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Mathematical Modeling, Optimal Control and
Cost-Effectiveness Analysis of Diphtheria Transmission
Dynamics

Ayodeji Sunday Afolabi1 and Miswanto Miswanto2,∗

1Department of Mathematical Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo State, Nigeria
2Department of Mathematics, Faculty of Sciences and Technology, Airlangga University, Surabaya, Indonesia

ABSTRACT. Diphtheria remains a serious public health concern in regions with low vaccination coverage and lim-
ited access to timely treatment, highlighting the urgent need for effective modeling and control strategies to guide
intervention efforts. A nonlinear mathematical model is developed to describe the transmission dynamics of diph-
theria. The well-posedness of the model is analyzed by investigating the positivity and boundedness of its solutions.
The solutions of the disease-free equilibrium points are obtained analytically. The basic reproduction number (R0)
is determined using Diekmann-Heesterbeek-Metz Next Generation Matrix approach. The stability of the disease-free
and endemic equilibrium points are rigorously analyzed. Sensitivity analysis of the model parameters with respect
to R0 is conducted to assess the relative impact of each parameter on the transmission dynamics of the disease.
Based on the results of the sensitivity analysis, the proposed diphtheria model is extended into an optimal control
problem by introducing four time-dependent control variables: personal protection, booster vaccine administration,
detection/treatment of the asymptomatic infected humans and reduction of bacteria concentration. Four different sce-
narios with each involving at least three of the control variables are examined. We evaluated the cost-effectiveness of
each control strategy using IAR, ACER and ICER methods in order to identify the most economically efficient strategy.
The findings demonstrate that Strategy A is the most cost-effective startegy that can significantly reduce diphtheria
transmission throught optimal personal protection, detection/treatment of the asymptomatic infected humans and
reduction of bacteria concentration.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction
Diphtheria is a highly contagious disease caused by spe-

cific strains of the bacterium Corynebacterium diphtheriae that
produce a harmful toxin. This toxin can lead to severe respira-
tory issues and other complications if left untreated. Infected
individuals become very sick due to the presence of this toxin
in the throat, upper airways and other organs of the body. The
diphtheria toxin makes breathing very difficult by building up a
layer of dead tissue form over the throat and tonsils. The symp-
toms of the disease include low fever, sore throat and swollen
glands in the neck. It is worth noting that a total of 27,991 sus-
pected cases of diphtheria with 828 deaths have been recorded
in Guinea, Mauritania, Niger, Nigeria and South Africa as at 14th
January, 2024. Out of this number, Nigeria account for 80.1% and
72% of the suspected cases and fatalities respectively. Diphtheria
is a vaccine-preventable disease that is highly contagious. The
disease spreads between humans through direct contact or res-
piratory droplets in the air. It is potentially fatal and can lead
to death within few days. Diphtheria is primarily transmitted via
direct physical contact or through respiratory droplets expelled
during coughing or sneezing or coughs of infected humans by
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breathing in the secretions released into the air. Individuals of
all age groups can contract the disease by coming in contact with
infected open sores. However, children who are not immunized
against the disease are at higher risks of contracting the disease.
In addition to these, people living or staying in the same house-
hold with individuals that have come in close contact with or se-
cretions from infected people or objects are at higher risk [1].

Over the years, many researchers have worked on mathe-
matical models for the control of diphtheria [2–13]. Madubueze
[14] formulated a mathematical model for the transmission
dynamics and control of diphtheria and incorporated vaccine
booster and contaminated environment into the dynamics of the
disease. Latin Hypercube Sampling (LHS) was adopted to calcu-
late the global stability of the polluted environment and infected
individuals. Hence, these techniques enabled the authors to ob-
tain the sensitive parameters that had the most significant effects
on the transmission dynamics of the disease. Based on thess re-
sults, the model was expanded into an optimal control problem
(OCP) by incorporating four time-dependent control variables -
screening, disinfection, hygienic practice and booster vaccina-
tion. Pontryagin’s Maximum Principle was employed to derive
the necessary conditions for optimality of the control problem
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and the numerical simulation revealed that the disease would be
curtailed by implementing a number of these control measures.

A mathematical model was developed to describe and ana-
lyze the transmission dynamics of diphtheria, capturing the inter-
actions between key epidemiological compartments. The model
incorporated different movements among the classes and the
need for constant hand-washing. The results revealed that there
were - disease free and endemic equilibria. It was established that
if R0 < 1, the disease free equilibrium was stable and that there
existed an endemic equilibrium state if R0 > 1. The findings
showed that increasing the rate of vaccination, putting infected
people in a quarantine and constant hand-washing behaviour
among infected individuals would significantly reduce R0 [15].
Medugu [16] asserted that Corynebacterium diphtheriae was the
major cause of endemic and epidemic diphtheria. The delivery
and efficacy of modern vaccines deplored to tackle 2023 out-
breaks of diphtheria and failure to immunize during childhood
were investigated.

An age-structured model was formulated and analyzed to
study the epidemiological modeling of the spread of diphthe-
ria infection. The mathematical analysis of the model revealed
that the model was epidemiologically meaningful and that when
R0 < 1, the system was globally asymptotically stable (GAS) [17].
Real-time analyses on mathematical models for the transmission
dynamics of diphtheria in Bangladesh were conducted. The feed-
back of major information about the dynamics of the disease at a
point when information on the mode of transmission of the dis-
ease and its prevalence was largely unknown [18]. Islam [19] for-
mulated a deterministic mathematical model for diphtheria out-
breaks in Bangladesh, Rohingya refugee camp in order to under-
stand the disease dynamics. The authors obtained the analytical
and numerical solutions of the model’s compartments. The re-
sults revealed the positivity and boundedness of the solutions,
as well as the identification of the disease’s persistence and ex-
tinction equilibria within the model. Numerical techniques were
used to estimate the parameter values from the record of daily
cases of the disease. For this specific outbreak,R0 was calculated
to be 5.86.

A mathematical model was constructed to evaluate control
strategies for diphtheria infection, incorporating a natural immu-
nity rate for individuals exposed to the disease. From the nu-
merical simulation, it was discovered that the total immuniza-
tion coverage and the rate of natural immunity of the human
population have some effects on the R0 [20]. Izzati [21] formu-
lated diphtheria epidemic and incorporated prevention and treat-
ment as key factors that could curb the disease and examined
the effects of vaccination on the transmission dynamics. Grasse
[22] conducted a study on the effects of booster vaccines against
tetanus and diphtheria. The results showed that booster vaccines
against tetanus and diphtheria only provided long-lasting protec-
tion against tetanus. The level of protection was lower in people
infected with diphtheria.

Diphtheria is a vaccine preventable disease. However, in-
sufficient production of Diphtheria, Tetanus and Pertussis (DTP)
vaccines by pharmaceutical industries was identified as one of the
major causes of the prevalence of the disease. This was as a re-
sult of low demand and priority. The authors asserted that local,
national and international efforts must be made to increase the

production and availability of DTP vaccines [23]. Ilahi [24] formu-
lated a model to determine the effectiveness of vaccines in the
control of diphtheria in Indonesia. Findings from the research in-
dicated that vaccines are very effective in reducing the spread and
prevalence of diphtheria. Kanchanarat [25] formulated a mathe-
matical model for predicting the optimal vaccine coverage level
for the control of diphtheria. The mathematical model revealed
the global dynamical features of the model. The results showed
that the optimal level of vaccination required for the eradication
of the disease should be less than the actual vaccination cover-
age. Fauzi [26] developed a model that incorporated DPT and
booster vaccinations for the determination of R0. The authors
suggested increasing the booster vaccination coverage rate by
15.90% as a possible approach of controlling diphtheria in West
Java.

The proposed model distinguishes between exposed,
asymptomatic, symptomatic and quarantined individuals, giving
a more nuanced understanding of the disease dynamics. Addi-
tionally, the model incorporates bacteria concentration in the
environment (Bc) as a dynamic component. The novelty lies in
its detailed compartmental structure and the explicit represen-
tation effects of vaccination, the need for infected individuals to
be quarantined and bacteria concentration in the environment,
which together enhance its applicability and accuracy in assess-
ing and managing diphtheria outbreaks.

2. Model Formulation
A deterministic dynamical model is proposed to study the

transmission and control mechanisms of diphtheria. The hu-
man population is divided into sevenmutually exclusive compart-
ments - Susceptible S(t), Vaccinated V (t), ExposedE(t), Asymp-
tomatic A(t), Symptomatic I(t), Quarantined Q(t) and Recov-
ered R(t). The concentration of bacteria in the environment is
represented by Bc(t). It is assumed that only symptomatic in-
fected and quarantined individuals die due to the severity of diph-
theria infection and that individuals in each of the classes of the
model can die naturally.

Susceptible humans are those whomay be exposed to diph-
theria at the recruitment rate, αh. This class is further populated
due to loss of immunity by the recovered sub-class at the rate
ω. This class is reduced due to the movement of people to the
V (t) compartment at the vaccine uptake rate, ν and E(t) com-
partment at the rate, λ where

λ =
βh(πA(t) + I(t))

N(t)
+

βBc(t)

C +Bc(t)
, (1)

represents the force of infection. βh and β denote human to hu-
man transmissions rates for infected sub-classes A(t), I(t) and
environment to human transmission rate for the bacteria concen-
tration compartment Bc(t) respectively. C is the carrying capac-
ity of the environment. The vaccinated human compartment is
formed at the vaccine uptake rate, ν. Since diptheria vaccines are
not 100% efficacious [1], a fraction of the vaccinated humans be-
come exposed to the disease at the rate, λv where λv = (1−ε)λ
and ϵ denotes vaccine efficacy. The exposed human compart-
ment is populated at the rates λ and λv via the influx of people
from the S(t) and V (t) compartments respectively. This class is
depopulated because of the movement of people to the asymp-
tomatic infected compartment at the rate, σ1. The asymptomatic
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S(t) V (t) E(t) A(t) I(t) Q(t) R(t)
ν λv τσ1 σ2 η γ3αh

µ µ µ µ µδ µδ µ

λ σ1(1− τ)

ω

γ1

γ2

Figure 1. Flow Diagram of the system (2)

infected human compartment is generated at the rates, τσ1. In-
dividuals with latent infection progress to I(t) compartment at a
rate, σ2 and recover at the rate, γl respectively. Individuals who
are infected with diphtheria are generated at the rate, σ1(1− τ)
from E(t) and σ2 from A(t) compartments respectively. This
sub-class is reduced due to the movement of people to the Q(t)
and R(t) compartments at the rates, η and γ2 respectively. In
order to reduce the rate at which infected humans spread diph-
theria disease, there is a need to administer special medical care
to the people in a quarantine [27–29]. In view of this, the quaran-
tined human compartment is generated from the infected human
population at the rate, η, and this sub-class is reduced at the rate,
γ3 due to the movement of people to the R(t) compartment.
People infected with diphtheria recover at the rates, γ1, γ2 and
γ3 from the A(t), I(t) and Q(t) sub-classes respectively. There
is a reduction in the R(t) compartment due to waning immunity
at the rate ω.

The bacteria concentration compartment, Bc(t), is gener-
ated at the rate, αc where

αc = α

(
1− Bc(t)

C

)
Bc(t),

and α represents the growth rate of bacteria. This class is further
populated at the rates ρ1, ρ2 and ρ3 from theA(t), I(t) andQ(t)
sub-classes respectively

The flow diagram for the proposed model’s population dy-
namics is shown in Figure 1. The proposed model is given as:

dS(t)

dt
= αh + ωR(t)− νS(t)− λS(t)− µS(t),

dV (t)

dt
= νS(t)− λvV (t)− µV (t),

dE(t)

dt
= λS(t) + λvV (t)− σ1E(t)− µE(t),

dA(t)

dt
= τσ1E(t)− σ2A(t)− γ1A(t)− µA(t), (2)

dI(t)

dt
= σ1(1− τ)E(t) + σ2A(t)− ηI(t)− γ2I(t)− δI(t)

− µI(t),

dQ(t)

dt
= ηI(t)− γ3Q(t)− δQ(t)− µQ(t),

dR(t)

dt
= γ1A(t) + γ2I(t) + γ3Q(t)− ωR(t)− µR(t),

dBc(t)

dt
= αc + ρ1A(t) + ρ2I(t) + ρ3Q(t)− µcBc(t).

The parameters of the model are defined in Table 1 below

Table 1. Parameter description

Parameter Description
αh Recruitment rate into the human population
α The growth rate of bacteria
µ Human natural death rate
µc Bacteria natural death rate
π Modification factor for A(t) compartment
δ Disease induced death

βh
Human to human transmission rates for infected
sub-compartments, A(t) and I(t)

β
Environment to human transmission rate for the
bacteria concentration compartment, Bc(t)

C Carrying capacity of the environment
ω Rate of loss of immunity by R(t) compartment
ν Vaccination rate for S(t) compartment

τ
Proportion of exposed humans that progress to
A(t) compartment

1− τ
Proportion of exposed humans that progress to
I(t) compartment

σi, i = 1, 2
Rate of infections of individuals in compartments
E(t) and A(t)

η
Rate of isolation for symptomatic infected
individuals

γi, i = 1, 2, 3
Recovery rates of humans in compartments A(t),
I(t) and Q(t) respectively

ρi, i = 1, 2, 3
Shedding rate for A(t), I(t) and Q(t)
compartments

2.1. The model analysis
1. the invariant region

The system (2) has a region defined by the set

Ω(t) =
{
(S(t) + V (t) + E(t) +A(t) + I(t) +Q(t)

+R(t) +Bc(t)) ∈ R8
+ : N(t) <

αh
µh

}
.

The following theorems demonstrate that system (2) is
epidemiologically meaningful, prove its well-posedness
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and establish that the model’s solutions are uniformly
bounded.

Theorem 1. The region of the system (2) defined by the set
Ω(t) is positively invariant with Ω(t) ≥ 0 ∈ R8

+

Proof. The total population is defined as N(t) = S(t) +
V (t) + E(t) +A(t) + I(t) +Q(t) +R(t) +Bc(t). Thus,

dN(t)

dt
=
dS(t)

dt
+
dV (t)

dt
+
dE(t)

dt
+
dA(t)

dt
+
dI(t)

dt

+
dQ(t)

dt
+
dR(t)

dt
+
dBc(t)

dt
.

Hence,

dN(t)

dt
≤ αh − µN(t),

(αh − µN(t)) ≥ (Ae−µt),

where A is a constant of integration. LetN(0) = N0. Then,

(αh − µN0) ≥ A,

N(t) ≤ αh
µ

− (αh − µN0)

µ
e−µt.

Thus, N(t) ∈ [0, αh

µ ]. Hence, the invariant region contain-
ing the solutions to the system (2) is given by

Ω = [(S(t), V (t), E(t), A(t), I(t), Q(t), R(t), Bc(t)) ∈ R8
+

: N(t) ≤ αh
µ

].

This implies that the system (2) is biologically and mathe-
matically well-posed and that the region which contains the
solutions to the model equations is positively invariant.

2.2. The positivity theorem

Theorem 2. Given that the initial conditions of system (2)
are S0 > 0, V0 > 0, E0 > 0, A0 > 0, I0 >
0, Q0 > 0,R0 > 0, Bc0 > 0. There exists Ω =
S(t), V (t), E(t), A(t), I(t), Q(t), R(t), Bc(t) ∈ R8

+ : S0 >
0, V0 > 0, E0 > 0, A0 > 0, I0 > 0, Q0 > 0,R0 > 0, Bc0 >
0: (0, inf) −→ (0, inf) which solves system (2).

Proof. Assume that t̂ = sup{S(0) > 0, V (0) > 0, E(0) >
0, A(0) > 0, I(0) > 0, Q(0) > 0, R(0) > 0, Bc(0) > 0}, this
implies that t̂ > 0. Hence,

dS(t)

dt
≥ −

(
(ν + µ) +

βh(πA(t) + I(t))

N(t)
+

βBc(t)

C +Bc(t)

)
Sh.

Using the method of separation of variables, we have

dS(t)

S(t)
≥ −

(
(ν + µ) +

βh(πA(t) + I(t))

N(t)
+

βBc(t)

C +Bc(t)

)
dt.

Integrating, we get

S(t) ≥ S(0)e−((ν+µ)t+
∫ t
0
φ̃(η)dη) ≥ 0, ∀ t ≥ 0.

where φ̃(η) = βh(πA(t)+I(t))
N(t) + βBc(t)

C+Bc(t)
.

Similarly,

V (t) ≥ V (0)e−(µt+(1−ε)
∫ t
0
φ̃(η)dη)t ≥ 0, ∀ t ≥ 0,

E(t) ≥ E(0)e−(σ1+µ)t ≥ 0, ∀ t ≥ 0,
A(t) ≥ A(0)e−(σ2+γ1+µ)t ≥ 0, ∀ t ≥ 0,
I(t) ≥ I(0)e−(η+γ2+δ+µ)t ≥ 0, ∀ t ≥ 0,
Q(t) ≥ Q(0)e−(γ3+δ+µ)t ≥ 0, ∀ t ≥ 0,
R(t) ≥ R(0)e−(ω+µ)t ≥ 0, ∀ t ≥ 0,
Bc(t) ≥ Bc(0)e

−µct ≥ 0, ∀ t ≥ 0.

2.3. The positivity theorem
1. the disease free equilibrium point (DFE):

There is non-existence of infections or recovery at the DFE.
Hence, at the DFE, the infected human is zero i.e. E(t) =
A(t) = I(t) = Q(t) = R(t) = 0. Thus, the DFE is obtained
as

E0 =

(
S0 =

αh
ν + µ

, V 0 =
ναh

µ(ν + µ)
, E0 = 0, A0 = 0,

I0 = 0, Q0 = 0, R0 = 0, B0
c =

αc
µc

)
.

(3)

2. the basic reproduction number
The basic reproduction number, R0, for system (2) is given
by the spectral radius of the next-generation matrix, FV −1.
This implies that

F =


0 βhπD

0

N0
βhD

0

N0 0 βD0

C
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (4)

where D0 = S0 + (1− ε)V 0 and N0 = αh

ν+µ .

V =



k3 0 0 0 0

−τ σ1 k4 0 0 0

σ1 (1− τ) −σ2 k5 0 0

0 0 −η k6 0

0 −ρ1 −ρ2 −ρ3 k8


(5)

where k3 = σ1+µ, k4 = σ2+ γ1+µ, k5 = η+ γ2+ δ+µ,
k6 = γ3 + δ + µ, k7 = ω + µ and k8 = µc − αc. Thus, R0

is expressed as:

R0 =
αh

((
τa1 + a2k4

)
k6 + βηρ3a3N

)(
µ− k3

)
k3k4k5k6k8CN(ν + µ)

,

a1 = β
(
2ρ2k4 +

(
γ1 + µ

)
ρ2 + ρ1k5

)
N + βhk8C

(
γ1 + µ

− πk5 − 2k4
)
,

a2 = βhk8C + βρ2N,

a3 =
(
γ1 + µ− 2k4

)
τ + k4,

(6)

Thus, diphtheria can be eradicated from the population if
R0 < 1 according to the following theorem:
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Theorem 3. The disease-free equilibrium, E0, of the system
(2) and given by eq. (3), is locally asymptotically stable (LAS)
when R0 < 1, and unstable when R0 > 1.

Proof. In order to prove Theorem 3, the method outlined in
[30, 31] is adopted. We begin by deriving the Jacobian ma-
trix of system (2) at the E0. The Jacobian matrix is expressed
as:

J(E0) =



J1 0 0 J2 J3 0 ω J3

ν −µ 0 0 0 0 0 0

0 0 J4 J5 J6 0 0 J6

0 0 τσ1 J7 0 0 0 0

0 0 J8 σ2 J9 0 0 0

0 0 0 0 η J10 0 0

0 0 0 γ1 γ2 γ3 J11 0

0 0 0 ρ1 ρ2 ρ3 0 −µc


,

J1 = − ν − µ, J2 = −
βhπαh

N(ν + µ)
,

J3 = −
βhαh

N(ν + µ)
, J4 = −σ1 − µ,

J5 =
βhπαh

N(ν + µ)
, J6 =

βhαh

N(ν + µ)
,

J7 = − µ− γ1 − σ2, J8 = σ1 (1− τ) ,

J9 = − η − γ2 − δ − µ, J10 = −δ − γ − µ,

J11 = − µ− ω,

(7)

The characteristic polynomial, P (λ∗), corresponding to
eq. (7) can be expressed as:

P (λ∗) = |J(E0)− λ∗I8|,

P (λ∗) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P11 0 0 J2 J3 0 ω J3
ν P22 0 0 0 0 0 0
0 0 P33 J5 J6 0 0 J6
0 0 τσ1 P44 0 0 0 0
0 0 J8 σ2 P55 0 0 0
0 0 0 0 η P66 0 0
0 0 0 γ1 γ2 γ3 P77 0
0 0 0 ρ1 ρ2 ρ3 0 P88

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

P11 = − ν − µ− λ∗,

P22 = − µ− λ∗,

P33 = − σ1 − µ− λ∗,

P44 = − µ− γ1 − σ2 − λ∗,

P55 = − η − γ2 − δ − µ− λ∗,

P66 = − δ − γ − µ− λ∗,

P77 = − µ− ω − λ∗,

P88 = − µc − λ∗.

(8)

Therefore, the first three eigenvalues corresponding to
eq. (8) are given by:

λ∗i =

−ν − µ
−µ

−µ− ω

 (9)

The remaining eigenvalues are derived from the sub-matrix
corresponding to the reduced system:

J =


J4 J5 J6 0 J6
τσ1 J7 0 0 0
J8 σ2 J9 0 0
0 0 η J10 0
0 ρ1 ρ2 ρ3 −µc

 , (10)

Additionally, based on the Routh-Hurwitz criterion, the ma-
trix J will possess all real and negative eigenvalues if
Tr(J ) < 0 and Det(J ) > 0.
From eq. (10),

Tr(J ) = − σ1 − 4µ− γ1 − σ2 − η − γ2 − 2 δ − γ3 − µc < 0,

Det(J ) =
1

NC(ν + µ)

((
β
((
ρ2 − ρ3

)
µ+

(
k5 − γ2 − δ

)
ρ3 + ρ2

(
γ3

+ δ
))
N + βh

(
δ + µ+ γ3

)
µcC

)
αhk4σ1

(
1− τ

)
−

(
µ

− k3
)(
β
((

− ρ2 + ρ3
)
µ2 +

((
ρ2 − ρ3

)
k4 +

(
− k5 + γ1

+ γ2 + δ
)
ρ3 − ρ2δ + k5ρ1 − ρ2

(
γ1 + γ3

))
µ+

((
k5 − γ2

− δ
)
ρ3 + ρ2

(
γ3 + δ

))
k4 − γ1

(
k5 − γ2 − δ

)
ρ3 +

(
γ3

+ δ
)(

− γ1ρ2 + k5ρ1
))
N + Cµcβh

(
δ + µ+ γ3

)(
πk5 − µ

− γ1 + k4
))
ταh − k3k4k5(ν + µ)

(
δ + µ+ γ3

)
µcNC

)
The determinant above can be rewritten as

k3 (b1 − b2 − b3) k4k6k5k8
b4 − b5

(1− R0) > 0 if R0 < 1,

where

b1 = k3k4k5(ν + µ) (δ + µ+ γ3)µcNC,

b2 = αhA1k4σ1 (1− τ) ,

b3 = αhA2τ (k3 − µ) ,

b4 = A3 (k3 − µ)αh,

b5 = k3k4k5k6k8(ν + µ)CN,

A1 = ((ρ2 − ρ3)µ+ (k5 − γ2 − δ) ρ3 + ρ2 (δ + γ3))βN

+ βh (δ + µ+ γ3)µcC,

A2 =
((

− ρ2 + ρ3
)
µ2 +

((
ρ2 − ρ3

)
k4 +

(
− k5 + γ1

+ γ2 + δ
)
ρ3 +

(
− δ − γ1 − γ3

)
ρ2 + k5ρ1

)
µ+

((
k5

− γ2 − δ
)
ρ3 + ρ2

(
δ + γ3

))
k4 + γ1

(
− k5 + γ2

+ δ
)
ρ3 +

(
δ + γ3

)(
− γ1ρ2 + k5ρ1

))
βN

+ Cµcβh
(
δ + µ+ γ3

)(
π k5 − µ− γ1 + k4

)
,

A3 =
(((

k6ρ2 + ρ3η
)
µ− 2

(
ρ3η + k6ρ2

)
k4 + ρ3γ1η

+ k6
(
k5ρ1 − γ1ρ2

))
β N + Ck6k8βh

(
γ1+

µ− k5π − 2k4
))
τ + k4

(
β
(
ρ3η + k6ρ2

)
N

+ Ck6k8βh
)
.

IfR0 < 1, both eigenvalues of thematrix (10) will be real and
negative, indicating that the E0 is LAS. Conversely, when
R0 > 1, the eigenvalues become unstable, leading to the in-
stability of E0. Additionally, by the Poincaré-Lyapunov theo-
rem, since the eigenvalues of J(E0) have negative real parts,
as shown in eq. (9), E0 is indeed LAS.
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3. the endemic equilibrium point (EEP)
At the EEP, infections persist in the population, and all state
variables of system (2) are considered non-negative. For in-
stance, if I∗∗ is non-negative in the system (2), then there
exists a unique endemic equilibrium point for the system.
This occurs when R0 > 1. Hence, the EEP is defined as

E1 = (S∗∗(t), V ∗∗(t), E∗∗(t), A∗∗(t), I∗∗(t), ∈ R8
+,

Q∗∗(t), R∗∗(t), B∗∗
c (t))

and it satisfies the following conditions:

dN(t)

dt
=
dS(t)

dt
+
dV (t)

dt
+
dE(t)

dt
+
dA(t)

dt
+
dI(t)

dt

+
dQ(t)

dt
+
dR(t)

dt
+
dBc(t)

dt
.

Due to the complexity of system (2), each state variable is
expressed in terms of the steady state of I∗∗. Accordingly,

S∗∗ =
c1τ + c2k4
c3k6k7

I∗∗,

V ∗∗ =
ν (c1τ + c2k4)

c3k6k7 ((1− ϵ)λ∗∗ + µ)
I∗∗,

E∗∗ =
λ∗∗ ((1− ϵ)λ∗∗ − νϵ+ µ+ ν) c4

c5k3k6k7
I∗∗,

A∗∗ =
k5τ

σ2τ + k4 − k4τ
I∗∗,

Q∗∗ =
η

k6
I∗∗,

R∗∗ =
c6τ + k4 (ηγ3 + γ2k6)

k7 ((σ2 − k4) τ + k4) k6
I∗∗,

B∗∗
c =

c7τ + ((αc + ρ2) k6 + ηρ3) k4
((σ2 − k4) τ + k4)µck6

I∗∗,

c1 = ((−ωγ2 − αhk7) k6 − ηγ3ω) k4 +
(
(γ1k5

+ γ2σ2)ω + αhσ2k7
)
k6 + ηγ3σ2ω,

c2 = (ωγ2 + αhk7) k6 + ηγ3ω,

c3 = (λ∗∗ + k1) ((σ2 − k4) τ + k4) ,

c4 =
(
c2k4 + ((−γ1k5 − γ2σ2)ω − αhσ2k7) k6

− ηγ3σ2ω
)
τ − c2k4,

c5 = ((1− ϵ)λ∗∗ + µ) (λ∗∗ + k1) ((k4 − σ2) τ − k4) ,

c6 = (−ηγ3 − γ2k6) k4 + (γ1k5 + γ2σ2) k6 + ησ2γ3,

c7 = ((−αc − ρ2) k6 − ηρ3) k4 + ((αc + ρ2)σ2

+ k5ρ1)k6 + ησ2ρ3,

(11)

where I∗∗ = τ σ2+k4−τ k4
τ k5

A∗ and the force of infection is

given by λ∗∗ = βh(πA
∗∗(t)+I∗∗(t))
N∗∗(t) +

βB∗∗
c (t)

C+B∗∗
c (t) .

Theorem 4. The E1 will be GAS as long as R0 > 1.

Proof. The Lyapunov-Lasalle Invariance Principle, which re-
quires the analysis of a Lyapunov candidate function for the
equilibrium point, E1, is used to prove the theorem. let V

be a continuously differentiable, scalar function (Lyapunov
function) defined as

V =
∑
X

(X − X ∗∗) (12)

where X = S(t), V (t), E(t), A(t), I(t), Q(t), R(t), Bc(t).
This implies that

V =
1

2

(
S − S∗∗)2 + 1

2

(
V − V ∗∗)2 + 1

2

(
E − E∗∗)2

+
1

2

(
A−A∗∗)2 + 1

2

(
I − I∗∗

)2
+

1

2

(
Q−Q∗∗)2

+
1

2

(
R−R∗∗)2 + 1

2

(
Bc −B∗∗

c

)2
. (13)

By differentiating eq. (13), we obtain

V̇ =
(
S − S∗∗)Ṡ +

(
V − V ∗∗)V̇ +

(
E − E∗∗)Ė +

(
A

−A∗∗)Ȧ+
(
I − I∗∗

)
İ +

(
Q−Q∗∗)Q̇+

(
R

−R∗∗)Ṙ+
(
Bc −B∗∗

c

)
Ḃc,

=
((
αh + ωR)S +

(
ν + λ+ µ)S∗∗S + νSV +

(
λv

+ µ)V ∗∗V + λSE + λvV E +
(
σ1 + µ

)
E∗∗E

+ τσ1EA+ (σ2 + γ1 + µ)A∗∗A+ σ1(1− τ)EI

+ σ2AI +
(
η + γ2 + δ + µ)I∗∗I + ηIQ+ (γ3 + δ

+ µ)Q∗∗Q+ γ1AR+ γ2IR+ γ3QR+ (ω + µ)R∗∗R

+ αcBc + ρ1ABc + ρ2IBc + ρ3QBc + µcB
∗∗
c Bc

)
−
((
ν + λ+ µ)S +

(
αh + ωR)S∗∗S +

(
λv + µ)V

+ νSV ∗∗V +
(
σ1 + µ

)
E + λSE∗∗E + λvV E

∗∗E

+ (σ2 + γ1 + µ)A+ τσ1EA
∗∗A+

(
η + γ2 + δ + µ)I

+ σ1(1− τ)EI∗∗I + σ2AI
∗∗I + (γ3 + δ + µ)Q

+ ηIQ∗∗Q+ (ω + µ)R+ γ1AR
∗∗R+ γ2IR

∗∗R

+ γ3QR
∗∗R+ µcBc + αcB

∗∗
c Bc + ρ1AB

∗∗
c Bc

+ ρ2IB
∗∗
c Bc + ρ3QB

∗∗
c Bc

)
(14)

Note that

(Ṡ − Ṡ∗∗) + (V̇ − V̇ ∗∗) + (Ė − Ė∗∗) + (Ȧ− Ȧ∗∗)

+(İ − İ∗∗) + (Q̇− Q̇∗∗) + (Ṙ− Ṙ∗∗) + (Ḃc − Ḃc
∗∗
)

=

−(ν + λ+ µ)(S − S∗∗)2 − (λv + µ)(V − V ∗∗)2 − (σ1

+µ)(E − E∗∗)2 − (σ2 + γ1 + µ)(A−A∗∗)2−
(η + γ2 + δ + µ)(I − I∗∗)2 − (γ3 + δ + µ)(Q−Q∗∗)2 − (ω

+µ)(R−R∗∗)2 − µc(Bc −B∗∗
c )2

(15)
These are all negative or zero. At the endemic equilibrium,
all derivatives Ẋ ∗∗ = 0. Hence, V̇ = 0 iff X = Ẋ ∗∗.
For other points, since all the diagonal terms are of the
form (X − X ∗∗)2, this implies that V̇ ≤ 0. Hence, V̇ is
negative semidefinite and zero only at the endemic equilib-
rium. As a result, the largest compact invariant set within{(

S, V,E,A, I,Q,R,Bc

)
∈ Ω : V ≤ 0

}
is the E1. Thus,

by applying the Lyapunov-LaSalle Invariance Principle, it fol-
lows that as t → ∞, all solutions within the set Ω will con-
verge to E1 whenR0 > 1. Therefore, the E1 is GAS. Notably,
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the epidemiological significance of this finding is that diph-
theria will persist and spread within the population for as
long as R0 > 1.

2.4. Parameter Value Estimation

The recruitment rate into the human compartment (αh):
The Susceptible Human Population is populated at the rate, αh.
The average recruitment per unit time into the susceptible hu-
man population is estimated from the annual population growth
of Nigeria between the year 2013 to 2023. The average annual
population increase of Nigeria within this period is 2.50 million
per year [32, 33]. Thus, the recruitment rate per day is given as
αh = 2.50

365 = 0.0069 per day.
Natural death rate (µh): In Nigeria, life expectancy at birth

in 2023 was about 61.79 years [34]. Hence, µ = 1
61.79×365 =

0.00004434 per day.
Disease-induced death rate (δh): The mortality rate due to

diphtheria is estimated as δ = 828
27991 = 0.0296 per day [1].

The recovery rate for exposed human population can be
taken as γ1 = 1

14 per day [14]. A patient needs to rest for at least
four weeks after the anti-toxin antibiotics has taken effect for full
recovery [35]. Hence, γ2 = γ3 = 1

28 per day.
From the concept of half life [36], the rate of progression

from exposed to asymptomatic infected compartment (σ1) is es-
timated based on the fact that 0 − 26% of individuals infected
with diphtheria do not show any symptom of the disease [37].
The incubation period of diphtheria has a maximum value of 10
days [38]. Hence, τ = 0.26. Furthermore, σ1 = − 1

10 ln(0.77) =
0.0261 per day. It is assumed that asymptomatic infected are
twice likely to transmit diphtheria when compared to people in
the exposed human compartments. Hence, σ2 = 2 × 0.0261 =
0.0522 per day.

Others are βh = 0.0357 per day [14], β = 1
28 (Assumed),

µc = 0.0345 per day [25], ρ1 = 0.9 per day [25], ρ2 = 0.8 per day
[25], ρ3 = 0.7 per day (Assumed), π = 0.5 [14], ω = 0.0667 per
day(Assumed), C = 500, 000 [14], and ε = 0.85 [14], α = 0.014
per day [14].

2.5. Sensitivity Analysis

The sensitivity index (SI) of all the model parameters of sys-
tem (2) is obtained by calculating the normalized forward SI for
each parameter of R0 with respect to a parameter Ψ [39–44].
Hence, the effects of small changes in parameter values with pos-
itive and negative SI on R0 are examined.

Definition 1. The normalized forward SI of R0, with respect
to a parameter Ψ, is defined by

SR0

Ψ =
∂R0

∂Ψ
× Ψ

R0
(16)

Equation 16 is used to obtain the expression for the SI of
each of the parameters of R0. For example, the SI of R0 with
respect to π can be written as

SR0
π =

∂R0

∂π
× π

R0
≈ 11

100

Therefore, the SI of each of the parameter of R0 can be
derived from equation 16. Thus, the SI of each parameter with
respect toR0 evaluated using the parameter values in subsection:
2.4.

Table 2 indicates that the sign of the SI of the following
parameters π, α, β, ν, βh, ρ1, ρ2, ρ3, σ1, σ2 is positive while it is
negative for C, δ, η, µ, τ, αh, γ1, γ2, γ3, µc. The positive SI sign
of the diphtheria model indicates that any increase or decrease
in these parameters will lead to a corresponding rise or fall in
the threshold for diphtheria disease. On the other hand, while
the positive SI values signify a direct proportionality between the
parameters and the resulting value of R0, the negative SI values
indicate an inverse relationship. Thus, an increase in the value of
any parameter with a negative SI will lead to a decrease inR0, and
vice-versa. For instance, SR0

π = +11 means that a 100% increase
in the value of π will lead to an 11% increase of in the value of
the basic reproduction. Similarly, SR0

η ≈ −30 means that a 100%
increase in the value of η will decrease R0 by 30%. In view of the
sensitivity indices in Table 2, control measures that will reduce
the values of the parameters with positive SI and increase the
values of the parameters with negative SI should be employed in
order to effectively curtail the transmission and spread of diph-
theria infection.

Table 2. SI of R0 with respect to each of the parameters of
model

Parameter Sign of SI Value

π +ve 0.1075942254
α +ve 0.02171276480
β +ve 0.03179369146
ν +ve 0.9679917050
βh +ve 0.9682063088
ρ1 +ve 0.005083408703
ρ2 +ve 0.01807136619
ρ3 +ve 0.008638916567
σ1 +ve 0.001695969292
σ2 +ve 0.01865842862
C -ve 0.03179369076
δ -ve 0.2638461360
η -ve 0.3048611609
µ -ve 0.001958110176
τ -ve 0.04419557653
αh -ve 0.9682063090
γ1 -ve 0.1312545527
γ2 -ve 0.3135000775
γ3 -ve 0.004719755211
µc -ve 0.05350645610

3. Formulation of an Optimal Control Problem (OCP)
The system of diphtheria dynamics given in system (2) is ex-

tended into an OCP by introducing four time-dependent variables
ψi(t), i = 1, 2, 3, 4 where:
(i) ψ1(t) = personal protection;
(ii) ψ2(t) = booster vaccine administration;
(iii) ψ3(t) = detection/treatment of the asymptomatic infected

humans; and
(iv) ψ4(t) = reduction of bacteria concentration.
The description of each of the four control variables is given be-
low:
(i) The control variable 0 ≤ ψ1(t) ≤ 1 represents personal

protection such as avoiding contact with individuals that
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have symptoms of diphtheria. Other measures are frequent
hand washing with soap and water, the use of nose masks or
covering one’s mouth and nose with tissue especially when
coughing. Hence, the probability of diphtheria bacteria
transmission from infected humans or surface to susceptible
individuals due to ψ1(t) becomes P cλ = (1− ψ1(t))λS(t).

(ii) The control variable 0 ≤ ψ2(t) ≤ 1 denotes booster vac-
cines and it is introduced because diphtheria vaccines fade
with time. Infants who received all the doses of recom-
mended diptheria vaccines before the age of seven are ex-
pected to get their first diphtheria booster vaccine at about
age seven or twelve. Thereafter, it is recommended that the
booster vaccines will be administered at 10-year intervals
[45–47]. Thus, the probability of the effects of diphtheria
booster vaccines on the bacteria transmission from vacci-
nated humans to exposed humans in view of ψ2(t) is given
as P cν1 = ψ2(t)ν1V (t).

(iii) The control variable 0 ≤ ψ3(t) ≤ 1 stands for the preven-
tive strategies employed to detect and treat asymptomatic
infected humans. The control involves screening of suscep-
tible individuals for early detection of humans who have
been exposed to the disease [16, 45, 48, 49]. Therefore,
the probability of the progression of individuals from ex-
posed humans to asymptomatic and infectious humans in
the presence of ψ3(t) are P cσ1A

= τψ3(t)σ1E(t) and P cσ1I
=

(1− τ)ψ3(t)σ1E(t) respectively.
(iv) The control variable 0 ≤ ψ4(t) ≤ 1 include all efforts by

medical personnel and health authorities to reduce diphthe-
ria bacteria concentration. In addition, diphtheria antitoxin
prevents the bacteria toxin from multiplying and damaging
the body of an infected person. In view of this, the probabil-
ity of reducing diphtheria bacteria concentration in asymp-
tomatic infected, symptomatic infected and quarantined hu-
mans based on ψ4(t) are given by P cρ1 = (1−ψ4(t))ρ1A(t),
P cρ2 = (1 − ψ4(t))ρ2I(t) and P cρ3 = (1 − ψ4(t))ρ3Q(t)
respectively [16, 45, 46].

Our aim is to minimize the following cost functional

J(ψ1, ψ2, ψ3, ψ4) =

∫ tf

0

(κ1A(t) + κ2I(t) + κ3Q(t) (17)

+ κ4Bc(t)) +
1

2

4∑
i=1

ωiψ
2
i (t))dt,

subject to the non-linear ordinary differential equations below:

dS(t)

dt
= αh + ωR(t)− νS(t)− (1− ψ1(t))λS(t)− µS(t),

dV (t)

dt
= νS(t)− ψ2(t)λvV (t)− µV (t),

dE(t)

dt
= (1− ψ1(t))λS(t) + ψ2(t)λvV (t)− σ1E(t)− µE(t),

dA(t)

dt
= τ(t)σ1E(t)− ψ3(t)σ2A(t)− γ1A(t)− µA(t),

dI(t)

dt
= (1− τ)σ1E(t) + ψ3(t)σ2A(t)− ηI(t)− γ2I(t)

− δI(t)− µI(t),

dQ(t)

dt
= ηI(t)− γ3Q(t)− δQ(t)− µQ(t), (18)

dR(t)

dt
= γ1A(t) + γ2I(t) + γ3Q(t)− ωR(t)− µR(t),

dBc(t)

dt
= αc + (1− ψ4(t))(ρ1A(t) + ρ2I(t) + ρ3Q(t))

− µcBc(t),

where tf stands for the maximum or final time for the implemen-
tation of the control strategies and the balancing weight con-
stants, κi > 0, i = 1, 2, 3, 4, are for asymptomatic individuals,
symptomatic individuals, Quarantined individuals and bacteria
concentration respectively. The terms 1

2ωiψ
2
i (t), i = 1, 2, 3, 4

represent the costs of implementing personal protection, admin-
istration of booster vaccines, early detection and treatment of
asymptomatic infected individuals and reduction of diphtheria
bacteria concentration in the environment respectively.

By adopting the concept in [50–53], we seek to minimize
the objective functional by finding the optimal controls ψ∗

1(t),
ψ∗
2(t), ψ

∗
3(t), ψ

∗
4(t) such that

J(ψ∗
1(t), ψ

∗
2(t), ψ

∗
3(t), ψ

∗
4(t)) = min

Φ
J(ψ1(t), ψ2(t), ψ3(t), ψ4(t)) (19)

where Φ = ψi(t), i = 1, 2, 3, 4 are lebesque measurable func-
tions with ψi(t) ∈ [0, 1] : 0 ≤ t ≤ tf Thus, Φ exists and it is
bounded, closed and convex since the state and control variables
are non-negative.

Thus, the Hamiltonian function is formulated
by introducing the adjoint variables λi(t), i =
(S(t), V (t), E(t), A(t), I(t), Q(t), R(t), Bc(t)) correspond-
ing to the model’s state variables. The Pontryagin minimum
principle is then applied to derive the optimality system.

Theorem 5. For the optimal control problem given by eqs. (17)
and (18) with the initial conditions at t = 0, there exists
(ψ∗

1(t), ψ
∗
2(t), ψ

∗
3(t), ψ

∗
4(t)) ∈ U such that

J(ψ∗
1(t), ψ

∗
2(t), ψ

∗
3(t), ψ

∗
4(t)) = min

Θ
J(ψ1(t), ψ2(t), ψ3(t), ψ4(t)),

where Θ = ψ1(t), ψ2(t), ψ3(t), ψ4(t) ∈ U.

Proof. In order to prove the results in Theorem 5, we adopt re-
sults in [54–56]. Thus, the following properties will be estab-
lished

i The control set is convex and closed.
ii Non-negative solutions of the system (18) exists and it is

bounded.
iii Since U contains all its limit points, the control set U is

closed. Hence, given λ ∈ [0, 1] and any two arbitrary points
x, y ∈ U, where x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4),
then λxi + (1 − λ)yi ∈ U for i = 1, 2, 3, 4 satisfying the
convexity property of the control set.

iv Given the initial conditions N(0) ≥ 0, for N(t) =
(S(t), V (t), E(t), A(t), I(t), Q(t), R(t), Bc(t))
∈ R8

+, there exists a non-negative bounded optimal control
problem and controls that are lebesgue measurable. It is
noted that the OCP given by system (18) can be written as:

dY
dt

= D(ψ)Y+ G(ψ, Y) (20)
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where

Y(t) = (S(t), V (t), E(t), A(t), I(t), Q(t), R(t), Bc(t))
T
,

D(ψ) =



J1 0 0 0 0 0 ω 0

0 d1 0 0 0 0 0 0

0 0 J4 0 0 0 0 0

0 0 τσ1 −d1 0 0 0 0

0 0 J8 ψ3σ2 −d2 0 0 0

0 0 0 0 η −d3 0 0

0 0 0 γ1 γ2 γ3 J11 0

0 0 0 ψ̄4ρ1 ψ̄4ρ2 ψ̄4ρ3 0 −µc


,

G(ψ, Y) =



αh − (1 − ψ1) d5

−ψ2d5

(1 − ψ1) d5 + ψ2 (1 − ϵ)
(

βh(π A+i)

N + β Bc
C+Bc

)
0

0

0

0

α
(
1 − Bc

C

)
Bc



,

d1 = ν − µ,

d2 = ψ3σ2 + γ1 + µ,

d3 = η + γ2 + δ + µ,

d4 = γ3 + δ + µ,

d5 =
βh (πA+ I)

N
+

βBc

C + Bc

.

Equation (20) is a non-linear coupled system with bounded
coefficients. Let

H(Y) = DY+ G(ψ, Y) (21)

Hence, it can be seen from the first equation of eq. (18) that

G(ψ, Y1)− G(ψ, Y2) =
{
− (1− ψ1(t))

S1(t)

N1(t)

(
βh(πA1(t)

+ I1(t))
)}

−
{
−
(
βh(πA2(t)

+ I2(t))
)
(1− ψ1(t))

S2(t)

N2(t)

}
,

|G(ψ, Y1)− G(ψ, Y2)| ≤
∣∣∣∣− (1− ψ1(t))

S1(t)

N1(t)

(
(βh(πA1(t)

+I1(t)))− (βh(πA2(t) + I2(t)))
)∣∣∣∣,

|G(ψ, Y1)− G(ψ, Y2)| ≤
∣∣∣∣(1− ψ1(t))

S1(t)

N1(t)

∣∣∣∣( |βh| |π| ∣∣A1(t)

−A2(t)
∣∣+ |βh| |I1(t)− I2(t)|

)
,

and

DY1 − DY2 = {−(ν + µ)S1 + ωR1} − {−(ν + µ)S2

+ ωR2},
|DY1 − DY2| ≤ |ν + µ| |S1 − S2|+ |ω| |R1 −R2| .

Similarly, eq. (21) becomes

|H(Y1)− H(Y1)| ≤ |ν + µ| |S1 − S2|+ |ω| |R1 −R2| ,

|G(ψ, Y1)− G(ψ, Y2)| ≤
∣∣∣∣(1− ψ1(t))

S1(t)

N1(t)

∣∣∣∣ ( |βh| |π| |A1(t)

−A2(t)|+ |βh| |I1(t)− I2(t)|
)
.

The following optimality system is derived by adopting the
approach in [14, 44, 45, 52, 57–59]:

Theorem 6. Given the optimal control ψ∗
1(t), ψ

∗
2(t), ψ

∗
3(t),

ψ∗
4(t) and solutions of the state variables S∗(t), V ∗(t), E∗(t),

A∗(t), I∗(t), Q∗(t), R∗(t), B∗
c (t), then there exists adjoint

variables λi for

i = (S(t), V (t), E(t), A(t), I(t), Q(t), R(t), Bc(t)),

that minimizes J(ψ∗
1(t), ψ

∗
2(t), ψ

∗
3(t), ψ

∗
4(t)) over Φ satisfying:

λ̇S = λS(µ+ ν)− (λS − λE)

(
βh(I + πA)

N
− λV ν − (ψ1

− 1)

(
βBc

Bc + C

)
+
βh(I + πA)(ψ1 − 1)S

N2

)
− (λE

− λV )

(
βhψ2(I + πA)(ε− 1)V

N2

)
,

˙λV = λV µ− (λV − λE)

(
− βhψ2(I + πA)(ε− 1)V

N2

+ ψ2

(
βBc

Bc + C
+
βh(I + πA)

N

)
(ε− 1)

)
− (λE

− λS)

(
βh(I + πA)(ψ1 − 1)S

N2

)
,

λ̇E = (λE + λS)

(
βh(I + πA)(ψ1 − 1)S

N2

)
− λAσ1τ − (λE

− λV )

(
βhψ2(I + πA)(ε− 1)V

N2

)
+ λIσ1(τ − 1),

λ̇A = λA(γ1 + µ+ ψ3σ2)− λRγ1 − κ1 − λBcψ4ρ1 − λIψ3σ2

+ (λE − λS)

(
(ψ1 − 1)

(
πβh
N

− βh(I + πA)

N2

)
S

)
+ (λE + λV )

(
ψ2(ε− 1)

(
πβh
N

− βh(I + πA)

N2

)
V

)
,

λ̇I = λI(δ + η + γ2 + µ)− κ2 − λQη − λRγ2 − λBcψ4ρ2

+ (λE − λS)

(
(ψ1 − 1)

(
πβh
N

− βh(I + πA)

N2

))
S

+ (λE − λV )

(
ψ2(ε− 1)

(
πβh
N

− βh(I + πA)

N2

)
V

)
,

λ̇Q = − (λE − λS)

((
βh(I + πA)(ψ1 − 1)

N2

)
S − λRγ3

+

(
βhψ2(I + πA)(ε− 1)

N2

)
V

)
λQ(δ + γ3 + µ)− κ3,

λ̇R = λR(µ+ ω)− (λE − λS)

(
βh(I + πA)(ψ1 − 1)

N2

)
S

− (λE − λV )

(
βhψ2(I + πA)(ε− 1)

N2

)
V − λSω,

˙λBc = − κ4 − (λE − λS)(ψ1 − 1)

(
βBc

(Bc + C)2
− β

(Bc + C)

(22)
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+
βh(I + πA)

N2

)
S + λBc

(
µc + α

(
Bc

C
− 1

)
+
αBc

C

)
− (λE − λV )ψ2(ε− 1)

(
βBc

(Bc + C)2
− β

(Bc + C)

+
βh(I + πA)

N2

)
V,

with the control variables ψ∗
1(t), ψ

∗
2(t), ψ

∗
3(t), ψ

∗
4(t) and the

transversality conditions

λi(tf ) = 0, i = (S(t), V (t), E(t), A(t), I(t), Q(t), R(t), Bc(t)).

(23)
The characterization of the control variables is presented by the
following optimality conditions:

ψ∗
1(t) = min

{
1,max

{
0,

(
(λE − λS)

ω1

)
d5S

}
, 1

}
ψ∗
2(t) = min

{
1,max

{
0,

(λE − λV )(ε− 1)

ω2
d5V

}
, 1

}
ψ∗
3(t) = min

{
1,max

{
0,

(λA − λI)σ2A

ω3

}
, 1

}
ψ∗
4(t) = min

{
1,max

{
0,
λBc

(ρ1A+ ρ2I + ρ3Q)

ω4

}
, 1

}

Proof. Given the Hamiltonian function, H, defined explicitly as

H = κ1A(t) + κ2I(t) + κ3Q(t) + κ4Bc(t)) +
1

2
ω1ψ

2
1(t) +

1

2
ω2ψ

2
2(t)

+
1

2
ω3ψ

2
3(t) +

1

2
ω4ψ

2
4(t) + λS

(
αh + ωR(t)− νS(t)− (1

− ψ1(t))

(
βh(πA(t) + I(t))

N(t)
+

βBc(t)

C +Bc(t)

)
S(t)− µS(t)

)
+ λV

(
− ψ2(t)(1− ε)

(
βh(πA(t) + I(t))

N(t)
+

βBc(t)

C +Bc(t)

)
V (t)

− µV (t) + νS(t)

)
+ λE

(
(1− ψ1(t))

(
βh(πA(t) + I(t))

N(t)

+
βBc(t)

C +Bc(t)

)
S(t) + ψ2(t)(1− ε)

(
βh(πA(t) + I(t))

N(t)

+
βBc(t)

C +Bc(t)

)
V (t)− σ1E(t)− µE(t)

)
+ λA

(
τ(t)σ1E(t)

− ψ3(t)σ2A(t)− γ1A(t)− µA(t)
)
+ λI

(
(1− τ)σ1E(t)− ηI(t)

+ ψ3(t)σ2A(t)− γ2I(t)− δI(t)− µI(t)
)
+ λQ

(
ηI(t)− γ3Q(t)

− δQ(t)− µQ(t)
)
+ λR

(
γ1A(t) + γ2I(t) + γ3Q(t)− ωR(t)

− µR(t)
)
+ λBc

(
α

(
1−

Bc(t)

C

)
Bc(t) + ψ4(t)(ρ1A(t) + ρ2I(t)

+ ρ3Q(t))− µcBc(t)

)
,

the adjoint system is obtained by taking the partial deriva-
tives of the Hamiltonian function, H, with respect to each state
variable of the model:

λ̇S = − ∂H
∂S(t)

, λS(ff ) = 0,

˙λV = − ∂H
∂V (t)

, λV (ff ) = 0,

λ̇E = − ∂H
∂E(t)

, λE(ff ) = 0,

λ̇A = − ∂H
∂A(t)

, λA(ff ) = 0,

λ̇I = − ∂H
∂I(t)

, λI(ff ) = 0,

λ̇Q = − ∂H
∂Q(t)

, λQ(ff ) = 0,

λ̇R =
∂H
∂R(t)

, λR(ff ) = 0,

˙λBc
=

∂H
∂Bc(t)

, λBc
(ff ) = 0,

From the optimality conditions, if (x, ψ) is the optimal so-
lution of the given optimal control problem, then ∂H

∂ψ1
= ∂H

∂ψ2
=

∂H
∂ψ3

= ∂H
∂ψ4

= 0 at ψi = ψ∗
i

∂H
∂ψ1

= ω1ψ1 + (λS − λE)d5S,

∂H
∂ψ2

= ω2ψ2 + (λV − λE)(ε− 1)d5V,

∂H
∂ψ3

= ω3ψ3 − (λA − λI)σ2A,

∂H
∂ψ4

= ω4ψ4 + λBc
(ρ1A+ ρ2I + ρ3Q).

Hence, the optimal control functions are given as

ψ∗
1 =

(λE − λS)

ω1
d5S,

ψ∗
2 =

(λE − λV )(ε− 1)

ω2
d5V,

ψ∗
3 =

(λA − λI)σ2A

ω3

ψ∗
4 =

λBc
(ρ1A+ ρ2I + ρ3Q)

ω4
.

(24)

By the definition of standard control and using the bounds
on ψ∗

i , we obtain

ψ∗
i =


0, if ϑ∗i ≤ 0,

ϑ∗i , if 0 < ϑ∗i < 1,

1, if ϑ∗i ≥ 0.

where i = 1, 2, 3, 4 and

ϑ1 =
(λE − λS)

ω1
d5S.

Hence, the control for the personal protection, ψ1, can be written
in compact form as

ψ∗
1(t) = min {1,max {0, ϑ1}} .

Similarly,

ϑ2 =
(λE − λV )(ε− 1)

ω2
d5V.

Thus, the control for booster vaccine administration, ψ2, can be
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Figure 2. Evolution of S(t), V (t), E(t) and A(t) Subpopulations
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(d) Bacteria concentration in the
environment

Figure 3. Evolution of I(t), Q(t), R(t) and Bc(t) Subpopulations
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written in compact form as

ψ∗
2(t) = min {1,max {0, ϑ1}} .

In addition,

ϑ3 =
(λA − λI)σ2A

ω3
.

Therefore, the control for the preventive strategies employed to
detect and treat asymptomatic infected humans, ψ3, can be writ-
ten in compact form as

ψ∗
3(t) = min {1,max {0, ϑ3}} .

Lastly,

ϑ4 =
λBc

(ρ1A+ ρ2I + ρ3Q)

ω4
.

The compact form of the control that represents all efforts by
medical personnel and health authorities to reduce diphtheria
bacteria concentration, ψ4, can be written as

ψ∗
4(t) = min {1,max {0, ϑ4}} .

4. Results and Discussion
This section examines the dynamic behaviour of the diph-

theria system (2). Numerical simulations are used to solve
the resulting two-point boundary value problem for a sixteen-
dimensional optimality system. These simulations are conducted
using MATLAB with the ode45 solver. The initial conditions for
the model are as follows

(S0, V0, E0, A0, I0, Q0,R0, Bc0)
=

(100000, 50000, 10000, 5000, 5000, 2000, 1600, 40000)
.

4.1. Autonomous System
The values of the parameters for the simulation of the pro-

posed diphtheria model are given in subsection 2.4 and the cal-
culated R0 of the system (2) is approximately R0 = 1.5103.

Figures 2 and 3 present the results of the numerical sim-
ulation of each model compartment of system (2) over a period
of 400 days. Figure 2a shows that the interactions between sus-
ceptible and infected individuals together with the introduction
of vaccination lead to a rapid decrease in the susceptible class.
However, a stationary point is attained after about 50 days. This
is largely due to the progression of susceptible individuals to vac-
cinated and exposed classes. Conversely, the initial days see a
rapid increase in the vaccinated population, driven by heightened
awareness and the urgent need to get people vaccinated. There-
after, the vaccinated class attains near a steady state after about
90 days (see Figure 2b). Figure 2c indicates that the exposed pop-
ulation increases sharply at the initial stage as a result of inter-
actions between susceptible and infected individuals. Then, this
class begins to decrease drastically as a result of progression of in-
dividuals to the asymptomatic infected class. The asymptomatic
infected group declines rapidly due to individuals progressing to
the symptomatic stage, as well as the natural recovery of many
within this group as indicated in Figure 2d. Figure 3a reveals
a continuous decline in the number of individuals infected with
diphtheria due to the efficacy of the vaccines and natural recov-
ery of the asymptomatic individuals. Figure 3b reveals a slight

increase in the number individuals that are placed in a quaran-
tine. This population begins to reduce as a result of the decline in
the number of infected individuals. In view of Figures 3a and 3b,
there is a sharp reduction in the number of people that recover
from diphtheria as shown in Figure 3c. Figure 3d indicates a sharp
increase in the bacteria concentration in the environment for the
first 60 days. Thereafter, this population begins to decline as a
results of the reduction in the number of individuals in the A(t),
I(t) and Q(t) classes.
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Figure 4. Disease Prevalence

Figure 4 shows a rapid increase in diphtheria prevalence
in the first 10 days of the introduction of the control strategy.
Thereafter, the disease prevalence begins to decline as a results of
the efficacy of the vaccine and the reduction in the asymptomatic,
infected and quarantined subpopulations.

Figure 5a shows that an increase in the vaccination rate (ν)
of individuals in the susceptible class leads to an increase in the
number of people that are vaccinated against diphtheria. On the
other hand, Figures 5b and 5f reveal that an increase in the vac-
cination rate results in a decrease in the number of individuals in
the E(t), A(t), I(t), Q(t) and R(t) subpopulations. This reveals
the effectiveness of vaccines in curtailing the spread of diphtheria
infection.

4.2. Non-autonomous System
The sixteen-dimensional optimality system is solved

through an iterative forward-backward sweep method (FBSM),
coupled with the fourth-order Runge-Kutta algorithm and imple-
mented inMATLAB. This system represents a two-point boundary
value problem, which consists of the state system (2), the adjoint
system (22), and the control eq. (24) defined over the time inter-
val [0, 400] days. Our goal is to determine the optimal control
strategies needed to mitigate the spread of diphtheria epidemic
within the population.

Due to the differing time orientations of the optimality sys-
tem given by the equations of the non-autonomous system (18)
are solved forward in time, starting with initial conditions and an
initial guess for the control. In contrast, the equations of the ad-
joint system (22), with terminal conditions (23), are solved back-
ward in time, using the current iteration solution from the state
system [52].

The weight constants κi and ψi where i = 1, 2, 3 and 4
associated with the objective functional (17), along with the pa-
rameter values in subsection 2.4, are taken as follows: κ1 =
0.025, κ2 = 0.020, κ3 = 0.005, κ4 = 0.001, ψ1 = 250, ψ2 =
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Figure 5. Simulation showing the effects of vaccination rate (ν) on V (t), E(t), A(t), I(t), Q(t) and Rh(t) Compartments

150, ψ3 = 100 and ψ4 = 200. These weights are taken theoret-
ically mainly for the the numerical simulations of the proposed
optimal control problem.

In order to optimize the objective functional (17), differ-
ent combinations of the optimal control strategies are examined.
The combinations of four different control strategies are exam-
ined. We note that each of these strategies involves at least three
optimal controls. The strategies are:
• Strategy A: A combination of optimal personal protection,

detection/treatment of the asymptomatic infected humans
and reduction of bacteria concentration (i.e. ψ1(t), ψ3(t)
and ψ4(t) with ψ2(t) = 0),

• Strategy B: A combination of optimal personal protection,
booster vaccine administration and reduction of bacteria
concentration (i.e. ψ1(t), ψ2(t) and ψ4(t) with , ψ3(t) = 0),

• Strategy C: A combination of optimal personal protection,
booster vaccine administration and detection/treatment of
the asymptomatic infected humans (i.e. ψ1(t), ψ2(t) and
ψ3(t) with ψ4(t) = 0) and

• Strategy D: A combination of optimal personal protection,
booster vaccine administration, detection/treatment of the
asymptomatic infected humans and reduction of bacteria
concentration (i.e. ψ1(t), ψ2(t), ψ3(t) and ψ4(t))
According to World Health Organization release [1], per-

sonal protection, ψ1(t), such as avoiding contact with individuals
that have symptoms of diphtheria, frequent hand washing with
soap and water, the use of nose masks or covering one’s mouth
and nose with tissue especially when coughing is a major means
of preventing the disease. Hence, this preventive measure is in-

cluded in each of the four control strategies considered in this
research.

1. strategy A: a combination of optimal personal protection,
detection/treatment of the asymptomatic infected humans
and reduction of bacteria concentration (i.e. ψ1(t), ψ3(t)
and ψ4(t) with ψ2(t) = 0).
Figure 6 shows the effects of a combination of optimal per-
sonal protection, detection/treatment of the asymptomatic
infected humans and reduction of bacteria concentration
(i.e. ψ1(t), ψ3(t) and ψ4(t) with ψ2(t) = 0) on the optimal
control problem. Figure 6a shows a reduction in the number
of individuals infected with diphtheria when the three con-
trols are implemented together than the scenario without
control. For the quarantined subpopulation, the controlled
system indicates that lesser number of people will need to
be placed in a quarantine when compared with the uncon-
trolled system (see Figure 6b). In view of Figures 6a and 6b,
Figure 6c reveals that there is a reduction in the magnitude
of individuals that recover from the disease in the presence
of the three controls measures relative to the case without
control. Figure 6d shows a drastic decrease in the size of the
people that have diphtheria infection for the situationwhere
these control measures are applied to the system as against
the instance without control. The control profile given in
Figure 6e shows that the optimal controls ψ2 and ψ3 should
be maintained at full coverage in the first 130 days before
gradually declining to a minimal level towards the end of the
control implementation period. On the other hand, optimal
controls ψ1 should be sustained for the initial 160 days from
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Figure 6. Effects of strategy A on Diphtheria Population Dynamics

0 50 100 150 200 250 300 350 400
Time (Days)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

I(
t)

u1=u2=u3=u4=0
u1  0, u2  0, u4  0, u3=0,

(a) Infected Humans

0 50 100 150 200 250 300 350 400
Time (Days)

0

500

1000

1500

2000

2500

Q
(t

)

u1=u2=u3=u4=0
u1  0, u2  0, u4  0, u3=0,

(b) Quarantined Humans

0 50 100 150 200 250 300 350 400
Time (Days)

0

200

400

600

800

1000

1200

1400

1600

R
(t

)

u1=u2=u3=u4=0
u1  0, u2  0, u4  0, u3=0,

(c) Recovered Humans

0 50 100 150 200 250 300 350 400

Time (Days)

0

1000

2000

3000

4000

5000

6000

7000

I(
t)

+
Q

(t
)

u1=u2=u3=u4=0
u1  0, u2  0, u4  0, u3=0,

(d) Disease Prevalence

0 50 100 150 200 250 300 350 400
Time (Days)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
on

tr
ol

 P
ro

fil
es

u1
u2
u4

(e) Control Profiles

Figure 7. Effects of strategy B on Diphtheria Population Dynamics
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Figure 8. Effects of strategy C on Diphtheria Population Dynamics
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Figure 9. Effects of strategy D on Diphtheria Population Dynamics
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Table 3. Strategy, Total Infections Averted, Total Cost, IAR and ACER

Strategy Total Infection Averted Total Cost ($) IAR ACER
A : ψ1(t), ψ3(t), ψ4(t) 156107.04 3180.16 0.3698 0.0120
B : ψ1(t), ψ2(t), ψ4(t) 161031.81 41091.04 0.3716 0.1509
C : ψ1(t), ψ2(t), ψ3(t) 140758.52 3153.61 0.3455 0.0118
D : ψ1(t), ψ2(t), ψ3(t), ψ4(t) 199093.07 21791.89 0.4716 0.0977

Table 4. Strategy, Total Infections Averted, Total Cost, IAR and ICER

Strategy Total Infection Averted Total Cost ($) ICER
C : ψ1(t), ψ2(t), ψ3(t) 140758.52 3153.61 0.0224
A : ψ1(t), ψ3(t), ψ4(t) 156107.04 3180.16 0.0017
B : ψ1(t), ψ2(t), ψ4(t) 161031.81 41091.04 7.6981
D : ψ1(t), ψ2(t), ψ3(t), ψ4(t) 199093.07 21791.89 –0.5072

Table 5. Performance Comparison of Strategies C and D

Strategy Total Infection Averted Total Cost ($) ICER
C : ψ1(t), ψ2(t), ψ3(t) 140758.52 3153.61 0.0224
A : ψ1(t), ψ3(t), ψ4(t) 156107.04 3180.16 0.00173
D : ψ1(t), ψ2(t), ψ3(t), ψ4(t) 199093.07 21791.89 0.4330

Table 6. Performance Comparison of Strategies C and A

Strategy Total Infection Averted Total Cost ($) ICER
C : ψ1(t), ψ2(t), ψ3(t) 140758.52 3153.61 0.0224
A : ψ1(t), ψ3(t), ψ4(t) 156107.04 3180.16 0.00173

the date of the commencement of the introduction of the
control strategy before observing a steady decline towards
the lower bounds till the final time.

2. strategy B: a combination of optimal personal protection,
booster vaccine administration and reduction of bacteria
concentration (i.e. ψ1(t), ψ2(t) and ψ4(t) with, ψ3(t) = 0).
Effects of the combination of optimal personal protection,
booster vaccine administration and reduction of bacteria
concentration (i.e. ψ1(t), ψ2(t) and ψ4(t) with , ψ3(t) = 0)
are examined as shown in Figure 7. Figure 7a illustrates a re-
duction in the number of individuals infected with diphthe-
ria when all the three control measures are implemented,
compared to the scenario without any controls. For the
quarantined subpopulation, the controlled system shows
that fewer people will require quarantine, in contrast to the
uncontrolled system (see Figure 7b). In light of Figures 7a
and 7b, Figure 7c indicates a reduction in the number of in-
dividuals recovering from the disease when the three con-
trol measures are applied, compared to the case without
controls. Figure 7d demonstrates a significant decrease in
the prevalence of diphtheria when these control measures
are enforced, as opposed to the scenario without any in-
tervention. The control profile presented in Figure 7e sug-
gests that ψ4(t) Should be maintained at full coverage level
throughout the intervention period. The optimal control
ψ1(t) should be maintained at the highest level for the first
10 days after the introduction of strategy B. Thereafter, the
control measure can be relaxed gradually before falling to
the lowest level after about 75 days while the control pro-
file ψ2(t) could be left at the lowest level throughout the
period of this intervention.

3. strategy C: a combination of optimal personal protection,
booster vaccine administration and detection/treatment of

the asymptomatic infected humans (i.e. ψ1(t), ψ2(t) and
ψ3(t) with ψ4(t) = 0).
Figure 8 illustrates the effects of the combination of optimal
personal protection, booster vaccine administration and de-
tection/treatment of the asymptomatic infected humans (i.e.
ψ1(t), ψ2(t) and ψ3(t) with ψ4(t) = 0). Figure 8a depicts
a notable decline in the number of individuals infected with
diphtheria under the implementation of all the three con-
trol strategies, compared to the baseline scenario without
control measures. For the quarantined subpopulation, the
controlled system indicates a lower proportion of individ-
uals requiring quarantine, as opposed to the uncontrolled
system (see Figure 8b). Figure 8c demonstrates a reduction
in the number of recoveries when the control strategies are
applied, relative to the no-control scenario. Figure 8d high-
lights a substantial decrease in the prevalence of diphthe-
ria under the implementation of the control measures, com-
pared to the uncontrolled case. The control profile depicted
in Figure 8e suggests that ψ1(t) should be sustained at full
coverage for the initial 15 days, while ψ3(t) should be ap-
plied at approximately 45% at the commencement of the in-
tervention. On the other hand, the optimal control ψ2(t)
could be sustained at its lowest level throughout the inter-
vention period.

4. strategy D: a combination of optimal personal protection,
booster vaccine administration, detection/treatment of the
asymptomatic infected humans and reduction of bacteria
concentration (i.e. ψ1(t), ψ2(t), ψ3(t) and ψ4(t)).
Figure 9 demonstrates the dynamics of the system under the
combined influence of optimal personal protection, booster
vaccine administration, detection/treatment of the asymp-
tomatic infected humans and reduction of bacteria concen-
tration (i.e. ψ1(t), ψ2(t), ψ3(t) and ψ4(t)). As depicted in
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Figure 10.

Figure 9a, there is a significant reduction in the infected
population when all the four control strategies are simul-
taneously applied, in contrast to the uncontrolled baseline.
The controlled model yields a lower proportion of individu-
als requiring quarantine relative to the uncontrolled model
(see Figure 9b). Figure 9c illustrates a decline in the num-
ber of recoveries as a result of the applied control strate-
gies, compared to the situation where no control is applied.
Furthermore, Figure 9d reveals a marked reduction in the
prevalence of diphtheria when the control interventions are
implemented, compared to the scenario without interven-
tions. The control profiles given in Figure 9e suggests that
ψ1(t) should be maintained at maximum efficacy for the
initial 15 days, while the optimal controls ψ2(t) and ψ3(t)
should be applied at approximately 45% at the commence-
ment of the implementation of the intervention strategy be-
fore gradually declining to the minimum level after about
130 days. The control variable ψ2(t) could remain at its
minimal bound over the entire course of the intervention,
ensuring minimal resource allocation towards this control
variable.

4.3. Cost-Effectiveness Analysis

We proceeded with a cost-effectiveness analysis to assess
the economic efficiency of various health interventions, such
as personal protection, booster vaccine administration, detec-
tion/treatment of the asymptomatic infected humans and reduc-
tion of bacteria concentration. This type of analysis helps de-

termine whether the health benefits gained justify the expenses
involved. In this section, we evaluate three key metrics: the In-
fection Averted Ratio (IAR), the Average Cost-Effectiveness Ratio
(ACER) and the Incremental Cost-Effectiveness Ratio (ICER) [60–
68]
1. Infection Averted Ratio (IAR)

The IAR is defined as:

IAR =
Total number of infection averted

Total number of recovered
.

The number of infections prevented is calculated by sub-
tracting the total number of infectious individuals under the
control strategy from those in the absence of any control.
The strategy that yields the highest reduction ratio is con-
sidered the most effective. This analytical method identifies
the strategy with the highest IAR as offering the greatest
cost-effectiveness [69–73]. The IAR for each strategy is com-
puted using the parameter values in subsection 2.4. The
results are shown in Table 3 and Figure 10a. Strategy D
which involves a combination of optimal personal protec-
tion, booster vaccine administration, detection/treatment of
the asymptomatic infected humans and reduction of bacte-
ria concentration (i.e. ψ1(t), ψ2(t), ψ3(t) and ψ4(t)) gives
the highest IAR. Therefore, based on this cost analysis tee-
chinique, strategy D is the most cost-effective. Strategy
B considers a combination of optimal personal protection,
booster vaccine administration and reduction of bacteria
concentration (i.e. ψ1(t), ψ2(t) and ψ4(t) with , ψ3(t) = 0)
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is the next cost effecitive. This is followed by Strategy A that
combines optimal personal protection, detection/treatment
of the asymptomatic infected humans and reduction of bac-
teria concentration (i.e. ψ1(t), ψ3(t) andψ4(t)withψ2(t) =
0). Strategy C gives the least cost-effective strategy and it in-
volves optimal personal protection, booster vaccine admin-
istration and detection/treatment of the asymptomatic in-
fected humans (i.e. ψ1(t), ψ2(t) and ψ3(t) with ψ4(t) = 0).
Strategy C is the least cost-effective because it results in the
smallest reduction in the number of infections within the
population, as illustrated in Table 3 and Figure 10b.

2. Average Cost-Effectiveness Ratio
The Average Cost-Effectiveness Ratio (ACER) represents the
cost required to prevent a single case of infection through a
specific intervention. It is determined by dividing the overall
cost of implementing the strategy by the total number of
infections it successfully prevents.

ACER =
Total cost of implementing the strategy

Total number of infections it successfully prevents
.

(25)

The total cost produced by a strategy in view of the objective
functional given in eq. (17) is expressed as

TC =

∫ tf

0

(κ1ψ1N + κ2ψ2V + κ3ψ3A+ κ4ψ4Bc + ω1ψ
2
1

+ ω2ψ
2
2 + ω3ψ

2
3 + ω4ψ

2
4)dt.

(26)

A lower ACER value signifies a more efficient and economi-
cally favorable intervention [45, 60, 74–77]. Hence, eq. (25)
is used to calculate the ACER for each of the four strategies.
Table 4 and Figure 10d present the numerical results from
the simulation.
Strategy C has the least ACER and based on this cost anal-
ysis technique, it is the most cost-effective method. It is
followed by Strategy A and then Strategy D. Stragegy B has
the highest ACER and hence, it is the least cost-effectiveness
approach.
Further cost-effectiveness analysis are carried out in order
to verify these results using the following approach.

3. Incremental Cost-Effectiveness Ratio
The Incremental Cost-Effectiveness Ratio (ICER) is used to
measure how cost-effective a new health intervention is
when compared to a baseline or standard approach. It is
defined as

ICER =
e1 − e2
e3 − e4

,

e1 = Total cost with control,

e2 = Total cost without control,

e3 = Total number of infections without control,

e4 = Total number of infections with control.

(27)

Using the formula given by eq. (27) and the techniques in
[64, 72, 78, 79], we compute the ICER for each of the strate-
gies as follows:

ICER(C) =
3153.61

140758.52
= 0.0224,

ICER(A) =
3180.16− 3153.61

156107.04− 140758.52
= 0.0017,

ICER(D) =
21791.89− 41091.04

199093.07− 161031.81
= −0.5072,

ICER(B) =
41091.04− 3180.16

161031.81− 156107.04
= 7.6981.

A comparison of Strategies C and B, in Table 4, shows that
ICER(B) is greater than ICER(C). This reveals that Strategy B
is dominated Strategy C. Hence, Strategy C has greater ef-
fectiveness at lower cost. Thus, Strategy B is excluded from
subsequent analysis.
Furthermore, Startegy C is compared with Strategy D using
eq. (27). The results of the analysis are presented in Table 5
and it shows that Strategy C has a lower ICER than Strategy
D. This indicates that Strategy D is more expensive to im-
plement and less cost-effective. Thus, Strategy D is removed
from the set of interventions. Next, we are left with Startegy
C and Strategy A. Again, using eq. (27), the summary of ICER
for the two Strategies is give in Table 6. Table 6 reveals that
Strategy A has a lower ICER than Strategy C. Thus, Strategy
C is removeed from the list since Strategy A is more cost-
effective than Strategy C. Therefore, Strategy A is the most
cost-effective.
From the results of the cost-effectiveness analysis, Strat-
egy A that combines optimal personal protection, detec-
tion/treatment of the asymptomatic infected humans and
reduction of bacteria concentration (i.e. ψ1(t), ψ3(t) and
ψ4(t)with ψ2(t) = 0) gives the smallest ICER and it is there-
fore the most cost-effective strategy. This agrees with the
results in Figure 10c of the objective functional for each of
the four strategies.

5. Conclusions
An autonomous system consisting of eight mutually exclu-

sive classes - Susceptible, Vaccinated, Exposed, Asymptomatic,
Symptomatic, Quarantined, Recovered and Bacteria concentra-
tion in the environment is formulated and analyzed. The funda-
mental properties of the model solutions are examined to estab-
lish its positivity and well-posedness. The disease-free equilib-
rium point of the model is proved to be LAS whenever R0 < 1
and unstable otherwise. Sensitivity analysis is performed in or-
der to determine the relative importance of each of the model
parameters influencing the transmission dynamics of diphtheria
disease. For instance, the effects of vaccination rate, ν, on the
transmission of the disease is examined. The results reveal that
increasing the vaccination rate will drastically reduce the number
of individuals that are asymptomatic, infected, quarantined and
recover from the disease.

Based on the results of the sensitivity analysis, the model
is extended into a non-autonomous system of sixteen ordinary
differential equations. The proposed optimal control problem
contains four time-varying controls: personal protection, booster
vaccine administration, detection/treatment of the asymptomatic
infected humans and reduction of bacteria concentration in the
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environment. Pontryagin’s maximum principle together with op-
timal control theory are used to analyze the optimal control prob-
lem. The impact of four distinct control strategies, each incorpo-
rating at least three of the control variables, is investigated to
assess their influence on the transmission dynamics of the dis-
ease. The results reveal that each of the strategies A, B, C and D
has the potential of drastically reducing the prevalence of diph-
theria infection. In particular, by employing cost-effectiveness
metrics-IAR, ACER and ICER, we identified Strategy A as the most
economically efficient approach. This strategy, which integrates
optimal personal protection, effective detection and treatment
of asymptomatic individuals and reduction of environmental bac-
terial concentration offers the greatest potential for minimizing
the disease burden at a sustainable cost. These findings provide
valuable guidance for public health decision-makers aiming to im-
plement impactful and cost-effective diphtheria control policies.

Author Contributions. Afolabi, A. S.: Conduct analysis and revise ar-
ticles and perform numerical simulations. Miswanto: Responsible for
revising and reviewing the analysis and overall structure of the article.

Acknowledgement.

1. The author would like to thank the Faculty of Science and Technol-
ogy, Airlangga University for the facilities and academic support
provided during the research.

2. The author would like to express his gratitude to the Airlangga Post
Doctoral (APD) Fellowship, which has provided funding assistance
for this research.

3. The authors sincerely thank the editors and reviewers for their
valuable support and constructive feedback, which have greatly
contributed to the improvement of this manuscript.

Funding. This research was funded by Airlangga Global Engagement
(AGE) through the Airlangga Post-Doctoral Fellowship (APD) program.

Conflict of interest. The authors declare no conflict of interest.

Data availability. Not applicable.

References
[1] W. H. Organization, “Who african region health emergency situa-

tion report-multi-country outbreak of diphtheria, consolidated re-
gional situation report number 006 – as of january 14, 2024,“ 2024,
https://reliefweb.int/report/nigeria/who-african-region-health-emergency-
situation-report-multi-country-outbreak-diphtheria-consolidated-regional-
situation-report-006-january-14-2024, Accesed on 11 March 2025.

[2] L. Blumberg et al., “The preventable tragedy of diphtheria in the 21st cen-
tury,“ International Journal of Infectious Diseases, vol. 71, pp. 122–123, 2018.

[3] D. D. Gaiya et al., “Diphtheria outbreak in nigeria: what we know
now,“ Infection Prevention in Practice, vol. 6, no. 1, p. 100345, 2024.
DOI:10.1016/j.infpip.2024.100345

[4] H. Husain, “An sir mathematical model for dipterid disease,” in Jour-
nal of Physics: Conference Series, vol. 1280, no. 2, p. 022051, 2019.
DOI:10.1088/1742-6596/1280/2/022051

[5] N. Kitamura, “Understanding factors contributing to outbreaks of diphtheria
and implications for vaccination policy in vietnam [Dissertation],” London:
London School of Hygiene & Tropical Medicine, 2023.

[6] D. Kolibo and S. Romaniuk, “Mathematical model of the infection process in
diphtheria for determining the therapeutic dose of antitoxic anti-diphtheria
serum,” Ukrains’ kyi Biokhimichnyi Zhurnal, vol. 73, no. 2, pp. 144–151, 2001.

[7] S. Latifah et al., “Mathematical study for an infectious disease with
awareness-based sis-m model,” in Journal of Physics: Conference Series,
vol. 1747, no. 1, p. 012017, 2021. DOI:10.1088/1742-6596/1747/1/012017

[8] M. Muscat et al., “Diphtheria in the who european region, 2010 to 2019,”
Eurosurveillance, vol. 27, no. 8, p. 2100058, 2022. DOI:10.2807/1560-
7917.ES.2022.27.8.2100058

[9] O. N. Olulaja et al., “A looming epidemic: combating the recurrent out-
breaks of diphtheria in nigeria,” The Pan African Medical Journal, vol. 45, 2023.
DOI:10.11604/pamj.2023.45.186.41328

[10] P. O. Omosigho et al., “The re-emergence of diphtheria amidst multiple out-
breaks in nigeria,” Infectious Disorders-Drug Targets, vol. 24, no. 4, pp. 20–28,
2024. DOI:10.2174/0118715265251299231117045940

[11] S. Sharma and G. Samanta, “Stability analysis and optimal control of an epi-
demic model with vaccination,” International Journal of Biomathematics, vol. 8,
no. 3, p. 1550030, 2015. DOI:10.1142/S1793524515500308

[12] S. A. Truelove et al., “Clinical and epidemiological aspects of diphtheria: a
systematic review and pooled analysis,” Clinical Infectious Diseases, vol. 71,
no. 1, pp. 89–97, 2020. DOI:10.1093/cid/ciz808

[13] S. S. Voss et al., “Underreporting of the 5-year tetanus, diphtheria, pertussis
and polio booster vaccination in the danish vaccination register,” BMC Public
Health, vol. 20, no. 1, pp. 1–6, 2020. DOI:10.1186/s12889-020-09816-w

[14] C. E. Madubueze, K. A. Tijani, and Fatmawati, “A deterministic
mathematical model for optimal control of diphtheria disease with
booster vaccination,” Healthcare Analytics, vol. 4, p. 100281, 2023.
DOI:10.1016/j.health.2023.100281

[15] N. Rahmi and M. I. Pratama, “Model analysis of diphtheria disease trans-
mission with vaccination, quarantine, and hand-washing behavior,” JTAM
(Jurnal Teori dan Aplikasi Matematika), vol. 7, no. 2, pp. 462–474, 2023.
DOI:10.31764/jtam.v7i2.13466

[16] N. Medugu et al., “A review of the current diphtheria outbreaks,” African
Journal of Clinical and Experimental Microbiology, vol. 24, no. 2, pp. 120–129,
2023. DOI:10.4314/ajcem.v24i2.2

[17] E. S. Udofia et al., “Age structured deterministic model of diphtheria infec-
tion,” Earthline Journal of Mathematical Sciences, vol. 14, no. 3, pp. 391–404,
2024. DOI:10.34198/ejms.14324.391404

[18] F. Finger et al., “Real-time analysis of the diphtheria outbreak in forcibly dis-
placed myanmar nationals in bangladesh,” BMC Medicine, vol. 17, pp. 1–11,
2019. DOI:10.1186/s12916-019-1288-7

[19] Z. Islam et al., “Global stability analysis and parameter estimation for a diph-
theria model: A case study of an epidemic in rohingya refugee camp in
bangladesh,” Computational and Mathematical Methods in Medicine, vol. 2022,
pp. 1–13, 2022. DOI:10.1155/2022/6545179

[20] N. Izzati and A. Andriani, “Dynamical analysis of diphtheria epidemic model
with natural immunity rate on exposed individuals,” in Journal of Physics:
Conference Series, vol. 1869, no. 1, p. 012117, 2021. DOI:10.1088/1742-
6596/1869/1/012117

[21] N. Izzati, A. Andriani, and R. Robi’Aqolbi, “Optimal control of diphtheria epi-
demic model with prevention and treatment,” in Journal of Physics: Conference
Series, vol. 1663, no. 1, p. 012042. DOI:10.1088/1742-6596/1663/1/012042

[22] M. Grasse et al., “Booster vaccination against tetanus and diphtheria: insuf-
ficient protection against diphtheria in young and elderly adults,” Immunity
& Ageing, vol. 13, pp. 1–9, 2016. DOI:10.1186/s12979-016-0081-0

[23] N. Abdulrasheed et al., “Recurrent diphtheria outbreaks in nigeria: A review
of the underlying factors and remedies,” Immunity, Inflammation and Disease,
vol. 11, no. 11, p. e1096, 2023. DOI:10.1002/iid3.1096

[24] F. Ilahi and A. Widiana, “The effectiveness of vaccine in the outbreak of
diphtheria: Mathematical model and simulation,” in IOP Conference Se-
ries: Materials Science and Engineering, vol. 434, no. 1, p. 012006, 2018.
DOI:10.1088/1757-899X/434/1/012006

[25] S. Kanchanarat, S. Chinviriyasit, and W. Chinviriyasit, “Mathematical
assessment of the impact of the imperfect vaccination on diphthe-
ria transmission dynamics,” Symmetry, vol. 14, no. 10, p. 2000, 2022.
DOI:10.3390/sym14102000

[26] I. S. Fauzi et al., “Assessing the impact of booster vaccination on
diphtheria transmission: Mathematical modeling and risk zone map-
ping,” Infectious Disease Modelling, vol. 9, no. 1, pp. 245–262, 2024.
DOI:10.1016/j.idm.2024.01.004

[27] S. Adewale et al., “Mathematical analysis of quarantine on the dynamical
transmission of diphtheria disease,” International Journal of Science and Engi-
neering Investigations, vol. 6, no. 5, pp. 8–17, 2017.

[28] W. L. Conklin, “Clinical versus bacteriological diagnosis and quarantine of
diphtheria,” Buffalo Medical Journal, vol. 41, no. 9, p. 660, 1902.

[29] S. Withers, J. R. Ranson, and E. D. Humphrys, “Shortening the quar-
antine period for diphtheria convalescents and carriers,” Journal of the
American Medical Association, vol. 87, no. 16, pp. 1266–1269, 1926.
DOI:10.1001/jama.1926.02680160014004

JJBM | Jambura J. Biomath Volume 6 | Issue 2 | June 2025

https://reliefweb.int/report/nigeria/who-african-region-health-emergency-situation-report-multi-country-outbreak-diphtheria-consolidated-regional-situation-report-006-january-14-2024
https://reliefweb.int/report/nigeria/who-african-region-health-emergency-situation-report-multi-country-outbreak-diphtheria-consolidated-regional-situation-report-006-january-14-2024
https://reliefweb.int/report/nigeria/who-african-region-health-emergency-situation-report-multi-country-outbreak-diphtheria-consolidated-regional-situation-report-006-january-14-2024
https://reliefweb.int/report/nigeria/who-african-region-health-emergency-situation-report-multi-country-outbreak-diphtheria-consolidated-regional-situation-report-006-january-14-2024
https://reliefweb.int/report/nigeria/who-african-region-health-emergency-situation-report-multi-country-outbreak-diphtheria-consolidated-regional-situation-report-006-january-14-2024
https://reliefweb.int/report/nigeria/who-african-region-health-emergency-situation-report-multi-country-outbreak-diphtheria-consolidated-regional-situation-report-006-january-14-2024
https://www.ijidonline.com/article/S1201-9712(18)34410-2/fulltext
https://www.ijidonline.com/article/S1201-9712(18)34410-2/fulltext
https://www.sciencedirect.com/science/article/pii/S259008892400009X?via
https://www.sciencedirect.com/science/article/pii/S259008892400009X?via
https://www.sciencedirect.com/science/article/pii/S259008892400009X?via
https://iopscience.iop.org/article/10.1088/1742-6596/1280/2/022051
https://iopscience.iop.org/article/10.1088/1742-6596/1280/2/022051
https://iopscience.iop.org/article/10.1088/1742-6596/1280/2/022051
https://researchonline.lshtm.ac.uk/id/eprint/4669900
https://researchonline.lshtm.ac.uk/id/eprint/4669900
https://researchonline.lshtm.ac.uk/id/eprint/4669900
https://www.researchgate.net/publication/11709608_Mathematical_model_of_the_infection_process_in_diphtheria_for_determining_the_therapeutic_dose_of_antitoxic_anti-diphtheria_serum
https://www.researchgate.net/publication/11709608_Mathematical_model_of_the_infection_process_in_diphtheria_for_determining_the_therapeutic_dose_of_antitoxic_anti-diphtheria_serum
https://www.researchgate.net/publication/11709608_Mathematical_model_of_the_infection_process_in_diphtheria_for_determining_the_therapeutic_dose_of_antitoxic_anti-diphtheria_serum
https://iopscience.iop.org/article/10.1088/1742-6596/1747/1/012017
https://iopscience.iop.org/article/10.1088/1742-6596/1747/1/012017
https://iopscience.iop.org/article/10.1088/1742-6596/1747/1/012017
https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2022.27.8.2100058
https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2022.27.8.2100058
https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2022.27.8.2100058
https://www.panafrican-med-journal.com/content/article/45/186/full/
https://www.panafrican-med-journal.com/content/article/45/186/full/
https://www.panafrican-med-journal.com/content/article/45/186/full/
https://www.eurekaselect.com/article/136370
https://www.eurekaselect.com/article/136370
https://www.eurekaselect.com/article/136370
https://www.worldscientific.com/doi/abs/10.1142/S1793524515500308
https://www.worldscientific.com/doi/abs/10.1142/S1793524515500308
https://www.worldscientific.com/doi/abs/10.1142/S1793524515500308
https://academic.oup.com/cid/article/71/1/89/5551532?login=false
https://academic.oup.com/cid/article/71/1/89/5551532?login=false
https://academic.oup.com/cid/article/71/1/89/5551532?login=false
https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-020-09816-w
https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-020-09816-w
https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-020-09816-w
https://www.sciencedirect.com/science/article/pii/S277244252300148X
https://www.sciencedirect.com/science/article/pii/S277244252300148X
https://www.sciencedirect.com/science/article/pii/S277244252300148X
https://www.sciencedirect.com/science/article/pii/S277244252300148X
https://journal.ummat.ac.id/index.php/jtam/article/view/13466:~:text=The
https://journal.ummat.ac.id/index.php/jtam/article/view/13466:~:text=The
https://journal.ummat.ac.id/index.php/jtam/article/view/13466:~:text=The
https://journal.ummat.ac.id/index.php/jtam/article/view/13466:~:text=The
https://www.ajol.info/index.php/ajcem/article/view/246009
https://www.ajol.info/index.php/ajcem/article/view/246009
https://www.ajol.info/index.php/ajcem/article/view/246009
https://earthlinepublishers.com/index.php/ejms/article/view/831:~:text=Age
https://earthlinepublishers.com/index.php/ejms/article/view/831:~:text=Age
https://earthlinepublishers.com/index.php/ejms/article/view/831:~:text=Age
https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-019-1288-7
https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-019-1288-7
https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-019-1288-7
https://onlinelibrary.wiley.com/doi/10.1155/2022/6545179
https://onlinelibrary.wiley.com/doi/10.1155/2022/6545179
https://onlinelibrary.wiley.com/doi/10.1155/2022/6545179
https://onlinelibrary.wiley.com/doi/10.1155/2022/6545179
https://iopscience.iop.org/article/10.1088/1742-6596/1869/1/012117
https://iopscience.iop.org/article/10.1088/1742-6596/1869/1/012117
https://iopscience.iop.org/article/10.1088/1742-6596/1869/1/012117
https://iopscience.iop.org/article/10.1088/1742-6596/1869/1/012117
https://iopscience.iop.org/article/10.1088/1742-6596/1663/1/012042
https://iopscience.iop.org/article/10.1088/1742-6596/1663/1/012042
https://iopscience.iop.org/article/10.1088/1742-6596/1663/1/012042
https://immunityageing.biomedcentral.com/articles/10.1186/s12979-016-0081-0
https://immunityageing.biomedcentral.com/articles/10.1186/s12979-016-0081-0
https://immunityageing.biomedcentral.com/articles/10.1186/s12979-016-0081-0
https://onlinelibrary.wiley.com/doi/10.1002/iid3.1096
https://onlinelibrary.wiley.com/doi/10.1002/iid3.1096
https://onlinelibrary.wiley.com/doi/10.1002/iid3.1096
https://iopscience.iop.org/article/10.1088/1757-899X/434/1/012006
https://iopscience.iop.org/article/10.1088/1757-899X/434/1/012006
https://iopscience.iop.org/article/10.1088/1757-899X/434/1/012006
https://iopscience.iop.org/article/10.1088/1757-899X/434/1/012006
https://www.mdpi.com/2073-8994/14/10/2000
https://www.mdpi.com/2073-8994/14/10/2000
https://www.mdpi.com/2073-8994/14/10/2000
https://www.mdpi.com/2073-8994/14/10/2000
https://www.sciencedirect.com/science/article/pii/S2468042724000046
https://www.sciencedirect.com/science/article/pii/S2468042724000046
https://www.sciencedirect.com/science/article/pii/S2468042724000046
https://www.sciencedirect.com/science/article/pii/S2468042724000046
https://www.researchgate.net/publication/354521857_Mathematical_Analysis_of_Quarantine_on_the_Dynamical_Transmission_of_Diphtheria_Disease
https://www.researchgate.net/publication/354521857_Mathematical_Analysis_of_Quarantine_on_the_Dynamical_Transmission_of_Diphtheria_Disease
https://www.researchgate.net/publication/354521857_Mathematical_Analysis_of_Quarantine_on_the_Dynamical_Transmission_of_Diphtheria_Disease
https://pmc.ncbi.nlm.nih.gov/articles/PMC8729556/
https://pmc.ncbi.nlm.nih.gov/articles/PMC8729556/
https://jamanetwork.com/journals/jama/article-abstract/243330
https://jamanetwork.com/journals/jama/article-abstract/243330
https://jamanetwork.com/journals/jama/article-abstract/243330
https://jamanetwork.com/journals/jama/article-abstract/243330


A. S. Afolabi and M. Miswanto – Mathematical Modeling, Optimal Control and Cost-Effectiveness Analysis of Diphtheria Transmission Dynamics… 107

[30] R. Kurniati, S. Sugiarto, and S. Nurwijaya, “Dynamical system for tuberculo-
sis outbreak with vaccination treatment and different interventions on the
burden of drug resistance,” Jambura Journal of Biomathematics (JJBM), vol. 5,
no. 1, pp. 10–18, 2024. DOI:10.37905/jjbm.v5i1.21903

[31] M. M. Ojo and E. F. Doungmo Goufo, “Assessing the impact of control in-
terventions and awareness on malaria: a mathematical modeling approach,”
Communications in Mathematical Biology and Neuroscience, vol. 2021, pp. 1–31,
2021. DOI:10.28919/cmbn/6632

[32] Statista, “Population growth in nigeria from 2012 to 2022,” 2022,
https://www.statista.com/statistics/382235/population-growth-in-nigeria/,
Accesed on 11 March 2025.

[33] Statista, “Population of nigeria in selected years between 1950 and
2023,” 2023, https://www.statista.com/statistics/1122838/population-of-
nigeria/, Accesed on 11 March 2025.

[34] Statista, “Life expectancy at birth in nigeria in 2023, by gender,” 2023,
https://www.statista.com/statistics/1122851/life-expectancy-in-nigeria-by-
gender/ Accessed on 29 April 2025.

[35] N. KidsHealth, “Diphtheria,” 2024, https://kidshealth.org/en/parents/, Ac-
cesed on 29 April 2025.

[36] J. Hallare and V. Gerriets, “Half life,” StatPearls, 2020, Accessed on April 29,
2025.

[37] N. C. Marshall et al., “Ten years of diphtheria toxin testing and toxigenic
cutaneous diphtheria investigations in alberta, canada: A highly vaccinated
population,” in Open Forum Infectious Diseases, vol. 9, no. 1, p. ofab414, 2022.
DOI:10.1093/ofid/ofab414

[38] A. M. Acosta et al., “Diphtheria,” Epidemiology and Prevention of Vaccine-
Preventable Diseases, 2021.

[39] A. Abidemi, J. Akanni, and O. Makinde, “A non-linear mathematical
model for analysing the impact of covid-19 disease on higher education
in developing countries,” Healthcare Analytics, vol. 3, p. 100193, 2023.
DOI:10.1016/j.health.2023.100193

[40] M. O. Akinade and A. S. Afolabi, “Sensitivity and stability analyses of a lassa
fever disease model with control strategies,” IOSR Journal of Mathematics
(IOSR-JM), vol. 16, no. 1, pp. 29–42, 2020. DOI: 10.9790/5728-1601022942

[41] F. O. Akinpelu and R. Akinwande, “Mathematical model for lassa fever and
sensitivity analysis,” Journal of Science and Engineering Research, vol. 5, no. 6,
pp. 1–9, 2018.

[42] E. Bakare and C. Nwozo, “Bifurcation and sensitivity analysis of malaria–
schistosomiasis co-infection model,” International Journal of Applied and Com-
putational Mathematics, vol. 3, pp. 971–1000, 2017. DOI:10.1007/s40819-
017-0394-5

[43] C. M. Veronica et al., “Mathematical modeling and stability analyses
on the transmission dynamics of bacterial meningitis,” Journal of Math-
ematics and Computer Science, vol. 11, no. 6, pp. 7384–7413, 2021.
DOI:10.28919/jmcs/6513

[44] E. Kanyi, A. S. Afolabi, and N. O. Onyango, “Optimal control analysis of schis-
tosomiasis dynamics,” Journal of Mathematics and Computer Science, vol. 11,
no. 4, pp. 4599–4630, 2021. DOI:10.28919/jmcs/5847

[45] A. Abidemi, Fatmawati, and O. J. Peter, “An optimal control model
for dengue dynamics with asymptomatic, isolation, and vigi-
lant compartments,” Decision Analytics Journal, p. 100413, 2024.
DOI:10.1016/j.dajour.2024.100413

[46] I. Kour, L. Singhal, and V. Gupta, “Diphtheria: A paradigmatic vaccine-
preventable toxigenic disease with changing epidemiology.” in Recent Ad-
vances in Pharmaceutical Innovation and Research, pp. 749–759. Singapore:
Springer, 2023. DOI:10.1007/978-981-99-2302-1_30

[47] M. Petráš et al., “Factors influencing persistence of diphtheria immunity and
immune response to a booster dose in healthy slovak adults,” Vaccines, vol. 7,
no. 4, p. 139, 2019. DOI:10.3390/vaccines7040139

[48] V. D. Bampoe et al., “A review of adverse events from the use of diphtheria
antitoxin (dat) in the united states, 2004–2019,” Clinical Infectious Diseases,
vol. 74, no. 11, pp. 2082–2083, 2022. DOI:10.1093/cid/ciab899

[49] B. L. Wiedermann, “Diphtheria in the 21st century: new insights and a
wake-up call,” Clinical Infectious Diseases, vol. 71, no. 1, pp. 98–99, 2020.
DOI:10.1093/cid/ciz813

[50] A. Adikari and Y. Jayathunga, “Optimal control for resource allocation
in a multi-patch epidemic model with human dispersal behavior,” Com-
munication in Biomathematical Sciences, vol. 8, no. 1, pp. 1–18, 2025.
DOI:10.5614/cbms.2025.8.1.1

[51] A. B. Gumel and S. Lenhart, Modeling Paradigms and Analysis of Disease Trans-
mission Models. in Providence, vol. 75. USA: American Mathematical Society,
2010.

[52] S. Lenhart and J. T. Workman, Optimal control applied to biological models. in

Boca Raton. USA: Chapman and Hall/CRC, 2007, ISBN 978-1-58488-640-2.
[53] F. A. Oguntolu et al., “Mathematical modeling on the transmission dynamics

of diphtheria with optimal control strategies,” Jambura Journal of Biomathe-
matics (JJBM), vol. 6, no. 1, pp. 1–22, 2025. DOI:10.37905/jjbm.v6i1.29716

[54] H. Alrabaiah et al., “Optimal control analysis of hepatitis b virus with
treatment and vaccination,” Results in Physics, vol. 19, p. 103599, 2020.
DOI:10.1016/j.rinp.2020.103599

[55] A. Altamirano-Fernández, A. Rojas-Palma, and S. Espinoza-Meza, “Existence
of solutions for an optimal control problem in forestry management,” in
Journal of Physics: Conference Series, vol. 2515, no. 1, p. 012001, 2023.
DOI:10.1088/1742-6596/2515/1/012001

[56] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal
Control. New York: Springer New York, 2012, ISBN:978-1-4612-6382-1.
DOI:10.1007/978-1-4612-6380-7

[57] O. D. Falowo, S. Olaniyi, and A. T. Oladipo, “Optimal control assessment of
rift valley fever model with vaccination and environmental sanitation in the
presence of treatment delay,”Modeling Earth Systems and Environment, vol. 9,
no. 1, pp. 457–471, 2023. DOI:10.1007/s40808-022-01508-1

[58] E. E. Joshua, E. T. Akpan, and U. G. Inyang, “Computational nonlinear dy-
namics: Analysis and assessment in optimal control of covid-19 in akwa
ibom state, nigeria,” Journal of Advances in Mathematics and Computer Science,
vol. 39, no. 1, pp. 1–19, 2024. DOI:10.9734/jamcs/2024/v39i11858

[59] H. R. Joshi, “Optimal control problems in PDE and ODE systems [Disserta-
tion],“ in Knoxville. USA: The University of Tennessee, 2002.

[60] F. Agusto and M. C. A. Leite, “Optimal control and cost-effective analysis of
the 2017 meningitis outbreak in nigeria,” Infectious Disease Modelling, vol. 4,
pp. 161–187, 2019. DOI:10.1016/j.idm.2019.05.003

[61] L. J. Allen et al., “Mathematical Epidemiology.“ in Berlin. Germany: Springer,
2008.

[62] F. Brauer et al., “Mathematical Models in Epidemiology,“ Cham. Switzerland:
Springer, 2019.

[63] J. K. K. Asamoa et al., “Optimal control and comprehensive cost-effectiveness
analysis for covid-19,” Results in Physics, vol. 33, p. 105177, 2022.
DOI:10.1016/j.rinp.2022.105177

[64] F. S. García, “Mathematical modeling approaches in epidemiology: within-
host dynamics, control strategies and cost-effectiveness analysis [Disser-
tation],” in Centro de Investigación en Matemáticas. Mexico: Guanajuato,
2020.

[65] S. Olaniyi et al., “Efficiency and economic analysis of intervention strategies
for recurrent malaria transmission,” Quality & Quantity, vol. 58, no. 1, pp.
627–645, 2024. DOI:10.1007/s11135-023-01664-1

[66] B. E. Nichols et al., “Cost-effectiveness analysis of pre-exposure prophy-
laxis for hiv-1 prevention in the netherlands: a mathematical modelling
study,” The Lancet Infectious Diseases, vol. 16, no. 12, pp. 1423–1429, 2016.
DOI:10.1016/S1473-3099(16)30311-5

[67] D. Aldila et al., “On the role of early case detection and treatment failure
in controlling tuberculosis transmission: A mathematical modeling study,”
Communication in Biomathematical Sciences, vol. 7, no. 1, pp. 61–86, 2024.
DOI:10.5614/cbms.2024.7.1.4

[68] H. A. Fatahillah and D. Aldila, “Forward and backward bifurcation analysis
from an imperfect vaccine efficacy model with saturated treatment and sat-
urated infection,” Jambura Journal of Biomathematics (JJBM), vol. 5, no. 2, pp.
132–143, 2024. DOI:10.37905/jjbm.v5i2.28810

[69] A. Abidemi and O. J. Peter, “Deterministic double dose vaccination model
of covid-19 transmission dynamics–optimal control strategies with cost-
effectiveness analysis,” Communication in Biomathematical Sciences, vol. 7,
no. 1, pp. 1–33, 2024. DOI:10.5614/cbms.2024.7.1.1

[70] F. B. Agusto and I. M. ELmojtaba, “Optimal control and cost-effective analy-
sis of malaria/visceral leishmaniasis co-infection,” PLOS ONE, vol. 12, no. 2,
p. e0171102, 2017. DOI:10.1371/journal.pone.0171102

[71] R. Boucekkine and T. Loch-Temzelides, “Introduction to the special issue on
mathematical economic epidemiologymodels,” Economic Theory, vol. 77, no.
1–2, pp. 1–7, 2024. DOI:10.1007/s00199-023-01541-w

[72] E. J. Dasbach, E. H. Elbasha, and R. P. Insinga, “Mathematical models for
predicting the epidemiologic and economic impact of vaccination against
human papillomavirus infection and disease,” Epidemiologic Reviews, vol. 28,
no. 1, pp. 88–100, 2006. DOI:10.1093/epirev/mxj006

[73] P. J. White, “nfectious Diseases (Fourth Edition),” in 5 - Mathematical mod-
els in infectious disease epidemiology, pp. 49–53.e1. Elsevier, 2017.
DOI:10.1016/B978-0-7020-6285-8.00005-8

[74] Y. A. Adi, N. Irsalinda, andM. Z. Ndii, “Optimal control and cost-effectiveness
analysis in an epidemic model with viral mutation and vaccine intervention,”
CAUCHY: Jurnal Matematika Murni dan Aplikasi, vol. 7, no. 2, pp. 173–185,

JJBM | Jambura J. Biomath Volume 6 | Issue 2 | June 2025

https://ejurnal.ung.ac.id/index.php/JJBM/article/view/21903
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/21903
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/21903
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/21903
https://scik.org/index.php/cmbn/article/view/6632
https://scik.org/index.php/cmbn/article/view/6632
https://scik.org/index.php/cmbn/article/view/6632
https://scik.org/index.php/cmbn/article/view/6632
https://www.statista.com/statistics/382235/population-growth-in-nigeria/
https://www.statista.com/statistics/382235/population-growth-in-nigeria/
https://www.statista.com/statistics/382235/population-growth-in-nigeria/
https://www.statista.com/statistics/1122838/population-of-nigeria/
https://www.statista.com/statistics/1122838/population-of-nigeria/
https://www.statista.com/statistics/1122838/population-of-nigeria/
https://www.statista.com/statistics/1122851/life-expectancy-in-nigeria-by-gender/
https://www.statista.com/statistics/1122851/life-expectancy-in-nigeria-by-gender/
https://www.statista.com/statistics/1122851/life-expectancy-in-nigeria-by-gender/
https://kidshealth.org/en/parents/diphtheria.html
https://kidshealth.org/en/parents/diphtheria.html
https://www.ncbi.nlm.nih.gov/books/NBK557744/
https://www.ncbi.nlm.nih.gov/books/NBK557744/
https://academic.oup.com/ofid/article/9/1/ofab414/6355729?login=false
https://academic.oup.com/ofid/article/9/1/ofab414/6355729?login=false
https://academic.oup.com/ofid/article/9/1/ofab414/6355729?login=false
https://academic.oup.com/ofid/article/9/1/ofab414/6355729?login=false
https://www.sciencedirect.com/science/article/pii/S2772442523000606
https://www.sciencedirect.com/science/article/pii/S2772442523000606
https://www.sciencedirect.com/science/article/pii/S2772442523000606
https://www.sciencedirect.com/science/article/pii/S2772442523000606
https://www.iosrjournals.org/iosr-jm/pages/v16(1)Series-2.html
https://www.iosrjournals.org/iosr-jm/pages/v16(1)Series-2.html
https://www.iosrjournals.org/iosr-jm/pages/v16(1)Series-2.html
https://jsaer.com/archive/volume-5-issue-6-2018/
https://jsaer.com/archive/volume-5-issue-6-2018/
https://jsaer.com/archive/volume-5-issue-6-2018/
https://link.springer.com/article/10.1007/s40819-017-0394-5
https://link.springer.com/article/10.1007/s40819-017-0394-5
https://link.springer.com/article/10.1007/s40819-017-0394-5
https://link.springer.com/article/10.1007/s40819-017-0394-5
https://scik.org/index.php/jmcs/article/view/6513
https://scik.org/index.php/jmcs/article/view/6513
https://scik.org/index.php/jmcs/article/view/6513
https://scik.org/index.php/jmcs/article/view/6513
https://scik.org/index.php/jmcs/article/view/5847
https://scik.org/index.php/jmcs/article/view/5847
https://scik.org/index.php/jmcs/article/view/5847
https://www.sciencedirect.com/science/article/pii/S2772662224000171
https://www.sciencedirect.com/science/article/pii/S2772662224000171
https://www.sciencedirect.com/science/article/pii/S2772662224000171
https://www.sciencedirect.com/science/article/pii/S2772662224000171
https://link.springer.com/chapter/10.1007/978-981-99-2302-1_30
https://link.springer.com/chapter/10.1007/978-981-99-2302-1_30
https://link.springer.com/chapter/10.1007/978-981-99-2302-1_30
https://link.springer.com/chapter/10.1007/978-981-99-2302-1_30
https://www.mdpi.com/2076-393X/7/4/139
https://www.mdpi.com/2076-393X/7/4/139
https://www.mdpi.com/2076-393X/7/4/139
https://academic.oup.com/cid/article/74/11/2082/6386298?login=false
https://academic.oup.com/cid/article/74/11/2082/6386298?login=false
https://academic.oup.com/cid/article/74/11/2082/6386298?login=false
https://academic.oup.com/cid/article/71/1/98/5551530?login=false
https://academic.oup.com/cid/article/71/1/98/5551530?login=false
https://academic.oup.com/cid/article/71/1/98/5551530?login=false
https://journals.itb.ac.id/index.php/cbms/article/view/23388
https://journals.itb.ac.id/index.php/cbms/article/view/23388
https://journals.itb.ac.id/index.php/cbms/article/view/23388
https://journals.itb.ac.id/index.php/cbms/article/view/23388
https://books.google.co.id/books/about/Modeling_Paradigms_and_Analysis_of_Disea.html?hl=pt-PT&id=oeQ-BAAAQBAJ&redir_esc=y
https://books.google.co.id/books/about/Modeling_Paradigms_and_Analysis_of_Disea.html?hl=pt-PT&id=oeQ-BAAAQBAJ&redir_esc=y
https://books.google.co.id/books/about/Modeling_Paradigms_and_Analysis_of_Disea.html?hl=pt-PT&id=oeQ-BAAAQBAJ&redir_esc=y
https://books.google.co.id/books?id=NBcTXZK61doC&lpg=PP1&hl=id&pg=PP1v=onepage&q&f=false
https://books.google.co.id/books?id=NBcTXZK61doC&lpg=PP1&hl=id&pg=PP1v=onepage&q&f=false
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/29716
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/29716
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/29716
https://www.sciencedirect.com/science/article/pii/S2211379720320374
https://www.sciencedirect.com/science/article/pii/S2211379720320374
https://www.sciencedirect.com/science/article/pii/S2211379720320374
https://iopscience.iop.org/article/10.1088/1742-6596/2515/1/012001
https://iopscience.iop.org/article/10.1088/1742-6596/2515/1/012001
https://iopscience.iop.org/article/10.1088/1742-6596/2515/1/012001
https://iopscience.iop.org/article/10.1088/1742-6596/2515/1/012001
http://link.springer.com/10.1007/978-1-4612-6380-7
http://link.springer.com/10.1007/978-1-4612-6380-7
http://link.springer.com/10.1007/978-1-4612-6380-7
https://link.springer.com/article/10.1007/s40808-022-01508-1
https://link.springer.com/article/10.1007/s40808-022-01508-1
https://link.springer.com/article/10.1007/s40808-022-01508-1
https://link.springer.com/article/10.1007/s40808-022-01508-1
https://journaljamcs.com/index.php/JAMCS/article/view/1858
https://journaljamcs.com/index.php/JAMCS/article/view/1858
https://journaljamcs.com/index.php/JAMCS/article/view/1858
https://journaljamcs.com/index.php/JAMCS/article/view/1858
https://trace.tennessee.edu/utk_graddiss/2130/
https://trace.tennessee.edu/utk_graddiss/2130/
https://www.sciencedirect.com/science/article/pii/S2468042718300514
https://www.sciencedirect.com/science/article/pii/S2468042718300514
https://www.sciencedirect.com/science/article/pii/S2468042718300514
https://books.google.co.id/books/about/Mathematical_Epidemiology.html?id=gcP5l1a22rQC&redir_esc=y
https://books.google.co.id/books/about/Mathematical_Epidemiology.html?id=gcP5l1a22rQC&redir_esc=y
https://books.google.co.id/books/about/Mathematical_Models_in_Epidemiology.html?id=Qm21DwAAQBAJ&redir_esc=y
https://books.google.co.id/books/about/Mathematical_Models_in_Epidemiology.html?id=Qm21DwAAQBAJ&redir_esc=y
https://www.sciencedirect.com/science/article/pii/S2211379722000031
https://www.sciencedirect.com/science/article/pii/S2211379722000031
https://www.sciencedirect.com/science/article/pii/S2211379722000031
https://cimat.mx/repositorio/handle/20.500.12104/844
https://cimat.mx/repositorio/handle/20.500.12104/844
https://cimat.mx/repositorio/handle/20.500.12104/844
https://cimat.mx/repositorio/handle/20.500.12104/844
https://link.springer.com/article/10.1007/s11135-023-01664-1
https://link.springer.com/article/10.1007/s11135-023-01664-1
https://link.springer.com/article/10.1007/s11135-023-01664-1
https://www.sciencedirect.com/science/article/abs/pii/S1473309916303115
https://www.sciencedirect.com/science/article/abs/pii/S1473309916303115
https://www.sciencedirect.com/science/article/abs/pii/S1473309916303115
https://www.sciencedirect.com/science/article/abs/pii/S1473309916303115
https://journals.itb.ac.id/index.php/cbms/article/view/22301
https://journals.itb.ac.id/index.php/cbms/article/view/22301
https://journals.itb.ac.id/index.php/cbms/article/view/22301
https://journals.itb.ac.id/index.php/cbms/article/view/22301
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/28810
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/28810
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/28810
https://ejurnal.ung.ac.id/index.php/JJBM/article/view/28810
https://journals.itb.ac.id/index.php/cbms/article/view/21937
https://journals.itb.ac.id/index.php/cbms/article/view/21937
https://journals.itb.ac.id/index.php/cbms/article/view/21937
https://journals.itb.ac.id/index.php/cbms/article/view/21937
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0171102
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0171102
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0171102
https://link.springer.com/article/10.1007/s00199-023-01541-w
https://link.springer.com/article/10.1007/s00199-023-01541-w
https://link.springer.com/article/10.1007/s00199-023-01541-w
https://academic.oup.com/epirev/article-abstract/28/1/88/569952?redirectedFrom=fulltext&login=false
https://academic.oup.com/epirev/article-abstract/28/1/88/569952?redirectedFrom=fulltext&login=false
https://academic.oup.com/epirev/article-abstract/28/1/88/569952?redirectedFrom=fulltext&login=false
https://academic.oup.com/epirev/article-abstract/28/1/88/569952?redirectedFrom=fulltext&login=false
https://www.sciencedirect.com/science/article/pii/B9780702062858000058?via
https://www.sciencedirect.com/science/article/pii/B9780702062858000058?via
https://www.sciencedirect.com/science/article/pii/B9780702062858000058?via
https://ejournal.uin-malang.ac.id/index.php/Math/article/view/13184
https://ejournal.uin-malang.ac.id/index.php/Math/article/view/13184
https://ejournal.uin-malang.ac.id/index.php/Math/article/view/13184
https://ejournal.uin-malang.ac.id/index.php/Math/article/view/13184


A. S. Afolabi and M. Miswanto – Mathematical Modeling, Optimal Control and Cost-Effectiveness Analysis of Diphtheria Transmission Dynamics… 108

2022. DOI:10.18860/ca.v7i2.13184
[75] D. Angulo et al., “Fine-grained mathematical modeling for cost-effectiveness

evaluation of public health policies for cervical cancer, with application to
a colombian case study,” BMC Public Health, vol. 23, no. 1, p. 1470, 2023.
DOI:10.1186/s12889-023-16022-x

[76] P. Asplin et al., “Epidemiological and health economic implications of symp-
tom propagation in respiratory pathogens: A mathematical modelling in-
vestigation,” PLOS Computational Biology, vol. 20, no. 5, p. e1012096, 2024.
DOI:10.1371/journal.pcbi.1012096

[77] H. Bang and H. Zhao, “Average cost-effectiveness ratio with censored data,”

Journal of Biopharmaceutical Statistics, vol. 22, no. 2, pp. 401–415, 2012.
DOI:10.1080/10543406.2010.544437

[78] S. Kim et al., “The epidemiologic and economic impact of vari-
cella and herpes zoster vaccination in south korea: A mathemati-
cal modelling study,” Vaccine, vol. 42, no. 19, pp. 4046–4055, 2024.
DOI:10.1016/j.vaccine.2024.05.016

[79] K. N. Wanis et al., “Health and economic impact of intensive surveillance for
distant recurrence after curative treatment of colon cancer: A mathematical
modeling study,” Diseases of the Colon & Rectum, vol. 62, no. 7, pp. 872–881,
2019. DOI:10.1097/DCR.0000000000001364

JJBM | Jambura J. Biomath Volume 6 | Issue 2 | June 2025

https://ejournal.uin-malang.ac.id/index.php/Math/article/view/13184
https://ejournal.uin-malang.ac.id/index.php/Math/article/view/13184
https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-023-16022-x
https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-023-16022-x
https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-023-16022-x
https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-023-16022-x
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012096
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012096
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012096
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012096
https://www.tandfonline.com/doi/full/10.1080/10543406.2010.544437
https://www.tandfonline.com/doi/full/10.1080/10543406.2010.544437
https://www.tandfonline.com/doi/full/10.1080/10543406.2010.544437
https://www.sciencedirect.com/science/article/abs/pii/S0264410X24005620
https://www.sciencedirect.com/science/article/abs/pii/S0264410X24005620
https://www.sciencedirect.com/science/article/abs/pii/S0264410X24005620
https://www.sciencedirect.com/science/article/abs/pii/S0264410X24005620
https://journals.lww.com/dcrjournal/abstract/2019/07000/health_and_economic_impact_of_intensive.15.aspx
https://journals.lww.com/dcrjournal/abstract/2019/07000/health_and_economic_impact_of_intensive.15.aspx
https://journals.lww.com/dcrjournal/abstract/2019/07000/health_and_economic_impact_of_intensive.15.aspx
https://journals.lww.com/dcrjournal/abstract/2019/07000/health_and_economic_impact_of_intensive.15.aspx

	Introduction
	Model Formulation 
	The model analysis
	The positivity theorem
	The positivity theorem
	Parameter Value Estimation
	Sensitivity Analysis

	Formulation of an Optimal Control Problem (OCP)
	Results and Discussion
	Autonomous System
	Non-autonomous System
	Cost-Effectiveness Analysis

	Conclusions

