + c2F ),

σ2 = (1 + b1P )(1 + b1P ),

and choosing

A1 =
a1(1 + b1P )

a2
> 0,

A2 =
a1a3(1 + b1P )(1 + b2Z)

a2a4(1 + c2F )
> 0,

A3 = 1.

Since − lnP + lnP < −(P − P ) ∀P > 0, then dV11

dt can be
written as:

dV11

dt
≤ − [

b11
2

(P − P )2 + b14(P − P )(T − T ) +
b44
2

(T − T )2

+ b22(Z − Z)2 + b33(F − F )2],

where

b11 = r − a1b1(1− ρ)Z

σ2
,

b22 = A1

(
e1 −

a3b2F

σ1

)
,

b33 = A2

(
e2 +

a4c2Z

σ1

)
,

b44 = A3

(
d4 − γP

)
,
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b14 = −A3γT.

By the Sylvester’s criteria, we get that dv11

dt will be negative func-
tion with the inequalities:

b11 > 0, (11)

b22 > 0, (12)

b44 > 0, (13)

b11b44 > b214. (14)

We note that the inequalities, eq. (7)⇒eq. (11), eq. (8)⇒eq. (12),
eq. (9)⇒eq. (13), and eq. (10)⇒eq. (14). Hence V11 of E3 in Ω.
Prove theorem.

Remark 6. The conditions of Theorem 8 ensure that toxi-
cant levels are sufficiently controlled, and that predation and
competition are balanced. When they hold, the system al-
ways converges to a biologically viable state with coexis-
tence of all populations, regardless of initial values. Eco-
logically, this suggests that the ecosystem is resilient to per-
turbations provided that pollution remains within safe limits
and population interactions are properly regulated.

7. Bifurcation Analysis
In this section, we investigate the occurrence of a Hopf bi-

furcation by identifying purely imaginary eigenvalues and verify-
ing stability changes using the Routh-Hurwitz criteria. Addition-
ally, we confirm the transversality condition through Sotomayor’s
theorem.

Theorem 9. The system eqs. (1) to (4) undergoes a Hopf bifurca-
tion at the equilibrium point E1(P, 0, 0, T ) as the parameter K
crosses the critical threshold

Kc = P exp
[
1

r

(
τS

d4 − γP
− γP + r + d1 + d4

)]
,

provided that the following condition holds at K = Kc:

(τT − γP + d4)(γP − d4) + τd4T > 0.

Proof. For a Hopf bifurcation to occur, the trace of the eq. eq. (5)
must be zero, i.e., A1 = 0.

Solving for K, we obtain,

Kc = P exp
[
1

r
(τT − γP + r + d1 + d4)

]
.

Substituting the value of T from Theorem 2, we obtain,

Kc = P exp
[
1

r

(
τS

d4 − γP
− γP + r + d1 + d4

)]
.

Now B1 > 0(
r ln

(
K

P

)
− r − d1

)
(γP − d4) + τd4T > 0,

substituting K = Kc when A1 = 0, we obtain,

(τT − γP + d4)(γP − d4) + τd4T > 0.

Now,
dA1

dK
=

−r

Kc
̸= 0,

Since this condition is satisfied, the transversality requirement of
Sotomayor’s Theorem for Hopf Bifurcation holds, confirming the
bifurcation.

Remark 7. The Hopf bifurcation at E1 implies that when the
carrying capacity K exceeds the critical value Kc, the equi-
librium loses stability, and the system exhibits oscillatory
behavior. Biologically, this reflects that the phytoplankton
population, in the absence of consumers, begins to fluctuate
periodically due to increased resource availability.

8. Numerical Simulation
In this section, we conduct a comprehensive stability anal-

ysis of the equilibria E1, E2, and E3 by computing eigenvalues
and confirming stability conditions. A Hopf bifurcation analysis
at E1 is performed to determine critical thresholds for oscilla-
tory behavior. Furthermore, the impact of toxicant accumula-
tion on population dynamics is examined, along with the effects
of varying key ecological parameters. Using MATLAB, bifurcation
diagrams and phase trajectories are generated to illustrate sta-
bility transitions and long-term system behavior under different
parameter settings.

8.1. Stability Analysis
The parameters used in this study are assumed to re-

flect general ecological conditions of an aquatic food chain. Al-
though not derived from specific empirical datasets, they were
selected to ensure biological feasibility, the existence of posi-
tive equilibria, and ecologically meaningful species interactions.
The values are chosen to represent a realistic trophic structure,
where phytoplankton serve as the resource base for zooplank-
ton, which in turn support fish populations. The resulting equi-
librium values maintain the expected biomass hierarchy (phyto-
plankton > zooplankton > fish) in terms of population density,
aligning with commonly observed patterns in aquatic ecosys-
tems.

Example 1. To illustrate the stability of the equilibrium point
E1(P, 0, 0, T ), we consider the system eqs. (1) to (4) with the
following parameter values:

r = 5, K = 15, a1 = 0.35,
ρ = 0.4, b1 = 0.1, d1 = 0.012,
τ = 1.5, a2 = 0.01, a3 = 0.9,
b2 = 0.1, c2 = 0.05, d2 = 0.2,
e1 = 0.005, a4 = 0.3, d3 = 0.8,
e2 = 0.12, S = 0.8, d4 = 0.5,
γ = 0.03.

For these parameter values, one of the equilibrium points is
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(a) Time series plot of the equilibrium
E1(P, 0, 0, T ).
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(b) Time series plot of the equilibrium
E2(P,Z, 0, T ).

Figure 1. Note: The x-axis represents time in arbitrary units, and the y-axis represents relative population density. These values are not
associated with specific field data but illustrate qualitative system behavior.
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(a) Time series plot of the equilibrium
E3(P,Z, F, T ).
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(b) The effect of toxicant on population.

Figure 2. Note: The x-axis represents time in arbitrary units, and the y-axis represents relative population density. These values are not
associated with specific field data but illustrate qualitative system behavior.

found at:

E1(6.7102, 0.0000, 0.0000, 2.6765).

To analyze the stability of this equilibrium, we compute the
eigenvalues of the Jacobian matrix at E1, which are:

λ1 = −4.8228, λ2 = −0.4774,
λ3 = −0.1759, λ4 = −0.8000.

Since all eigenvalues have negative real parts, the equilib-
rium pointE1 is locally asymptotically stable. This is further
supported by the time series simulation in Figure 1a, which
shows the system smoothly converging to equilibrium with-
out oscillations after a small perturbation.

Example 2. To illustrate the stability of the equilibrium point
E2(P,Z, 0, T ), we consider the system eqs. (1) to (4) with
the following parameter values:

r = 5, K = 15, a1 = 0.35,
ρ = 0.4, b1 = 0.1, d1 = 0.12,
τ = 0.004, a2 = 0.05, a3 = 1.7,
b2 = 0.1, c2 = 0.05, d2 = 0.15,
e1 = 0.005, a4 = 0.3, d3 = 1,

e2 = 0.12, S = 0.8, d4 = 0.4,
γ = 0.003.

For these parameter values, one of the equilibrium points is
found at:

E2(13.5028, 4.4647, 0.0000, 2.2252).
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(a) Bifurcation diagram for E3(P,Z, F, T ) with
fixed as Example 3 and e2 varying from 0 to
0.2, showing stability changes and steady-
state phytoplankton dynamics.

(b) Bifurcation diagram for E3(P,Z, F, T ) with
fixed as Example 3 and e2 varying from 0 to
0.2, showing stability changes and steady-
state Zooplankton dynamics.

(c) Bifurcation diagram for E3(P,Z, F, T ) with
fixed as Example 3 and e2 varying from 0 to
0.2, showing stability changes and steady-
state Fish dynamics.

(d) Bifurcation diagram for E3(P,Z, F, T ) with
fixed as Example 3 and e2 varying from 0 to
0.2, showing stability changes and steady-
state Toxicant.

Figure 3.

To analyze the stability of this equilibrium, we compute the
eigenvalues of the Jacobian matrix at E2, which are:

λ1 = −4.7666, λ2 = −0.0285,
λ3 = −0.4596, λ4 = −0.0740.

Since all eigenvalues have negative real parts, the equilib-
rium pointE2 is locally asymptotically stable. This is further
supported by the time series simulation in Figure 1b, which
shows the system smoothly converging to equilibrium with-
out oscillations after a small perturbation.

Example 3. To illustrate the stability of the equilibrium point
E3(P,Z, F, T ), we consider the system eqs. (1) to (4) with

the following parameter values:

r = 5, K = 15, a1 = 0.35,
ρ = 0.4, b1 = 0.1, d1 = 0.12,
τ = 0.003, a2 = 0.4, a3 = 0.9,
b2 = 0.1, c2 = 0.05, d2 = 0.15,
e1 = 0.005, a4 = 0.3, d3 = 0.8,
e2 = 0.12, S = 0.8, d4 = 0.4,
γ = 0.003.

For these parameter values, one of the equilibrium points is
found at:

E3(13.0851, 6.1811, 2.2632, 1.7362).

To analyze the stability of this equilibrium, we compute the
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Figure 4. 3D phase trajectories for equilibrium point E3(P,Z, F, T ) with e2 = 0.07, 0.12, 0.17, 0.2, showing system dynamics while all
other parameters remain fixed as in Example 3.

eigenvalues of the Jacobian matrix at E3, which are:

λ1 = −4.6220, λ2 = −0.0069 + 0.8101i,

λ3 = −0.0069− 0.8101i, λ4 = −0.4608.

Since all eigenvalues have negative real parts, the equilib-
rium point E3 is locally asymptotically stable. This is fur-
ther supported by the time series simulation in Figure 2a,
which shows the system converging to equilibrium after os-
cillations.

8.2. Effect of Toxicant on Population

The bifurcation analysis in Figure 2b demonstrates how
changes in toxicant-related parameters (S, τ, γ, d4) influence the
populations of phytoplankton, zooplankton, and fish. As the tox-
icant input S or its effects (τ, γ) increase, phytoplankton popula-
tions decline significantly. This reduction disrupts the food sup-
ply for zooplankton, causing their population to approach near
extinction. Consequently, fish, which rely on zooplankton for
sustenance, also experience a drastic decline, leading to a col-
lapse in the entire food chain. These findings underscore the
destabilizing effects of toxicant accumulation in aquatic ecosys-
tems, potentially driving species to extinction at high toxicity lev-

els. The results align with real-world scenarios where pollution
and industrial runoff severely impact aquatic food chains, high-
lighting the importance of regulating toxicant levels to maintain
ecological balance.

8.3. Hopf-Bifurcation Analysis
To investigate the occurrence of a Hopf bifurcation, we vary

the carrying capacity K, while taking other parameter from Ex-
ample 1 and compute the equilibrium states and their stability.
From Theorem 9, a Hopf bifurcation occurs when the trace of
the Jacobian matrix is zero. Solving for K, we obtain the critical
value Kc = 43.2859. At this bifurcation point, the equilibrium
shifts to:

E1 = (6.7038, 0, 0, 2.6766).

The eigenvalues of the Jacobian matrix at Kc are:

λ1 = 0.8474i, λ2 = −0.8474i,
λ3 = −0.1759, λ4 = −0.8000.

The presence of purely imaginary eigenvalues (±0.8474i) con-
firms the onset of a Hopf bifurcation.

Verification of the Transversality Condition: For the Hopf
bifurcation to occur, the transversality condition must hold:

dA1

dK
= −0.11551 ̸= 0.
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Since this value is nonzero, the transversality condition is satis-
fied, confirming the existence of a Hopf bifurcation.
• For K < Kc, the equilibrium E1 remains stable, and the

system converges to a steady state.
• For K > Kc, the equilibrium loses stability.

8.4. Effect of e2 on System Dynamics

The bifurcation analysis of e2 is conducted by varying its
value from 0 to 0.2 while keeping all other parameters fixed.
The bifurcation diagrams Figures 3a to 3d illustrate that for small
values of e2, the system exhibits chaotic or quasi-periodic oscil-
lations, leading to irregular fluctuations in phytoplankton, zoo-
plankton, fish, and toxicant populations. As e2 increases beyond
e2 ≈ 0.12, oscillations begin to dampen, and periodic behavior
emerges. Beyond e2 ≈ 0.15, the system transitions to a stable
equilibrium, where all populations settle into steady-state values.
The phase trajectories Figure 4 confirm this transition, showing
large periodic orbits at lower e2 values, which shrink and spiral
inward as e2 increases, ultimately converging to a fixed equilib-
rium at e2 = 0.2. This analysis highlights the stabilizing effect
of e2, as higher values suppress oscillatory dynamics across all
species and promote equilibrium.

9. Discussion

This study develops a mathematical model to describe
the interactions within an aquatic ecosystem, incorporating key
ecological mechanisms such as Gompertz growth, prey refuge,
Holling Type II predation, and the Beddington–DeAngelis func-
tional response. By integrating these elements, the model pro-
vides valuable insights into population stability and bifurcation
behavior.

Boundedness conditions were established to ensure bio-
logical feasibility, and upper limits for all populations were de-
rived. The existence and stability of equilibria E1, E2, and E3

were examined using the Jacobian matrix and Routh–Hurwitz cri-
teria, with global stability confirmed through a Lyapunov func-
tion. Numerical simulations further validated equilibrium stabil-
ity across various parameter settings.

Hopf bifurcation analysis at E1 was conducted both the-
oretically and numerically by varying the carrying capacity K.
A critical threshold Kc = 43.2859 was identified, leading to
an equilibrium shift to E1(6.7038, 0, 0, 2.6766). The emergence
of purely imaginary eigenvalues ±0.8474i at Kc confirmed the
occurrence of a Hopf bifurcation. The transversality condition
was satisfied, ensuring the bifurcation’s validity. For K < Kc,
E1 remained stable, while for K > Kc, it became unstable,
demonstrating the influence of carrying capacity on population
dynamics. Biologically, the Hopf bifurcation indicates that as K
increases beyond the critical value, the system transitions from
a stable equilibrium to oscillatory dynamics. This suggests that
phytoplankton and toxicant levels may begin to fluctuate cycli-
cally rather than stabilize.

Bifurcation analysis of E3 with respect to e2 revealed a
transition from chaotic or quasi-periodic oscillations to a stable
equilibrium as e2 increased beyond approximately 0.15. Phase
trajectory analysis showed that higher intraspecific competition
among fish reduces oscillatory behavior and promotes steady-
state dynamics. This emphasizes the stabilizing role of self-

regulation at the top trophic level.
The study also highlights the detrimental impact of toxi-

cant accumulation on the aquatic food chain. Increasing toxicant-
related parameters (S, τ, γ, d4) leads to a decline in phytoplank-
ton, which disrupts energy transfer to higher trophic levels. As
a result, zooplankton populations decline significantly, causing a
subsequent collapse in fish populations. This destabilization un-
derscores the importance of managing toxicant levels tomaintain
ecological balance and prevent species extinction.

The results of this study provide valuable insights for eco-
logical management. Regulating key parameters such as carrying
capacity and toxicant input can help prevent system destabiliza-
tion, highlighting the importance of environmental interventions
in sustaining population balance and ecosystem stability. While
the current model captures essential ecological interactions, it
assumes a spatially homogeneous environment and constant pa-
rameter values. To enhance ecological realism, potential exten-
sions of the model could incorporate spatial diffusion to reflect
species movement, stochastic effects to capture environmental
variability, and seasonal forcing to account for periodic ecological
changes. Additionally, empirical validation using field or labora-
tory data on toxicant concentrations and species densities would
increase the model’s practical relevance and support its applica-
tion in ecosystem risk assessment.

It is also important to note that the model assumes homo-
geneousmixing, constant parameter values, and no age or spatial
structure. These simplifications enable analytical tractability but
may limit the quantitative accuracy of predictions in real ecosys-
tems. Accordingly, the results should be interpreted as qualita-
tive insights that offer a theoretical foundation for more detailed
ecological modeling and future empirical investigation.
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