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Abstract

We proposed and analyzed the stage-structure Rosenzweig-MacArthur model incorporating a prey refuge. It is assumed that the prey is a stage-structure
population consisting of two compartments known as immature prey and mature prey. The model incorporates the functional response Holling type-II. In
this work, we investigate all the biologically feasible equilibrium points, and it is shown that the system has three equilibrium points. Sufficient conditions
for the local stability of the non-negative equilibrium point of the model are also derived. All points are conditionally locally asymptotically stable. By
constructing the Jacobian matrix and determining its eigenvalues, we analyzed the local stability of the trivial and non-predator points. Specially for the
local stability of the coexistence point is analyzed by using the Routh-Hurwitz criterion. In addition, we investigated the effect of immature prey refuge.
Our mathematical analysis exhibits that the immature prey refuge have played a crucial role in the behavioral system. When the effect of immature prey
refuge (constant m) increases, it is can stabilize the non-predator point, where all the species can not exist together. And conversely, if contant m decreases,
it is can stabilize the coexistence point then all the species can exist together. The work is completed with the numerical simulations to confirmed the
analytical results.
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1. Introduction

Population dynamics on the predator-prey interactions are an interesting things in the mathematical biology. This
problem can be studied through the system of differential equations, and it has been widely studied by many
scholars. The refuge and stage-structure are two facets that affects the predator-prey interactions in the nature.
In the recent decade, many researchers have considered the effect of prey refuge on their model. For examples,
Tao et al. [1] investigated the impact of refuge on a predator-prey model with harvesting. The analytical and
numerical results showed that dynamical of the model depend on the constant of prey refuge. In [2], Chen et
al. analyzed the global stability of the positive equilibrium point on a Lotka-Volterra model with considered a
constant refuge. Next, the influence of the infected prey refuge on a Leslie-Gower model is discussed by Sharma
and Samanta [3]. The analysis results showed that there is a great influence of this infected prey refuge on each
population. Increasing the amount of infected prey refuge can decrease susceptible prey density as well as the
predator density. In [4], Yue developed a Leslie-Gower model incorporating Holling tipe-II schemes and refuge
of prey, and obtained that increasing the amount of refuge can ensure the coexistence of the two species more
easily, since the existence of alternate prey can prevent the predator from extinction and increasing the amount of
refuge could protect more prey from predation and become permanent. Next in [5], Moustofa et al. considered a
constant refuge of prey on a fractional Rosenzweig-MacArthur model.

In the other hand, stage-structure use is important in the predator-prey model. Generally, there are many species
whose individual members have a life history that takes them through two stage i.e. immature and mature [6–9].
In recent years, a combination of the stage-structure and refuge in the prey has attracted the attention of the many
researchers. In [7], Devi analyzed the role of the prey refuge on a predator-prey model with stage-structute and
ratio-dependent functional response. Their assumed that predator only attacks and eats mature prey as well as
two types of refuges used by prey population. As a result, predator populations will become extinct if the prey
refuge is increases. Using the same functional response, Khajanchi and Banerjee [8] studied how the refuges used
by mature prey population influences the dynamic behavior. Their finds that the constant prey refuge becomes
sufficiently large, implying very less access to the preys by predators and resulting in decrease of predator density.
In [9], Wei and Fu analyzed the global stability of a stage-strucutre predator-prey model incorporating refuge in
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the mature prey. The analysis results showed that the prey refuge will enhance the density of the prey species,
and it will decrease the density of predator species. A mathematical model dealing with two species of predator-
prey system with the refuge capability is analyzed by Naji and Majeed [10]. The analysis model exhibits the
refuge factor plays a vital role in the stabilizing of the system and can prevent extinction in the prey population.

Motivated from the various studies mentioned above, the goal of this paper is to study the effect of immature
prey refuge on the Rosenzweig-MacArthur model with stage-structure. We note that in [6], the stage-structure
Rosenzweig-MacArthur model without the effect of refuge has been done. The organization of this paper is as
follows. In the next section, the methods in our work is given. In section 3, our entire work is discussed. In
section 4, a short discussion is given to conclude this work.

2. Methods

The behavioral of the system (1) is analyzed by applying several stages as follows.

1. Modifying the predator-prey model in [6] by adding a new parameter of the immature prey refuge.
2. Solving the nullcline equations of the system (1) to determine the non-negative equilibrium points of the

model.
3. Analyzing the local stability of the equilibrium points through the eigenvalues of a Jacobian matrix of each

point, except for the coexistence point were analyzed using Routh-Hurwitz criterion.
4. Analyzing the implement of prey refuge by assessing the derivative alone the coexistence point.
5. Portraying the numerical solutions of the system to confirm the analysis results by using the

fourth-order Runge–Kutta method.

3. Results and Discussion
3.1. Mathematical Model

In this article, we incorporate a parameter of the prey refuge into the stage-structure Rosenzweig-MacArthur
model. The dynamics of this model can be represented mathematically with the following set of differential
equations:

dx1

dt
=rx2

(
1− x1

k

)
− αx1 −

β (1−m) x1x3

(1−m) x1 + n1

dx2

dt
=αx1 − δ1x2

dx3

dt
=

ϕβ (1−m) x1x3

(1−m) x1 + n1
− δ2x3

(1)

where x1, x2 and x3 are respectively the densities of immature and mature prey as well as predator population
at time t. In this study, the system (1) is supplemented with the initial conditions i.e., x1 (0) > 0, x2 (0) > 0 and
x3 (0) > 0. The following assumptions are made in formulating model:

1. For the immature prey: the growth is assumed to be logistically with constant intrinsic rate r > 0 and k > 0
is the carrying capacity of the environment. β > 0 is maximum value which per capita reduction rate of
immature prey can attain. n1 > 0 measure the extent to which enviroment provides protection to immature
prey. m ≥ 0 is a refuge protection of the immature prey.

2. For the mature prey: α > 0 denotes the surviving rate of immaturity to reach maturity. The per capita death
rate of the mature prey is δ1 > 0.

3. For the predator: the predator not attacks and eats the mature prey. A conversion rate of the consumed
prey into the predator births is ϕ > 0. δ2 > 0 is the per capita death rate of the predator.

3.2. Existence and Stability of Equilibrum Points

In this section, we discuss the existence and stability of equilibrium points. In order to obtain the equilibrium
points of system (1), we consider the immature prey nullcline, mature prey nullcline and predator nullcline of
this system, which are given by:
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rx2

(
1− x1

k

)
− αx1 −

β (1−m) x1x3

(1−m) x1 + n1
= 0

αx1 − δ1x2 = 0
ϕβ (1−m) x1x3

(1−m) x1 + n1
− δ2x3 = 0

(2)

Next, from system (2), we get the following three non-negative equilibrium points, namely,

1. A trivial equilibrium point E0 = (0, 0, 0), which shown extinct of all species in the ecosystem.
2. A non-predator equilibrium point E1 = (x11, x21, 0) . Notice that equilibrium point E1 will exist if

r > δ1 (3)

where x11 = k(r−δ1)
r and x21 = α

δ1
x11.

3. A coexistence equilibrium point E∗ = (x1∗, x2∗, x3∗). Notice that equilibrium point E∗ will exist if

βϕ > δ2 and m < 1 (4)

where x1∗ =
δ2n1

(1−m)(βϕ−δ2)
, x2∗ =

α
δ1

x1∗ and x3∗ =
αϕx1∗

δ2

(
(r−δ1)

δ1
+ rx2∗

αk

)
.

Thus, the non-predator equilibrium point E1 is exists if condition (3) is applies. It is occur if the growth rate of
immature prey greater than the death rate of mature prey. Next, if the death rate of predator is less than its birth
rate and the parameter value m is less than 1, then condition (4) holds and the coexistence point E∗ is exists.

Now to study the local stability of these equilibrium points, the Jacobian matrix from system (1) is determined as

J =


− rx2

k − α− n1β(1−m)x3

((1−m)x1+n1)
2 r

(
1− x1

k
)

− β(1−m)x1
(1−m)x1+n1

α −δ1 0
n1 ϕβ(1−m)x3

((1−m)x1+n1)
2 0 ϕβ(1−m)x1

(1−m)x1+n1
− δ2

 (5)

By observing the eigenvalues of the Jacobian matrix (5) at each equilibrium point, we have the following stability
properties.

Theorem 1. The trivial equilibrium point E0 is locally asymptotically stable, if condition (6) is satisfied:

α < δ1 (6)

proof. The Jacobian matrix (5) evaluated at the equilibrium point E0 is given by

J(0,0,0) =

 −α r 0
α −δ1 0
0 0 −δ2

 (7)

From Jacobian matrix (7) the eigenvalues are obtained: λ1 = −δ2 and λ2,3 = − b1±
√

D
2 , where

D = b1
2 − 4c1,

b1 = δ1 − α,
c1 = −α (r + δ1) .

If α < δ1 then equilibrium point E0 is locally asymptotically stable. It means that if the death rate of mature prey
greather then the convertion rate of the immature prey into mature prey, then the trivial equilibrium point E0 is
locally asymptotically stable. �

Theorem 2. The non-predator equilibrium point E1 is locally asymptotically stable, if condition (8) is satisfied:

(i) z1 < δ1,
(ii) z4 < 0. (8)
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proof. The Jacobian matrix (5) evaluated at the equilibrium point E1 is given by

J(x11,x21,0) =

 z1 z2 z3
α −δ1 0
0 0 z4

 (9)

where

z1 = − rx21

K
− α,

z2 = r
(

1− x11

K

)
,

z3 = − β (1−m) x11

(1−m) x11 + n1
,

z4 =
ϕβ (1−m) x11

(1−m) x11 + n1
− δ2.

From Jacobian matrix (9), the eigenvalues are obtained: λ1 = z4 and λ2,3 = − b2±
√

D
2 . If z1 < δ1 and z4 < 0 then

the non-predator equilibrium point E1 is locally asymptotically stable, where

D = b2
2 − 4c2,

b2 = δ1 − z1,
c2 = αz2 − δ1z1.

�

Theorem 3. The coexistence equilibrium point E∗ is locally asymptotically stable if conditions (10) is satisfied:

(i) φi > 0, where i = 1, 2, 3,
(ii) φ1φ2 − φ3 > 0.

(10)

proof. The Jacobian matrix (5) evaluated at the equilibrium point E∗ is given by

J(x1∗ ,x2∗ ,x3∗) =

 z1∗ z2∗ z3∗
α −δ1 0

z4∗ 0 z5∗

 (11)

where

z1∗ = −
rx2∗

K
− α− n1β (1−m) x3∗

((1−m) x1∗ + n1)
2 ,

z2∗ = r
(

1− x1∗
k

)
,

z3∗ = −
β (1−m) x1∗

(1−m) x1∗ + n1
,

z4∗ =
n1 ϕβ (1−m) x3∗

((1−m) x1∗ + n1)
2 ,

z5∗ =
ϕβ (1−m) x1∗
(1−m) x1∗ + n1

− δ2.

�

The characteristics equation of the Jacobian matrix (11) is written by:

λ3 + φ1λ2 + φ2λ + φ3 = 0 (12)

where

φ1 = δ1 − (z1∗ + z5∗) ,
φ2 = αz2∗ + z1∗z5∗ − (z3∗z4∗ + δ1 (z1∗ + z5∗)) ,
φ3 = δ1z1∗z5∗ − (αz2∗z5∗ + δ1z3∗z4∗) .
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The stability of equilibrium point E∗ is studied using the Routh-Hurwitz criterion [11]. Thus, it can be shown
that the coexistence point E∗ is locally asymptotically stable if φi > 0, i = 1, 2, 3 and

φ∗ = φ1φ2 − φ3 > 0

= (z1∗ + z5∗)
[
δ1 (z1∗ + z5∗) + z3∗z4∗ −

(
δ2

1 + z1∗z5∗
)]

+ αz2∗ (δ1 − z1∗) > 0.

3.3. The influence of the Prey Refuge

In this section, we investigate the role of immature prey refuge by assessing the derivative along the non-negative
coexistence equilibrium point E∗ with respect to the parameter m. Since both x1∗ and x2∗ are the continuous
functions of parameter m, we have

dx1∗
dm

=
δ2n1

(1−m)2 (βϕ− δ2)
> 0 (13)

dx2∗
dm

=
α

δ1

(
δ2n1

(1−m)2 (βϕ− δ2)

)
> 0 (14)

The (13) and (14) inequalities shows that increasing the amount of the immature prey refuge can increase the
densities of both immature prey and mature prey. Next, since x3∗ is a continuous function of parameter m, we
have

dx3∗
dm

= −
(

(r− δ1) ϕn1α

δ1(1−m)2 (βϕ− δ2)
+

2x3∗
m− 1

)
< 0 (15)

From the inequality (15) obtained dx3∗
dm < 0. Thus, increment amount of the constant immature prey refuge (m)

can decrease the predator density. For this case, the predator population will be extinction.

3.4. Numerical Simulation

Our analytical findings are justified in this section by performing numerical simulations of the system (1). We
numerically simulate the model for the following set of parameter values: r = 0, 5; k = 0, 9; α = 0, 3; β = 0, 2; δ1 =
0, 51; δ2 = 0, 5; ϕ = 0, 5; n1 = 0, 5; m = 0, 0051. It can be observed that the condition (6) holds, and we find
λ1 = −0, 004; λ2 = −0, 806 and λ3 = −0, 500. And implies that the point E0 is locally asymptotically stable. This
means that all population will go extinct. This behavior is confirmed by our numerical simulation as depicted
in Figure 1. If we decrease the value of δ1, i.e. using δ1 = 0, 1 and consistently using the same parameter then
condition (3) holds. The non-predator point E1 = (x11, x21, 0) is exist and locally asymptotically stable, where
x11 = 0, 720 and x21 = 2, 160. The entirety of the eigenvalues of the Jacobian matrix (9) are negative, where
λ1 = −1, 521; λ2 = −0, 079 and λ3 = −0, 441. This means that the immature and mature prey will survive
in the system, while predator will go extinct. This situation is shown in Figure 2. If we decrease the value
of δ2 i.e. using δ2 = 0, 05 then conditon (4) holds. The coexistence point E∗ = (x1∗, x2∗, x3∗) is exists, where
x1∗ = 0, 503; x2∗ = 1, 508 and x3∗ = 1, 821. The coefficients of a polynomial (12) are φ1 = 1, 4188; φ2 = 0, 0747;
φ3 = 0, 0009 and φ∗ = φ1φ2 − φ3 = 0, 1051 so condition (10) in Theorem 3 holds. Thus coexistence point E∗ is
locally asymptotically stable. This means that immature and mature prey as well as predator will survive in the
system. This situation is clearly shown by our numerical result in Figure 3.

To demonstrate the importance of immature prey refuge, we changed parameter value of m. If we further increase
the parameter value of m such that m = 0, 5, then the non-predator point E1 is exist and locally asymptotically
stable. The entirety of the eigenvalues of a Jacobian matrix (9) are negative, where λ1 = −1, 521; λ2 = −0, 079 and
λ3 = −0, 008. Figure 4a shown the situation for this case. Next, Figure 4b shown the behavior of system (1) for
m = 0, 9. The point E1 is consistently exist and locally asymptotically stable, where λ1 = −1, 521; λ2 = −0, 079
and λ3 = −0, 037. In both m = 0, 5 and m = 0, 9 condition (15) holds. This means that if the immature prey refuge
increase then prey population will reach at its highest population while predator to extinction. This illustrates
that the existence of immature prey refuge plays an important role on the system.
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Figure 1. Phase portrait of the system (1) with r = 0, 5; k = 0, 9; α = 0, 3; β = 0, 2; δ1 = 0, 51; δ2 = 0, 5; ϕ =

0, 5; n1 = 0, 5; m = 0, 0051.

Figure 2. Phase portrait of the system (1) with δ1 = 0, 1.

Figure 3. Phase portrait of the system (1) with δ2 = 0, 05.

4. Conclusion

In this paper, a model that describes the Rosenzweig-MacArthur system having a refuge and stage-structure
properties in the prey population has been studied analytically and numerically. From the analysis of the system
(1), we obtain three equilibrium points namely the trivial point E0, the non-predator point E1 and the coexistence
point E∗. E0, E1 and E∗ are stable under certain conditions. Increasing the parameter value of the immature prey
refuge may stabilize equilibrium point E1. It is can prevent extinction on the population of the immature prey

JJBM | Jambura J. Biomath Volume 1 | Issue 1 | June 2020



Beay and Saija – A Stage-Structure Rosenzweig-MacArthur... 7

(a) m = 0.5 (b) m = 0.9

Figure 4. Phase portrait of the system (1) with different values of m.

and mature prey. This is caused by very low access to the immature prey by the predator. Thus, the immature
prey refuge has a significant impact on the existence of all species in the system.
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