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Abstract

Infectious disease has an influence on the density of a population. In this paper, a fractional-order logistic growth model with infectious disease is
formulated. The population grows logistically and divided into two compartments i.e. susceptible and infected populations. We start by investigating the
existence, uniqueness, non-negativity, and boundedness of solutions. Furthermore, we show that the model has three equilibrium points namely the
population extinction point, the disease-free point, and the endemic point. The population extinction point is always a saddle point while others are
conditionally asymptotically stable. For the non-trivial equilibrium points, we successfully show that the local and global asymptotic stability have the
similar properties. Especially, when the endemic point exists, it is always globally asymptotically stable. We also show the existence of forward bifurcation
in our model. We portray some numerical simulations consist of the phase portraits, time series, and a bifurcation diagram to validate the analytical
findings.

Keywords: Dynamics, Fractional-Order, Logistic Growth, Infectious Disease

1. Introduction

The logistic growth model is first proposed by a Belgian mathematician called Pierre François Verhulst [1], which
given by a first-order differential equation

dN
dt

= rN
(

1− N
K

)
, (1)

where r is the intrinsic growth rate and K is the environmental carrying capacity of the population. The logistic
growth model is considered more realistic rather than the exponential growth model proposed by Malthus [2].
To achieve a more specific condition of natural phenomena, the logistic growth model is modified such as
Richards model [3], Blumberg model [4], and Tsoularis model [5]. Some modifications are also done to facilitate
the biological behavior of populations for instance: the Allee effect [6–8] and feedback control [9, 10]. It is also
applied in interaction between populations in predator-prey schemes as in [11–16]. Nowadays, the logistic
model and its modifications are used to modeling and predicting the infected population of new coronavirus
2019 (COVID-19), see [17–21].

In this paper, we modify the logistic growth model (1) by assuming the population is infected by a disease. We
divide the population N(t) into two compartments namely susceptible population S(t) and infected population
I(t). We also assume that the infection rate is bilinear and the infected population may recover by its immune
system. This model is given by a first-order differential equations as follows.

dS
dt

=rS
(

1− S + I
K

)
− βSI + ωI,

dI
dt

=βSI − (ω + δ)I,
(2)

where β is the infection rate, ω is the recovery rate, and δ is the death rate causes by disease. It is clear that the
total population N(t) satisfies N(t) = S(t) + I(t). Some similar works are done by scholars [10, 22–29]. The
novelty of our model compared with their models lies on the utilization of logistic growth rate rather than the
constant growth rate.

To attain more realistic model, we apply the fractional-order derivative as the operator. The model with
fractional-order derivative describe a preferable biological condition rather than the first-order derivative since
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this operator has capability in involving all previous condition to express the state condition which called the
memory effect, see [30–35]. By replacing the first-order derivative at the left hand side of model (2) with the
fractional-order derivative and redefine some parameters in similar way with [32] to obtain the same dimension
of (time)α, we get

CDα
t S =rS

(
1− S + I

K

)
− βSI + ωI = G1(N),

CDα
t I =βSI − (ω + δ)I = G2(N),

(3)

where CDα
t is Caputo fractional-order derivative define by

CDα
t f (t) =

1
Γ(1− α)

∫ t

0
(t− s)−α f ′(τ)dτ, (4)

with t ≥ 0, f ∈ Cn([0,+∞), R), and Γ(·) is a Gamma function [36].

This paper is organized as follows. To ensure the model (3) meets the expected biological conditions, the
existence, uniqueness, non-negativity, and boundedness are given in Sections 2 and 3. In Section 4, we study the
dynamics of model (3) including the existence of equilibrium points, their local and global stability, and the
existence of forward bifurcation. Finally, we close our works by giving some concluding remarks in Section 5.

2. Existence and Uniqueness

Suppose that Θ :=
{
(S, I) ∈ R2 : max(|S|, |I|) ≤ σ

}
. We will show that for each initial values in Θ, the model (3)

has a unique solution in the region Θ× (0, T], T < ∞. The similar approach used in [31, 32] is employed. We
consider a mapping G(N) = (G1(N), G2(N)). For any N = (S, I), N̄ = (S̄, Ī), N, N̂ ∈ Θ, we acquire

‖G(N)− G(N̄)‖ = |G1(N)− G1(N̄)|+ |G2(N)− G2(N̄)|

=

∣∣∣∣(rS
(

1− S + I
K

)
− βSI + ωI

)
−
(

rS̄
(

1− S̄ + Ī
K

)
− βS̄ Ī + ω Ī

)∣∣∣∣+∣∣(βSI − (ω + δ)I)− (βS̄ Ī − (ω + δ) Ī)
∣∣

=
∣∣∣r(S− S̄)− r

K
(S2 − S̄2)−

( r
K
+ β

)
(SI − S̄ Ī) + ω(I − Ī)

∣∣∣+∣∣β(SI − S̄ Ī)− (ω + δ)(I − Ī)
∣∣

≤r
∣∣S− S̄

∣∣+ r
K

∣∣∣S2 − S̄2
∣∣∣+ ( r

K
+ β

) ∣∣SI − S̄ Ī
∣∣+ ω |I − Ī|+

β
∣∣SI − S̄ Ī

∣∣+ (ω + δ) |I − Ī|

=r
∣∣S− S̄

∣∣+ r
K
∣∣S + S̄

∣∣ ∣∣S− S̄
∣∣+ ( r

K
+ 2β

) ∣∣I(S− S̄) + S̄(I − Ī)
∣∣+ (2ω + δ) |I − Ī|

≤r
∣∣S− S̄

∣∣+ 2σr
K
∣∣S− S̄

∣∣+ ( r
K
+ 2β

)
σ
∣∣S− S̄

∣∣+ ( r
K
+ 2β

)
σ |I − Ī|+ (2ω + δ) |I − Ī|

=

(
r +

3σr
K

+ 2σβ

) ∣∣S− S̄
∣∣+ (σr

K
+ 2σβ + 2ω + δ

)
|I − Ī|

≤L ‖N − N̄‖ ,

where L = max
{

r +
3σr
K

+ 2σβ,
σr
K

+ 2σβ + 2ω + δ

}
, and hence G(N) satisfies the Lipschitz condition. Obeying

Theorem 3.7 in [37], the existence and uniqueness of solution of model (3) is satisfied. Therefore, the following
theorem is preserved.

Theorem 1. For each non-negative initial condition in Θ, there exists a unique solution of model (3) in the region Θ ×
(0, T].

3. Non-negativity and Boundedness

The non-negativity and boundedness of solutions of model (3) are given by the following theorem.

Theorem 2. For each non-negative initial conditions, the solutions of model (3) are always non-negative and uniformly
bounded.
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proof. By using conformable manner as in [31] and applying Lemma 2 in [32], it can be clarified that the
solutions are non-negative if the initial conditions are also non-negative. Furthermore, we give the proof of the
boundedness of solutions. We confirm that the total population N(t) satisfies N(t) = S(t) + I(t), and hence we
get

CDα
t N(t) + δN(t) =rS

(
1− S + I

K

)
− βSI + ωI + βSI − (ω + δ)I + δS + δI

=(r + δ)S− rS2

K
− rSI

K

=− r
K

(
S− (r + δ)K

2r

)2

+
(r + δ)2K

4r
− rSI

K

≤ (r + δ)2K
4r

.

Based on Lemma 3 in [38], we have

N(t) ≤
(

N(0)− (r + δ)2K
4r

)
Eα [−δtα] +

(r + δ)2K
4r

,

where Eα is mittag-leffler function. Therefore, we have N(t) ≤ (r + δ)2K
4r

for t→ ∞, which convince all solutions
are confined to the region Ψ where

Ψ :=
{
(x, y) ∈ R2

+ : S + I ≤ (r + δ)2K
4r

+ ε, ε > 0
}

.

Consequently, all solutions of model (3) are uniformly bounded. �

4. Equilibrium Points and Their Stability

We acquire the equilibrium point by solving G1(N) = G2(N) = 0. In consequence, we obtain three equilibrium
points i.e the population extinction point Ω0 = (0, 0), the disease-free point Ω1 = (K, 0), and the endemic

equilibrium point Ω2 =

(
K
R0

,
(

1− 1
R0

)
rK

r + δR0

)
where R0 =

βK
ω + δ

. Furthermore, the dynamics of model (3)

consist of the local and global stability are shown by the following theorems.

Theorem 3. The population extinction point Ω0 = (0, 0) is always a saddle point.

proof. We compute the Jacobian matrix of model (3) at Ω0. Thus, we have

J(Ω0) =

 r ω

0 −(ω + δ)

 , (5)

which gives the eigenvalues: λ1 = r and λ2 = −(ω + δ). We confirm that | arg(λ1)| < απ/2 and | arg(λ2)| >
απ/2, which ensures that Ω0 is always a saddle point, see Theorem 3 in [32]. �

Theorem 4. If R0 < 1 then the disease-free point Ω1 = (K, 0) is asymptotically stable both locally and globally. Otherwise,
it is a saddle point.

proof. We start by identify the local stability of Ω1. For Ω1 = (K, 0), the Jacobian matrix of model (3) is

J(Ω1) =

 −r −
( r

K
+ β

)
K + ω

0 (ω + δ) (R0 − 1)

 . (6)

From (6), we have the eigenvalues: λ1 = −r which gives | arg(λ1)| > απ/2 and λ2 = (ω + δ) (R0 − 1) where
| arg(λ2)| depends on the value of R0. If R0 < 1 then | arg(λ2)| > απ/2, and If R0 > 1 then | arg(λ2)| < απ/2.
By applying Theorem 3 in [32], the local dynamics of model (3) is emphasized.
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Now, we give the proof that the global stability of Ω1 has the similar properties as its local one. We define a
positive Lyapunov function as follows.

Φ1(S, I) =
[

S− K− K ln
S
K

]
+

(r + βK)R0

βK
I. (7)

According to Lemma 3.1 in [39], the fractional-order derivative of (7) is given by

CDα
t Φ1(S, I) ≤

(
S− K

S

)
CDα

t S +
(r + βK)R0

βK
CDα

t I

=

(
S− K

S

)(
rS
(

1− S + I
K

)
− βSI + ωI

)
+

(r + βK)R0

βK
(βSI − (ω + δ)I)

=(S− K)
(

r− rS + rI
K

− βI + ω
I
S

)
+

(r + βK)R0SI
K

− (ω + δ)(r + βK)R0

βK
I

=

(
2rS− rK− rS2

K
− rSI

K
+ rI − βSI + βKI + ωI − ωKI

S

)
+

(r + βK)R0SI
K

− (r + βK)I

=− rS2

K
+ 2rS− rK−

(
r
K
+ β− (r + βK)R0

K

)
SI − ωKI

S

=− r
K
(S− K)2 − ωKI

S
− (1− R0)(r + βK)SI

K
.

Since R0 < 1, we conclude that CDα
t Φ1(S, I) ≤ 0 for all (S, I) ∈ R2

+. We also ensure that CDα
t Φ1(S, I) = 0 implies

that (S, I) = (K, 0). Therefore, the only invariant set on which CDα
t Φ1(S, I) = 0 is the singleton {Ω1}. Obeying

Lemma 4.6 in [40], the disease-free point Ω1 = (K, 0) is globally asymptotically stable. �

Remark 1. From Theorem 4, we conclude that if R0 < 1 then Ω1 is locally and globally asymptotically stable.
For all initial conditions, the disease will become extinct, the density of population will eventually increases, and
tends to the environmental carrying capacity.

Theorem 5. The endemic equilibrium point Ω2 =

(
K
R0

,
(

1− 1
R0

)
rK

r + δR0

)
is always asymptotically stable both locally

and globally.

proof. Suppose that

ξ1 =
R0ξ2

βK

[
1− r + (ω + δ)R0

r + δR0

]
− r

R0
,

ξ2 =

(
1− 1

R0

)
βrK
R0

.

It is easy to verify that ξ1 < 0 and ξ2 > 0. By evaluating Jacobian matrix of model (3) at Ω2, we acquire

J(Ω2) =

 ξ1 − r + δR0

R0

R0ξ2

r + δR0
0

 , (8)

and obtain a pair of eigenvalues: λ1 = ξ1
2 ±

1
2

√
ξ2

1 − 4ξ2. For ξ2
1 < 4ξ2, those eigenvalues are a pair of complex

conjugate. Because the real part ξ1
2 < 0, then we have | arg(λ1,2)| > απ

2 . Therefore, Ω2 is locally asymptotically
stable. For ξ2

1 ≥ 4ξ2, according to the Routh-Hurwitz theorem for Caputo fractional order [41], Ω2 is locally
asymptotically stable if ξ1 < 0. Since ξ1 < 0, the endemic point Ω2 is always locally asymptotically stable. Now

we will show the global stability of Ω2 also has the similar properties with the local one. Let S∗ =
K
R0

and

I∗ =
(

1− 1
R0

)
rK

r + δR0
. Therefore, we define a positive Lyapunov function as follows.

Φ2(S, I) =
[

S− S∗ − S∗ ln
S
S∗

]
+ κ

[
I − I∗ − I∗ ln

I
I∗

]
,
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Conforming Lemma 3.1 in [39], we obtain

CDα
t Φ2(S, I) ≤

(
S− S∗

S

)
CDα

t S + κ

(
I − I∗

I

)
CDα

t I

=

(
S− S∗

S

)(
rS
(

1− S + I
K

)
− βSI + ωI

)
+ κ

(
I − I∗

I

)
(βSI − (ω + δ)I)

=(S− S∗)
(

r
(

1− S + I
K

)
− βI +

ωI
S

)
+ κ (I − I∗) (βS− (ω + δ))

=(S− S∗)
(

r− rS
K
− rI

K
− βI +

ωI
S

)
+ κ (I − I∗) (βS− (ω + δ))

=(S− S∗)
(

rS∗

K
+

rI∗

K
+ βI∗ − ωI∗

S∗
− rS

K
− rI

K
− βI +

ωI
S

)
+ κβ(I − I∗)(S− S∗)

=(S− S∗)
(
− r

K
(S− S∗)− r

K
(I − I∗)− β(I − I∗)− ωI∗

S∗
+

ωI
S

)
+ κβ(I − I∗)(S− S∗)

=− r
K
(S− S∗)2 −

( r
K
+ β− κβ

)
(S− S∗)(I − I∗)−ω(S− S∗)

(
−S(I − I∗) + I(S− S∗)

S∗S

)
=−

(
r
K
+

ωI
S∗S

)
(S− S∗)2 −

(
r + βK

K
− κβ− ω

S∗

)
(S− S∗)(I − I∗)

By choosing κ =
r + δR0

βK
, we get

CDα
t Φ2(S, I) ≤ −

(
r
K
+

ωI
S∗S

)
(S− S∗)2.

Therefore, CDα
t Φ2(S, I) ≤ 0 for all (S, I) ∈ R2

+, and CDα
t Φ2(S, I) = 0 implies that (S, I) = (S∗, I∗) which means

the singleton {Ω2} is the only invarian set on which CDα
t Φ2(S, I) = 0. By utilizing Lemma 4.6 in [40], the endemic

point Ω2 is always globally asymptotically stable. �

Remark 2. According to Theorem 5, if R0 > 1, then Ω2 is locally and globally asymptotically stable. For all
positive initial conditions, the disease always exists as t→ ∞ and convergent to an endemic point Ω2. Although
the disease will not extinct, when R0 > 1 the infected population has a bounded density.

Theorem 6. The equilibrium point Ω1 undergoes a forward bifurcation when R0 passes through the critical point R∗0 = 1.

proof. When R0 < R∗0 , the disease-free point Ω1 is the only non-trivial equilibrium point of model (3) which
is always asymptotically stable. When R0 > R∗0 , Ω1 losses its stability and an always asymptotically stable Ω2

occurs simultaneously. By considering I∗ =

(
1− 1

R0

)
rK

r + δR0
, we confirm that the increase of R0 means the

increase of the infected populations. �

Remark 3. Theorem 6 and the value of I∗ in Theorem 5 show us that R0 has an important rule in determining
the existence of the infected population. If R0 is enlarged, the intrinsic growth rate of infected populations is
increased. In some literature, R0 is called the ratio reproduction number, which is not discussed in detail in this
article.

5. Numerical Simulations

Some numerical simulations are demonstrated to confirm all analytical results. The predictor-corrector scheme
for Caputo fractional-order derivative developed by Diethelm [42] is applied. Since the model is studied
qualitatively and there are limitations in getting the field data, we take the suppositional values as the
parameters. By fixing parameter values: r = 0.5, K = 5, Ω = 0.2, and δ = 0.1, and varying the parameter of
infection rate β in interval 0 < β < 0.24 (so that 0 < R0 < 4) we plot the bifurcation diagram in Figure 1. The
disease-free point Ω1 which is asymptotically stable when R0 < 1 is separated into two equilibrium points
namely the unstable Ω1 and the asymptotically stable endemic point Ω2 when R0 > 1. Ω1 losses its stability
when β passes through β∗ = 0.06 or R0 passes through R∗0 = 1, and an asymptotically stable equilibrium point
appears in the interior simultaneously. Based on Theorem 6, this phenomenon is called forward bifurcation.
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Figure 1. Bifurcation diagram of model (3) driven by β with paramater values: r = 0.5, K = 5, Ω = 0.2, and δ = 0.1.
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Figure 2. Numerical simulation of model (3) with parameter values: r = 0.5, K = 5, β = 0.05 Ω = 0.2, and δ = 0.1
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Figure 3. Numerical simulation of model (3) with parameter values: r = 0.5, K = 5, β = 0.2 Ω = 0.2, and δ = 0.1
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To show the dynamical behavior of model (3) when R0 < 1 and R0 > 1, we set β = 0.05 (or R0 = 0.83333) and
β = 0.2 (or R0 = 3.33333), respectively. When R0 = 0.83333, we have an equilibrium point which given by label
[a]=(5,0), see Figure 1. The equilibrium point [a] is asymptotically stable both locally and globally as proven in
Theorem 4, and shown in Figure 2. For R0 = 3.33333, we have two equilibrium points labeled by [b] and [c], see
Figure 1. The equilibrium point [b] is unstable point while the equilibrium point [c] is globally asymptotically
stable. The phaseportrait and the time series are shown in Figure 3. From those numerical simulations, we
conclude that when R0 < 1, the disease won’t spread, and when R0 > 1, the disease will spread and convergent
to a constant value. The disease is still exists for t→ ∞ but the density of infected population is bounded.

6. Conclusion

The dynamics of a fractional-order logistic growth model with infectious disease has been investigated. We
show analytically that the model has atmost three equilibrium points i.e: the population extinction point which
is always exists and a saddle point, the disease-free point which is always exists, asymptotically stable when
R0 < 1 and a saddle point when R0 > 1, and the endemic point which is exists and asymptotically stable when
R0 > 1. We succesfully proof that the global stability has the similar properties as the local one for each non-
trivial equilibrium point. We also show there exists a forward bifurcation driven by β or R0. From biological
point of view, if R0 < 1 the disease will extinct, and if R0 > 1, the disease will spreads. Although the disease is
spreading, the disease will bounded an confine to a region.
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