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Abstract

Predator-prey interaction is a fundamental feature in the ecological system. The majority of studies have addressed how competition and predation affect
species coexistence. Recent field studies on vertebrate has shown that fear of predators can influence the behavioural pattern of prey populations and reduce
their reproduction. A natural question arises whether species coexistence is still possible or not when predator induce fear on competing species. Based on
the above observation, we propose a mathematical model of two competing prey-one predator system with the cost of fear that affect not only the
reproduction rate of both the prey population but also the predation rate of predator. To make the model more realistic, we incorporate intraspecific
competition within the predator population. Biological justification of the model is shown through positivity and boundedness of solutions. Existence and
stability of different boundary equilibria are discussed. Condition for the existence of coexistence equilibrium point is derived from showing uniform
persistence. Local as well as a global stability criterion is developed. Bifurcation analysis is performed by choosing the fear effect as the bifurcation
parameter of the model system. The nature of the limit cycle emerging through a Hopf bifurcation is indicated. Numerical experiments are carried out to
test the theoretical results obtained from this model.

Keywords: Fear Effect; Predator-Prey Interaction; Stability; Bifurcation

1. Introduction

In ecological system, predation and competition are often assumed to be the important factors that affect species
coexistence [1–4]. It is further investigated thoroughly in [5–7]. Gurevitch et al. [8] showed that predator can
promote coexistence by lowering the strength of competition. It is a well known fact that predator can affect
prey populations by direct killing. Recent field studies show that the indirect effect of predator species on prey
species has major impact than direct killing [9–13]. Thus, it is reasonable to incorporate the fear effect in the model
focussed on the role of predator regarding the coexistence of competing species. This type of mechanism can slow
down the competition in respect of resource competition. Thus avoidance behaviour developed by fear usually
stimulates coexistence provided prey partition resources, but not predators, whereas it weaken coexistence if prey
partition predators but not resources. Zanette et al. [14] carried out experiments on song sparrows and observed
40% reduction in offspring production due to fear from the predator. With this fact in mind, Wang et al. [15] first
developed the predator-prey model incorporating the cost of fear into prey reproduction. They found that the cost
of fear has no impact in dynamical behavior when predation follows Holling type I response function, whereas
it can stabilize the system by discarding periodic orbits considering Holling type II response function. Since
then several studies are found in predator-prey models by introducing a fear component in prey reproduction.
Wang and Zou [16] investigated a predator-prey model with the cost of fear and adaptive avoidance of predators
and established that both strong adaption of adult prey and the large cost of fear induces destabilizing effect
while large population of predators stabilize the system. Sasmal and Takeuchi [17] discussed the dynamics of
a prey-predator model incorporating two facts: fear effect and group defense. Mondal et al. [18] analyzed the
predator-prey model considering both the effects of fear and additional food and showed stability of equilibrium
points and Hopf bifurcation. Zhang et al. [19] investigated the influence of anti- predator behavior due to fear of
predators to a Holling type II prey-predator model allowing a prey refuge and demonstrated the global stability
analysis of the equilibria of the model and showed Hopf bifurcation. Previous studies [15, 16, 18–22] are mainly
confined in two species that cannot properly explain the fear effect when multiple species are present and these
studies also ignore the effect of fear on predation rates. So present study attempts to investigate the predator fear
which affects behavior of competing prey species and predation rates. This study also addresses the question of
species coexistence.

Takeuchi and Adachi [23] studied the following two competing prey and one predator model in Lotka-Volterra
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form:

dx1

dt
= x1 (r1 − x1 − αx2 − εy) ,

dx2

dt
= x2 (r2 − βx1 − x2 − µy) ,

dy
dt

= y (−d + cεx1 + cµx2) .

(1)

Here the variables x1 and x2 represent the densities of prey y that of predator. r1 and r2 are the intrinsic growth
rate of prey. α and β are parameters representing competitive effects between two prey. ε and µ are coefficients of
decrease of prey species due to predation. c is the equal conversion rate of the predator. All the parameters are
assumed to be positive. In [23], the authors showed stability and Hopf bifurcation. They also pointed out that the
stable equilibrium bifurcates to a periodic motion with a small amplitude when the predation rate increases and
chaotic motion appears when one of two prey is superior than the other. Finally, they remarked that predator
mediated coexistence is possible by the close relationship between preferences of a predator and competitive
capacities of two prey. However, studies in [23] only considers the effect of direct killing prey populations and
ignore the fear effect in the model equations. In the real world, the intraspecific competition among predator
exists. Fear reduces the mobility of prey and reproduction so predation rates ε and µ cannot be a constant, they
are decreasing function of k1 and k2 respectively. By biological meaning, f (k1) and g(k2) are assumed to satisfy

f ′(k1) < 0, f (0) = ε0, lim
k1→∞

f (k1) = 0, g′(k2) < 0, g(0) = µ0 and lim
k2→∞

g(k2) = 0.

Taking the cost of fear on reproduction of prey and predation terms only, intraspecific competition among the
predators and unequal conversion rate of predator, system (1) becomes

dx1

dt
= x1

(
r1

1 + k1y
− x1 − αx2 − f (k1)y

)
,

dx2

dt
= x2

(
r2

1 + k2y
− βx1 − x2 − g(k2)y

)
,

dy
dt

= y (−d + c1 f (k1)x1 + c2g(k2)x2 − hy) ,

(2)

where ki, i = 1, 2 represents the level of fear and h denotes the intraspecific competition within the predator
population. ci, i = 1, 2 is the conversion efficiency of the predator. Justification for considering the fear term can
be found in [15].

The rest of the paper is organized as follows. In Section 2, we study positivity and boundedness of the solutions
of the system. In Section 3, existence and stability of different equilibrium points are discussed. Hopf bifurcation
around the positive equilibrium point and the nature of the limit cycle emerging through Hopf bifurcation are
derived in Section 4. Numerical simulations are performed in Section 5. A brief discussion concludes in Section 6.

2. Positivity and Boundedness of Solutions

In this section, we first show positivity and boundedness of solutions of system (2). These are very important so
far as the biological validity of the model is concerned. We first establish the positivity.

Lemma 1. All solutions (x1(t), x2(t), y(t)) of system (2) with initial values (x10, x20, y0) ∈ R3
+, remains positive for all

t > 0.

proof. The positivity of x1 (t), x2 (t), y (t) can be verified by the equations

x1 (t) = x10 exp
{∫ t

0
[

r1

1 + k1y(s)
− x1 (s)− αx2 (s)− f (k1)y(s)]ds

}
,

x2 (t) = x20 exp
{∫ t

0
[

r2

1 + k2y(s)
− βx1 (s)− x2 (s)− g(k2)y(s)]ds

}
,

y (t) = y0 exp
{∫ t

0
[−d + c1 f (k1)x1 (s) + c2g(k2)x2 − hy(s)]ds

}
,

with x10, x20, y0 > 0. As x10 > 0 then x1 (t) > 0 for all t > 0. The same argument is valid for component x2(t)
and y(t) . Hence the interior of R3

+, is an invariant set of system (2). �
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Lemma 2. All solutions of system (2) will lie in the region

B =

{
(x1, x2, y) ∈ R3

+ : 0 ≤ c1x1 + c2x2 + y ≤ M
λ

}
as t→ ∞ for all positive initial values (x10, x20, y0) ∈ R3

+, where λ < min{r1, r2, d} and M = r2
1 + r2

2.

proof. Let us consider the function
W (t) = c1x1 + c2x2 + y.

The time derivative along a solution of (2) is

dW(t)
dt

= c1x1

(
r1

1 + k1y
− x1 − αx2

)
+ c2x2

(
r2

1 + k2y
− βx1 − x2

)
− y(d + hy).

For each λ > 0, the following inequality is satisfied.

dW
dt

+ λW ≤ c1x1 (r1 + λ− x1) + c2x2 (r2 + λ− x2) + (λ− d)y

= −
{(

x1 −
r1 + λ

2

)2
−
(

r1 + λ

2

)2
}
−
{(

x2 −
r2 + λ

2

)2
−
(

r2 + λ

2

)2
}
+ (λ− d) y

≤ (r1 + λ)2

4
+

(r2 + λ)

4

2
+ (λ− d)y.

(3)

Now choose λ such that λ < min{r1, r2, d}}. Thus (3) can be written as

dW
dt

+ λW ≤ r2
1 + r2

2 = M (say).

By using the comparison theorem [24], we get

0 ≤W (x1 (t) , x2 (t) , y (t)) ≤ M
λ

+ W(x1 (0) , x2 (0) , y (0))/eλt.

Taking limit when t→ ∞, we have 0 < W(t) ≤ M
λ

. Hence system (2) is bounded. �

From the above Lemma 2, we can find that y (t) ≤ M
λ

= M̄ (say).

3. Existence of equilibria and Stability analysis

Evidently, system (2) has six non-negative equilibrium points. The population free equilibrium point
E0 = (0, 0, 0). The second prey and predator free equilibrium point E1 = (r1, 0, 0). The first prey and predator

free equilibrium point E2 = (0, r2, 0). If α <
r1

r2
<

1
β

or α >
r1

r2
>

1
β

then there exists unique predator free

equilibrium point E12 = (x̄1, x̄2, 0) where x̄1 =
r1 − r2α

1− αβ
, x̄2 =

r2 − r1β

1− αβ
. If d < r1c1 f (k1) then there exists unique

second prey free equilibrium point E13 = (x̂1, 0, ŷ) where x̂1 =
hŷ + d
c1 f (k1)

and ŷ is the positive root of the equation

k1(h + c1 f (k1)
2)y2 +

(
h + dk1 + c1 f (k1)

2
)

y + d− r1c1 f (k1) = 0.

If d < r2c2g(k2) then there exists unique first prey free equilibrium point E23 = (0, x̃2, ỹ) where x̃2 =
hỹ + d
c2g(k2)

and

ỹ is the positive root of the equation

k2(h + c2g (k2)
2)y2 +

(
h + dk2 + c2g (k2)

2
)

y + d− r2c2g(k2) = 0.

Theorem 3. (i) E0 is always unstable.
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(ii) E1 is locally stable if r2 < βr1 and d > c1 f (k1)r1.
(iii) E2 is stable if r1 < αr2 and d > c2g(k2)r2.
(iv) E12 is stable if αβ < 1 and d > c1 f (k1)x̄1 + c2g(k2)x̄2.
(v) E13 is stable if

r2

1 + k2ŷ
< βx̂1 + g(k2)ŷ and E23 is stable if

r1

1 + k1ỹ
< αx̃2 + f (k1)ỹ.

proof. Proof follows immediately by linearizing around the equilibria. �

To find the existence condition of positive equilibrium point, we first show uniform persistence of system (2) and
then application of a result in [25] ensures the existence.

Persistence

In biological sense, persistence means the long term survival of all populations whatever may be the initial
populations. Geometrically, it means the existence of a region in the phase space at a non-zero distance from the
boundary in which all species enter and must lie ultimately.

Now we state a result establishing the uniform persistence of system (2).

Theorem 4. Suppose E12, E13 and E23 exist. Further suppose that d < c1 f (k1) x̄1 + c2g (k2) x̄2,
r2

1 + k2ŷ
> βx̂1 + g(k2)ŷ

and
r1

1 + k1ỹ
> αx̃2 + f (k1)ỹ then system (2) is uniformly persistent.

proof. We shall prove the theorem by using the idea of average Lyapunov function [26].

Consider the average Lyapunov function of the form : H (x) = x1
m1 x2

m2 ym3 , where each mi, i = 1, 2, 3 is assumed
positive. In the interior of R3

+, one has

1
H(x)

dH(x)
dt

= ψ (x) =
m1

x1

dx1

dt
+

m2

x2

dx2

dt
+

m3

y
dy
dt

= m1

(
r1

1 + k1y
− x1 − αx2 − f (k1)y

)
+ m2

(
r2

1 + k2y
− βx1 − x2 − g(k2)y

)
+ m3 (−d + c1 f (k1)x1 + c2g(k2)x2 − hy) .

We have to show ψ (x) > 0 for all x ∈ bdR3
+, for a suitable choice of m1, m2, m3 > 0, to prove uniform persistence

of system (2). That is one has to satisfy the following conditions corresponding to the boundary equilibria E0, E1,
E2, E12, E13, E23 only as there are no periodic orbits in x1 − x2, x1 − y and x2 − y plane.

E0 : m1r1 + m2r2 −m3d > 0 (4)
E1 : m2 (r2 − βr1) + m3(−d + c1 f (k1)r1) > 0 (5)
E2 : m1 (r1 − αr2) + m3(−d + c2g (k2) r2) > 0 (6)

E12 : m3 (c1 f (k1)x̄1 + c2g(k2)x̄2 − d) > 0 (7)

E13 : m2

(
r2

1 + k2ŷ
− βx̂1 − g(k2)ŷ

)
> 0 (8)

E23 : m1

(
r1

1 + k1ỹ
− αx̃2 − f (k1)ỹ

)
> 0 (9)

Since d < c1 f (k1)x̄1 + c2g(k2)x̄2,
r2

1 + k2ŷ
> βx̂1 + g(k2)ŷ and

r1

1 + k1ỹ
> αx̃2 + f (k1)ỹ positivity of (7), (8) and (9)

is obvious. Again existence of E13 and E23 implies that d < c1 f (k1)r1 and c2g(k2)r2. So positivity of (4), (5) and
(6) will follow by the suitable choice of m1, m2, and m3. This completes the proof. �

In this section, we proved that system (2) ensures uniform persistence provided that the conditions of Theorem 4
are satisfied. Further, it is proved in [25], uniform persistence implies the existence of an interior equilibrium
point. Hence E∗ = (x∗1 , x∗2 , y∗) exists; that is in effect Theorem 4 implies that E∗ exists.

JJBM | Jambura J. Biomath Volume 2 | Issue 1 | June 2021
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Theorem 5. Suppose all the conditions of Theorem 4 be satisfied. Then the interior equilibrium point E∗ of system (2) is

locally asymptotically stable if α <
c2g(k2)

c1 f (k1)
<

1
β

.

proof. The Jacobian matrix of system (2) for the equilibrium point E∗ is given by

J (E∗) =


−x∗1 −αx∗1 −( f (k1) +

r1k1

(1 + k1y∗)2 )x∗1

−βx∗2 −x∗2 −(g(k2) +
r2k2

(1 + k2y∗)2 )x∗2

c1 f (k1)y∗ c2g(k2)y∗ −hy∗

 .

The characteristic equation about E∗ is
λ3 + a1λ2 + a2λ + a3 = 0 (10)

where

a1 = x∗1 + x∗2 + hy∗,

a2 = x∗1 x∗2 (1− αβ) + hy∗ (x∗1 + x∗2) +

(
r1k1

(1 + k1y∗)2 + f (k1)

)
c1 f (k1)x∗1y∗

+ (
r2k2

(1 + k2y∗)2 + g(k2))c2g(k2)x∗2y∗,

a3 = x∗1 x∗2y∗
{

h (1− αβ) + (c2g(k2)− αc1 f (k1))

(
r2k2

(1 + k2y∗)2 + g(k2)

)

+ (c1 f (k1)− βc2g(k2))

(
r1k1

(1 + k1y∗)2 + f (k1)

)}
.

Clearly a1 > 0. Again a2 > 0, a3 > 0, and a1a2 > a3 follows from the assumption of the theorem. Therefore the
result holds by the application of Routh-Hurwitz criterion. This completes the proof. �

Theorem 6. Suppose that
(

α + β

2

)2
+

1
4h

(
c2

1r2
1k2

1 + c2
2r2

2k2
2 +

1
2
(α + β) c1r1k1c2r2k2

}
< 1 Then E∗ is globally

asymptotically stable.

proof. Consider the following positive definite function about E∗.

V (t) = c1

(
x1 − x∗1 − x∗1 ln

x1

x∗1

)
+ c2

(
x2 − x∗2 − x∗2 ln

x2

x∗2

)
+

(
y− y∗ − y∗ ln

y
y∗

)
.

Differentiating V with respect to t along the solution of system (2), we get

dV
dt

= c1 (x1 − x∗1)
{

r1

1 + k1y
− x1 − αx2 − f (k1)y

}
+ c2 (x2 − x∗2)

(
r2

1 + k2y
− βx1 − x2 − g(k2)y

)
+ (y− y∗)(−d + c1 f (k1)x1 + c2g(k2)x2 − hy)

= c1 (x1 − x∗1)
{

r1k1 (y∗ − y)
(1 + k1y) (1 + k1y∗)

− (x1 − x∗1)− α(x2 − x∗2)
}

− c2 (x2 − x∗2)
{

r2k2 (y∗ − y)
(1 + k2y) (1 + k2y∗)

− β (x1 − x∗1)− (x2 − x∗2)
}
− h(y− y∗)2

≤ − (x1 − x∗1)
2 + (α + β) |(x1 − x∗1)| |(x2 − x∗2)| − (x2 − x∗2)

2 − h(y− y∗)2

+ c1r1k1 |x1 − x∗1 | |y− y∗|+ c2r2k2|x2 − x∗2 ||y− y∗|

Clearly V̇ is negative definite if the following matrix A is positive definite.

A =


1 −1

2
(α + β) −1

2
c1r1k1

−1
2
(α + β) 1 −1

2
c2r2k2

−1
2

c1r1k1 −1
2

c2r2c2 h
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Thus the condition of theorem implies that A is positive and consequently V is a Lyapunov function and hence
the theorem follows. �

4. Hopf bifurcation and its nature

Set F (k1) = a1 (k1) a2 (k1)− a3 (k1).

Theorem 7. Assume that a3 (k1) > 0. If there exists k1 = k∗1 such that (i) F
(
k∗1
)
= 0, (ii) F′

(
k∗1
)
> 0 then the positive

equilibrium point E∗ is unstable if k1 < k∗1 but is stable for k1 > k∗1 and a Hopf bifurcation of periodic solution occurs at
k1 = k∗1 .

proof. Proceeding along the lines in [27], we note that the condition F′
(
k∗1
)
> 0 indicates that F(k1) is monotonic

increasing function in the neighbourhood of k1 = k∗1. Now, F (k1) < F
(
k∗1
)
= 0 for k1 < k∗1 this implies that

a1 (k1) a2 (k1) − a3 (k1) < 0 and hence the condition of Routh-Hurwitz criterion is violated. Consequently, E∗

becomes unstable. Again, it is obvious that, F (k1) > F
(
k∗1
)
= 0 for k1 > k∗1 and this implies that a1 (k1) a2 (k1)−

a3 (k1) > 0. Since a1 (k1) is always positive and a3 (k1) is positive by the assumption of the theorem. Thus we
have a2(k1) > 0. Therefore all the conditions of Routh-Hurwitz criterion are satisfied and hence E∗ is stable.
Therefore, Hopf bifurcation follows from a result in [28]. �

4.1. Stability of the limit cycle

Stability of the limit cycle can be derived by calculating the coefficient of curvature of the limit cycle [29]. The
aim of this section is to investigate the stability of limit cycle of system (2). We now shift the equilibrium point of
system (2) from (x∗1 , x∗2 , y∗) to (0, 0, 0) through the following transformation

x1 = u1 + x∗1 , x2 = u2 + x∗2 , y = u3 + y∗.

In terms of the new variables, system (2) can be transformed in the following form :

du1

dt
=

r1u1

1 + k1(u3 + y∗)
− (u1 + x∗1)

2 − α (u1 + x∗1) (u2 + x∗2)− f (k1)(u1 + x∗1) (u3 + y∗) +
r1x∗1

1 + k1(u3 + y∗)
,

du2

dt
=

r2u2

1 + k2(u3 + y∗)
− β (u1 + x∗1) (u2 + x∗2)− (u2 + x∗2)

2 − g(k2)(u2 + x∗2)(u3 + y∗) +
r2x∗2

1 + k2(u3 + y∗)
,

du3

dt
= (u3 + y∗)(c1 f (k1)u1 + c2g(k2)u2 − hu3),

where the matrix of the nonlinear part is

Q =

 Q1
Q2
Q3

 =


r1u1

1 + k1(u3 + y∗)
− u2

1 − αu1u2 − f (k1)u1u3 +
r1x∗1

1 + k1(u3 + y∗)
r2u2

1 + k2(u3 + y∗)
− βu1u2 − u2

2 − g(k2)u2u3 +
r2x∗2

1 + k2(u3 + y∗)
c1 f (k1)u1u3 + c2g(k2)u2u3 − hu2

3


From the nonlinear part above, we calculate the characteristic quantities in the followings :

g0
20 =

1
4

{
∂2Q1

∂u2
1
− ∂2Q1

∂u2
2

+ 2
∂2Q2

∂u1∂u2
+ i

(
∂2Q2

∂u2
1
− ∂2Q2

∂u2
2
− 2

∂2Q1

∂u1∂u2

)}
= −1

2
{(1 + β)− i (1 + α)},

g0
11 =

1
4

{
∂2Q1

∂u2
1

+
∂2Q1

∂u2
2

+ i

(
∂2Q2

∂u2
1

+
∂2Q2

∂u2
2

)}
= −1

2
{1 + i},

G0
110 =

1
2

{
∂2Q1

∂u1∂u3
+

∂2Q2

∂u2∂u3
+ i
(

∂2Q2

∂u1∂u3
− ∂2Q1

∂u2∂u3

)}
= −1

2

{
r1k1

{1 + k1 (u3 + y∗)}2 + f (k1) + g(k2)

}
,

G0
101 =

1
2

{
∂2Q1

∂u1∂u3
− ∂2Q2

∂u2∂u3
+ i
(

∂2Q2

∂u1∂u3
+

∂2Q1

∂u2∂u3

)}
= −1

2

[
r1k1

{1 + k1 (u3 + y∗)}2 + f (k1)− g(k2)

]
,

W0
11 = − 1

4λ3(a1 (h∗))

(
∂2Q3

∂u2
1

+
∂2Q3

∂u2
2

)
= 0,
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Figure 1. Phase portrait of system (11) without fear and the other parameter values are defined in (12)

W0
20 = − 1

4(4i− λ3(a1 (h∗))

(
∂2Q3

∂u2
1
− ∂2Q3

∂u2
2
− 2i

∂2Q3

∂u1∂u2

)
= 0,

G0
21 =

1
8

{
∂3Q1

∂u3
1

+
∂3Q1

∂u1∂u2
2
+

∂3Q2

∂u3
2

+
∂3Q2

∂u2
1∂u2

+ i

(
∂3Q2

∂u3
1

+
∂3Q2

∂u1∂u2
2
− ∂3Q1

∂u2
1∂u2

− ∂3Q1

∂u3
2

)}
= 0.

Then the coefficient of curvature of limit cycle of system (2) is

σ0
1 = Re

{
g0

20g0
11

4
i + G0

110W0
11 +

G0
21 + G0

101W0
20

2

}

=
1
16

(α− β).

Thus we observed that the coefficient of curvature σ0
1 < 0 if α < β in that case the limit cycle of system (2) will

be stable. From above analysis one can conclude that the interspecific competition rate between the prey species
plays a vital role for determining the nature of the limit cycle emerging through Hopf bifurcation.

In the following table, we summarise the stability criteria of different equilibria of system (2).

Table 1. Dynamics of system (2). LAS= Locally asymptotically stable, GAS= Globally asymptotically stable.

Equilibria Stability condition Equilibrium nature
E0 No condition Unstable
E1

r2
β

< r1 <
d

c1 f (k1)
LAS

E2
r1
α

< r2 <
d

c2g(k2)
LAS

E12 αβ < 1, d > c1 f (k1)x̄1 + c2g(k2)x̄2 LAS
E13

r2
1 + k2ŷ

< βx̂1 + g(k2)ŷ LAS

E23
r1

1 + k1ỹ
< αx̃2 + f (k1)ỹ LAS

E∗ α <
c2g(k2)

c1 f (k1)
<

1
β

LAS

E∗ (
α + β

2
)

2
+

1
4h

(
c2

1r2
1k2

1 + c2
2r2

2k2
2 +

1
2
(α + β) c1r1k1c2r2k2

}
< 1 GAS
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Figure 2. Phase portrait of system (11) for with parameters values (12) and k1 = 0, k2 = 0.04
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Figure 3. Phase portrait of system (11) for with parameters values (12) and k1 = 0.05, k2 = 0.04 showing stable
limit cycle surrounding E∗ = (1.5347, 0.9467, 2.7008)

5. Numerical Simulations

In this section, we present some numerical simulations to illustrate the analytical results obtained earlier. For this
purpose, we choose a particular form of the functions f (k1) and g(k2) given by

f (k1) =
ε0

1 + k1m
, g (k2) =

µ0

1 + k2n

and these lead (2) to the following system:

dx1

dt
= x1

(
r1

1 + k1y
− x1 − αx2 −

ε0

1 + k1m
y
)

,

dx2

dt
= x2

(
r2

1 + k2y
− βx1 − x2 −

µ0

1 + k2n
y
)

,
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Figure 4. Bifurcation diagram for prey x1, x2, and predator y with respect to the parameter k1 when k2 = 0.04 and
other parameter values are given in (12)

dy
dt

= y
(
−d +

c1ε0

1 + k1m
x1 +

c2µ0

1 + k2n
x2 − hy

)
(11)

First we investigate the effect of fear on the dynamics of system (11). So it is reasonable to study the system (11)
without fear effect (i.e., ki = 0, i = 1, 2). We choose the other parameter value as

r1 = 12, r2 = 2, α = 5, β = 1, ε0 = 1.6, µ0 = 0.01, m = 1, n = 1, c1 = 1, c2 = 1, d = 1, h = 0.001. (12)

Figure 1 shows the phase diagram of system (11) for ki = 0, i = 1, 2. In absence of fear, oscillatory behaviour
is observed. We now increase the value of k2 from 0 to 0.04, keeping k1 = 0 fixed. Stable behaviour is observed
for system (11) and the solutions converge to the coexistence equilibrium point E∗ = (0.6177, 1.0891, 3.6949)
(see Figure 2). Now we increase the value of k1 from 0 to 0.05, a Hopf bifurcating periodic solution appears
around the steady state E∗ = (1.5347, 0.9467, 2.7008) (see Figure 3). Bifurcation diagram with respect to the
parameter k1 is depicted in Figure 4. From Figures 3 and 4, we note that the increase amount of predator fear
stabilizes the system. Taking the value of parameter h = 0.1 and all other parameters are same as in Figure 3,
we observe that the solutions of system (11) converge to the equilibrium point E∗ = (0.8700, 0.8608, 3.3500) (see
Figure 5). Furthermore, from Figure 5, we observed that the increase amount of intraspecific competition within
the predator population can induces stability of the system.

6. Discussion

In predator-prey interaction, predation is considered to be the main force that promotes coexistence of competing
species by reducing the strength of competition [8]. If the predator chooses strongest competitor species, mostly
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Figure 5. Phase portrait of system (11) for with parameters values r1 = 12, r2 = 2, α = 5, β = 1, ε0 = 1.6, µ0 =

0.01, c1 = 1, c2 = 1, d = 1, h = 0.1, k1 = 0.05, k2 = 0.04 showing local stability of the equilibrium point
E∗ = (0.8700, 0.8608, 3.3500)

then it relives competition pressure on other species, thereby allowing coexistence of multiple species. Recent
field experiments showed that predators can induce a non-consumptive effect on their prey, for example fear
[30]. Due to predation fear, prey can adopt defensive strategies that disrupt coexistence [31]. To address fear
induced coexistence on competing species, we developed a mathematical model of two competing prey species
and one predator where predator not only kill both the prey but also shows non-consumptive effect upon them.
Our system also includes intraspecific competition within the predator population. Takeuchi and Adachi [23]
addresses an ecological system with the same type of species, but no fear effect, nor intraspecific competition
within the predator populations obtaining coexistence results. The proposed model is biologically meaningful in
the sense that any positive solution initiating in the positive orthant remains both non-negative and bounded.

Mathematical analysis of the model established that the system cannot collapse for any parameter value as the
origin is always unstable. If the second prey has low intrinsic growth rate and the predator has a high death rate
then the predator cannot prevent the first prey and tends to its carrying capacity; E1 is an attractor whereas the
opposite holds if the first prey has low intrinsic growth rate. If the intraspecific competition if stronger than the
interspecific competition and the predator has the highest death rate then both the prey can coexist at E12 while
predator population goes into extinction due to large death rate. The first prey and the predator can coexist at E13
when the second prey has moderate intrinsic growth rate. Again the second prey and the predator can coexist
at E23 as long as the intrinsic growth rate remains below a certain threshold value. Using invasion analysis, we
derived criterion for uniform persistence of our model system that ensures the existence of positive (coexistence)
equilibrium point. Local stability of the coexistence equilibrium point is possible if the ratio of intake capacity by
the predator lie within an interval. The existence of Hopf bifurcation is shown by considering the level of fear as
bifurcation parameter. The nature of limit cycle emerging through a Hopf bifurcation is predicted by calculating
the coefficient of curvature of the limit cycle. In this paper we have not considered intraspecific competition rate
h as bifurcation parameter. But one obtain bifurcation result for taking h as bifurcation parameter. When most of
the predators are involved in intraspecific competition, stable coexistence increases (see Figure 5).

The novelty of our work is the inclusion of fear effect and intraspecific competition within the predator
populations which are not considered in [23]. This investigation generalizes the existing knowledge of fear
effect of predator on a single prey species [15, 16, 18, 19, 21, 22]. Furthermore, previous studies ignore the fear
effect on predation rate for obtaining coexistence results. As high level of fear can destroy coexistence that
agrees with [31] still coexistence of predator and competing prey is possible with the increase of intraspecific
competition within the predator population. Our theoretical observations will be helpful to verify some
experimental data set of two competing prey and one predator system.

It may also be worthwhile to see how the other response function rather than Holling type I affects the dynamics

JJBM | Jambura J. Biomath Volume 2 | Issue 1 | June 2021



Mukherjee – Impact of predator fear on two competing prey species 11

of the system. From experimental observation, we have considered the fear effect on reproduction term of prey
populations and predation rate still it is reasonable to see the fear effect on intraspecific, interspecific competition
or death rate of prey populations.
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