The Dynamics of a Predator-Prey Model Involving Disease Spread In Prey and Predator Cannibalism

Nurul Imamah Ah et al.
The Dynamics of a Predator-Prey Model Involving Disease Spread In Prey and Predator Cannibalism

Nurul Imamah Ahmad, Wuryansari Muhanini Kusumawinahyu, Agus Suryanto, and Trisilowati

ABSTRACT. In this article, dynamics of predator prey model with infection spread in prey and cannibalism in predator is analyzed. The model has three populations, namely susceptible prey, infected prey, and predator. It is assumed that there is no migration in both prey and predator populations. The dynamical analysis shows that the model has six equilibria, namely the trivial equilibrium point, the prey extinction point, the disease free and predator extinction equilibrium point, the disease-free equilibrium point, the predator extinction equilibrium point, and the coexistence equilibrium point. The first equilibrium is unstable, and the other equilibria conditionally local asymptotically stable. The positivity and boundedness of the solution are also shown. The analytical result is supported by numerical simulation. It is shown that in such a high cannibalization the coexistence equilibrium is locally asymptotically stable.

KEYWORDS: cannibalism, predator prey model, disease dynamical analysis

1. Introduction

The relationship between predator and prey species, known as predation, is one of the interactions between species in an ecosystem. A mathematical model of predation was first proposed by Lotka and Volterra [1–3]. In the Lotka-Volterra model, it is assumed that both prey and predator are healthy. In fact, there is an interesting possibility of disease spreading among them and may influence the existence of prey and predators. As a result, Kermack et al [4] were among the first who used mathematical models to explore the spread of diseases or eco-epidemiological models. Meanwhile, several researchers have discussed the eco-epidemiological model of predator prey with infected prey population [5–13]. Chattopadhyay et al [14] consider eco-epidemiological model which the transmission rate among the susceptible populations and the infected prey populations follows the simple law of mass action. The disease is spread among the prey population is not genetically inherited. And the infected populations do not become immune. The predator populations here use the type I Holling functional response. Furthermore, the eco-epidemiological model proposed by Biswas et al [15] implies that infected prey cannot become susceptible prey and that predators are harvested. Maisarah et al [16] also analyzed the model of predator-prey with disease and proportional harvesting in predator.

Cannibalism is also a biological phenomenon which may influence the existence of predator-prey. Kang et al [17] studied a single-species cannibalism model with stage structure. The model studied is a dynamical system of one population with an age structure that divides the population into two classes, namely eggs and adult class. Deng et al [18] considered the dynamic behaviors of Lotka–Volterra predator–prey model incorporating predator cannibalism and show that cannibalism has both positive and negative effects on the stability of the system, it depends on the dynamic behaviors of the original system. Biswas et al [19] also analyzed a predator-prey model with disease in both prey and predator populations. They consider that the predator population is cannibalistic in nature and the disease spread in the predator population through cannibalism. Rayungsari et al [20] also developed a cannibalism of eco-epidemiological models in predator population. They examine that cannibalism acts as a self-regulatory mechanism and controls the disease transmission among the predators by stabilizing the predator prey oscillations. Zhang et al [21] developed an eco-epidemiological model with stage structure and cannibalism in predators, resulting in a three-dimensional dynamical model. The predator population is separated into two subpopulations in Zhang’s model, namely juvenile and adult predators. The juvenile predator birth rate is proportional to the number of adult predators, and it follows Malthus growth model. Adult predators hunt on prey and juvenile predators in the rate represented by the type I Holling functional response.

Different from previous research, the formulation of the model in this paper combines Chattopadhyay et al [15] and Deng et al [18] in which predators attack susceptible prey and infected prey. It is assumed that predator-prey interactions follow cannibalism behaviour in predator. Shrimp and crab are the example of this eco-epidemiological model. Shrimp disease including the white spot syndrome virus (WSSV) can be caused by poor environmental quality and condition of shrimp. The goals of this research...
are to recreate the predator-prey model which is accounting for the existence of disease spread in the prey population, to find the equilibrium point, to examine the stability of the equilibrium point, and to perform numerical simulations to illustrate analytical result.

2. Formulation of the Model

The formulation of the model in this paper is inspired by Chattopadhyay et al. [15] who developed a predator-prey model with disease in the prey as follows.

\[
\begin{align*}
\frac{dx}{dt} &= r(x + x_i) \left(1 - \frac{x + x_i}{k}\right) - cx_1x_i - a_i x_i y, \\
\frac{dx_i}{dt} &= cx_1x_i - a_2x_iy - \delta x_i, \\
\frac{dy}{dt} &= d_1x_iy + d_2x_iy - \mu y.
\end{align*}
\]

(1)

In this paper, we introduce the simple predator-prey model involving disease spread in prey and cannibalism predator. We are assuming that:

1. The formulation of this model includes susceptible and infected prey. The susceptible prey population with intrinsic growth rate \(r\) and environmental carrying capacity \(k\).
2. The infected prey does not return to susceptible.
3. Predators are cannibalistic.
4. There is natural mortality in infected prey and predators.
5. There is no migration of both prey and predators.

Based on these assumptions, we formulate the model as follows.

\[
\begin{align*}
\frac{dx}{dt} &= rx \left(1 - \frac{x + x_i}{k}\right) - cx_1x_i - a_i x_i y = 0, \\
\frac{dx_i}{dt} &= cx_1x_i - a_2x_iy - \delta x_i = 0, \\
\frac{dy}{dt} &= d_1x_iy + d_2x_iy + \gamma y - \frac{\beta y^2}{q + y} - \mu y = 0.
\end{align*}
\]

(2)

where \(x, x_i\), and \(y\) respectively represent susceptible, infected prey and predator, with the following initial conditions.

\[x(0) > 0, x_i(0) > 0, y(0) > 0.\]

All parameters considered are positive, which is defined in Table 1.

2.1. Positivity and boundedness.

In this section, positivity, and boundedness of solutions of model (2) have been investigated.

Theorem 1. All solutions of model (2) with initial values \(x(0), x_i(0), y(0) \in \mathbb{R}_+^3\) are non-negative [20].

Proof. First, we proof that if \(x(0) \geq 0, x_i(0) \geq 0,\) and \(y(0) \geq 0,\) then \(x_i(t) \geq 0, x_i(t) \geq 0,\) and \(y(t) \geq 0\) for \(t > 0.\) If \(x(0) = 0,\) then \(x \frac{dx}{dt} = 0,\) at \(t = 0.\)

It means that the prey population density \(x\) does not change from the beginning to the next. Hence, it is assumed that \(x(0) > 0.\) If \(x(0) \geq 0\) for every \(t \geq 0\) is not true, then there is \(t_1 > 0\) such that \(x(t) > 0\) for \(0 < t < t_1, x(t) = 0,\) for \(t = t_1\) and \(x(t) < 0\) for \(t > t_1.\) From model (2) we obtain:

\[\frac{dx}{dt} = 0,\] at \(t = t_1.\)

Thus, there is no change in the population density of \(x\), when \(t = t_1.\) This contradicts the statement that \(x(t) < 0\) for \(t > t_1.\) Therefore, the previous assumption is false, which means \(x_i(0) \geq 0\) for every \(t > 0.\) In the same way, it can be proof that \(x_i(0) \geq 0\) and \(y(t) \geq 0\) for every \(t > 0.\)

Theorem 2. All solutions of model (2) in the region \(\Omega = (x + x_i + y) < \frac{\omega}{\rho} \in \mathbb{R}_+^3\) are uniformly bounded.

Proof: Choose a function defined by \(v(t) = x(t) + x_i(t) + y(t),\) where \(x > 0, x_i > 0, y > 0.\)

\[
\frac{dv}{dt} + \rho v = rx \left(1 - \frac{x + x_i}{k}\right) - a_1 xy - cx_1x_i + cx_2x_i - a_2x_iy - \delta x_i - \mu y + d_1x_iy + d_2x_iy - \frac{\beta y^2}{q + y} + \gamma y + \rho(\bar{x}_i + \bar{y}),
\]

if \(d_1 < a_1, d_2 < a_2,\) Then

\[
\frac{dv}{dt} + \rho v \leq rx \left(1 - \frac{x + x_i}{k}\right) - \delta x_i - \mu y - \frac{\beta y^2}{q + y} + \gamma y + \rho(\delta x_i + (\rho + \gamma - \mu)y - \frac{\beta y^2}{q + y} + \rho x_i.
\]

choose \(\rho < \min\{\delta, \mu - \gamma\},\) then.

\[
\frac{dv}{dt} + \rho v \leq rx \left(1 - \frac{x + x_i}{k}\right) + \rho x_i,
\]

\[
\leq rx - \frac{\rho^2 x_i}{k} + \rho x_i,
\]

\[
= (\rho + \rho)x_i - \frac{\rho^2 x_i}{k}.
\]

We get.

\[
\frac{dv}{dt} + \rho v(t) \leq w
\]

with \(w = \frac{(\rho + \rho)^2 k}{4r}.
\]

\[
e^{at} \left(\frac{dv}{dt} + \rho v(t)\right) \leq e^{at} w,
\]

\[
\frac{d(e^{at} v)}{dt} \leq e^{at} w,
\]

\[
\frac{e^{at} v}{e^{at} w} \leq \int e^{at} w dt,
\]

\[
v \leq e^{-at} w \left(\frac{e^{at} w}{\rho} + c\right),
\]

\[
v \leq \left(\frac{w}{\rho} + ce^{-at}\right).
\]
with $C = cw$ by substitution $t = 0$ to

$$v(t) \leq \frac{w}{\rho} + Ce^{-\rho t}.$$

We get.

$$C = v(0) - \frac{w}{\rho},$$

then

$$v(t) \leq \frac{w}{\rho} + \left(v(0) - \frac{w}{\rho}\right)e^{-\rho t},$$

if $v(0) \leq \frac{w}{\rho}$, then $v < \frac{w}{\rho}$. If $v(0) > \frac{w}{\rho}$, then $\frac{w}{\rho} < v(t) < v(0)$ because $\lim_{t \to \infty} v(t) = \frac{w}{\rho}$. Therefore all solution are uniformly bounded.

3. Equilibrium Points and Stability Analysis

3.1. Equilibrium Points

We find an equilibrium points of equation by equating the derivatives on the left-hand side to zero, namely.

$$x_{s} \left[r \left(1 - \frac{x_{s} + x_{1}}{k}\right) - a_{1}y - cx_{1}\right] = 0,$$

$$x_{i}[cx_{s} - a_{2} - \delta] = 0,$$

$$y \left[-\mu + d_{1}x_{s} + d_{2}x_{i} - \frac{\beta y}{q + y} + \gamma\right] = 0.$$

1. The trivial equilibrium point $E_{0} = (0, 0, 0)$, that always exists \mathbb{R}^{3}_{+}.
2. The prey extinction equilibrium point

 $$E_{1} = (0, 0, \tilde{y}).$$

 where $\tilde{y} = \frac{\mu - \gamma}{\gamma - \mu - \delta}$. Equilibrium point E_{1} exists in \mathbb{R}^{3}_{+}, if $\gamma - \beta < \mu < \gamma$. This condition shows that even though susceptible and infected prey is extinct, predator still survives the rate of cannibalism greater than natural death rate of predator population.

3. The disease free and predator extinction equilibrium point

 $$E_{2} = (k, 0, 0).$$

 Equilibrium points E_{2} always exists in \mathbb{R}^{3}_{+}.
4. The disease-free equilibrium point.

 $$E_{3} = (\tilde{x}_{s}, 0, \tilde{y}).$$

 where $\tilde{y} = \frac{rk - \tilde{x}_{s} \rho_{2}}{\gamma a_{2}}$. Equilibrium points of E_{3} exists in \mathbb{R}^{3}_{+}, if $\tilde{x}_{s} < k$.

5. The predator extinction equilibrium point.

 $$E_{4} = \left(\frac{\delta + r(ck - \delta)}{c(ck + r)}, 0\right).$$

 Equilibrium points E_{4} exists in \mathbb{R}^{3}_{+}, if $ck > \delta$.

6. The coexistence equilibrium point $E_{5} = (x_{s}^{*}, x_{i}^{*}, y^{*})$ with

 $$x_{s}^{*} = \frac{\varphi_{2} \pm \sqrt{\varphi_{2}^{2} - 4\varphi_{1}\varphi_{3}}}{2\varphi_{1}},$$

 $$x_{i}^{*} = \frac{a_{2}kr + \delta a_{1}k - (a_{2}r + a_{1}ck)x_{s}^{*}}{a_{2}(r + ck)},$$

 $$y^{*} = \frac{cx_{s}^{*} - \delta}{a_{2}}.$$

Where:

$$\varphi_{1} = d_{2}P - d_{1}Q,$$

$$\varphi_{2} = a_{2}R - a_{2}S + d_{2}T,$$

$$\varphi_{3} = a_{2}U - V + W,$$

$$P = a_{1}kc^{2} + a_{2}rc,$$

$$Q = a_{2}c^{2}k + ca_{2}r,$$

$$R = \mu rc + \mu c^{2}k + d_{1}ck\delta + a_{2}d_{2}r + a_{1}d_{2}ckq + a_{1}d_{2}ckq + \beta \delta c^{2}k,$$

$$S = a_{2}d_{1}cq + d_{1}\delta r + a_{1}d_{1}ckq + a_{2}d_{2}ckq + a_{1}d_{2}ckq + \beta \delta c^{2}k,$$

$$T = a_{1}dck + a_{1}dck,$$

$$U = a_{2}c_{2}r + \mu a_{2}ckq + \delta \mu ck + \gamma r + \gamma cek + \delta \gamma cek + \delta \gamma cek + \beta \delta cek,$$

$$V = \delta \mu r + \gamma a_{2}r + \gamma cr + \gamma a_{2}ckq + \delta a_{2}d_{2}ckq + \delta a_{2}d_{2}ckq + \beta \delta r,$$

$$W = \delta d\gamma k.$$

Let’s $D = \varphi_{2}^{2} - 4\varphi_{1}\varphi_{3}$ the following conditions are met.

- if $D = 0$, then $x_{s}^{*} = \frac{\varphi_{2}}{2\varphi_{1}}$, this equation has a positive root, when $\varphi_{1} < 0$ and $\varphi_{2} > 0$, or $\varphi_{1} > 0$ and $\varphi_{2} < 0$.

- for $D > 0$:

 (a) if $\frac{\varphi_{2}}{\varphi_{1}} > 0$ and $\varphi_{1}< 0$, then one fixed point is obtained.

 (b) if $\frac{\varphi_{2}}{\varphi_{1}} < 0$ and $\varphi_{1}< 0$, then one fixed point is obtained.

 (c) if $\frac{\varphi_{2}}{\varphi_{1}} < 0$ and $\varphi_{1}< 0$, then two fixed point are obtained.

Equilibrium point E_{5} exists if $\delta c < x_{s}^{*} < \frac{k(a_{2}r + \delta a_{1})}{a_{2}r + a_{1}ck}$.

Table 1. Definition Parameter and Ecological Meaning

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ecological Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>Intrinsic per capita growth rate of prey population</td>
</tr>
<tr>
<td>k</td>
<td>Carrying capacity of susceptible prey population</td>
</tr>
<tr>
<td>a_{1}</td>
<td>Maximum consumption rate of predator population</td>
</tr>
<tr>
<td>c</td>
<td>Disease transmission rate in prey population</td>
</tr>
<tr>
<td>a_{2}</td>
<td>Attack rate of infected prey</td>
</tr>
<tr>
<td>δ</td>
<td>Natural death rate of infected prey</td>
</tr>
<tr>
<td>μ</td>
<td>Natural death rate of predator population</td>
</tr>
<tr>
<td>a_{1}</td>
<td>Conversion rate of susceptible prey</td>
</tr>
<tr>
<td>a_{2}</td>
<td>Conversion rate of infected prey</td>
</tr>
<tr>
<td>γ</td>
<td>Conversion of cannibalism into predator birth</td>
</tr>
<tr>
<td>q</td>
<td>Half saturation constant of predator cannibalism</td>
</tr>
<tr>
<td>β</td>
<td>Predator cannibalism rate</td>
</tr>
</tbody>
</table>
3.2. Local Stability

Here we examine the eigen value by Jacobian matrix.

\[J = \begin{bmatrix} j_{11} & j_{12} & j_{13} \\ j_{21} & j_{22} & j_{23} \\ j_{31} & j_{32} & j_{33} \end{bmatrix}, \]

where

\[
\begin{align*}
j_{11} &= r - \frac{2r_x}{x} - \frac{r_x}{k} - a_1 y - c x, \\
j_{12} &= \frac{2r_x}{x} - c x, \\
j_{13} &= -a_1 x, \\
j_{21} &= c x, \\
j_{22} &= c x - a_2 y - \delta, \\
j_{23} &= -a_2 x, \\
j_{31} &= d_1 y, \\
j_{32} &= d_2 y, \\
j_{33} &= -\mu + d_1 x + d_2 x + \gamma - \frac{2\beta q + \gamma}{(q + \gamma)^2}. \end{align*}
\]

The stability of the equilibrium points of the model (2) are determined by the eigenvalues of the Jacobian matrix and the result is obtained in the following theorem.

Theorem 3. The local stability of the equilibrium points of the model is as follows.

i. The equilibrium \(E_0 = (0, 0, 0) \) is always unstable.

ii. \(E_1 = (0, 0, \bar{y}) \) is locally asymptotically stable if \(r < a_1 \bar{y} \) and unstable if \(r > a_1 \bar{y} \).

iii. \(E_2 = (k, 0, 0) \) is locally asymptotically stable if \(k < \min \left\{ \frac{\bar{y}}{r}, \frac{\mu - \gamma}{x} \right\} \) and unstable if \(k > \min \left\{ \frac{\bar{y}}{r}, \frac{\mu - \gamma}{x} \right\} \).

iv. \(E_3 = (\bar{x}, x, 0) \) is locally asymptotically stable if \(c \bar{x} < a_2 \bar{y} + \delta \).

v. \(E_4 = \left(\frac{r}{c}, \frac{r}{c}, 0 \right) \) is locally asymptotically stable if
\[
\mu > \gamma + d_1 \left(\frac{\bar{y}}{k} \right) + \frac{d_2}{k} \left(\frac{\bar{y}}{c(x + \bar{y})} \right). \]

vi. \(E_5 = (x^*, x^*, y^*) \) is locally asymptotically stable if \(\rho_1 > 0, \rho_3 > 0, \) and \(\rho_1 \rho_2 > \rho_3 > 0 \).

Proof.

1. By substituting \(E_0 = (0, 0, 0) \) to the model (1), we have

\[
J(E_0) = \begin{bmatrix} r & 0 & 0 \\ 0 & -\delta & 0 \\ 0 & 0 & -\mu + \gamma \end{bmatrix},
\]

Then we get eigenvalues \(\lambda_1 = r, \lambda_2 = -\delta, \) and \(\lambda_3 = -\mu + \gamma \). Since \(\lambda_1 \) positive, equilibrium point \(E_0 = (0, 0, 0) \) is always unstable.

2. From eq. (3), \(E_1 = (0, 0, \bar{y}) \) complete the equation

\[
-\mu + d_1 x + d_2 x + \gamma - \frac{a_2 \bar{y}}{q + \bar{y}} = 0,
\]

then we have the Jacobian matrix for \(E_1 \) is

\[
J(E_1) = \begin{bmatrix} r - a_1 \bar{y} & 0 & 0 \\ 0 & -a_2 \bar{y} - \delta & 0 \\ d_1 \bar{y} & d_2 \bar{y} & \frac{\beta q \gamma}{(q + \bar{y})^2} \end{bmatrix},
\]

The eigenvalues for \(J(E_1) \) are \(\lambda_1 = r - a_1 \bar{y}, \lambda_2 = -a_2 \bar{y} - \delta, \) and \(\lambda_3 = \frac{-\beta q \gamma}{(q + \bar{y})^2} \). \(E_1 \) is locally asymptotically stable if \(r < a_1 \bar{y} \).

3. The Jacobian matrix for \(E_2 = (k, 0, 0) \)

\[
J(E_2) = \begin{bmatrix} r & kr - ck & -a_1 k \\ 0 & ck - \delta & 0 \\ 0 & 0 & -\mu + d_1 k + \gamma \end{bmatrix},
\]

has \(\lambda_1 = -r, \lambda_2 = ck - \delta, \) and \(\lambda_3 = d_1 k + \gamma - \mu < 0 \) then \(k < \frac{\mu - \gamma}{\delta} \). \(E_2 \) locally asymptotically stable if \(k < \min \left\{ \frac{\delta}{r}, \frac{\mu - \gamma}{\delta} \right\} \), otherwise, if \(k > \min \left\{ \frac{\delta}{r}, \frac{\mu - \gamma}{\delta} \right\} \), \(E_2 \) becomes unstable.

4. From eq. (3) we get

\[
r - \frac{r_x}{x} - \frac{r_x}{k} - a_1 y - cx = 0, \]

and

\[
-\mu + d_1 x + d_2 x + \gamma - \frac{\beta q + \gamma}{(q + \gamma)^2} = 0,
\]
then the Jacobian matrix for infected prey extinction point is

\[
J(E_3) = \begin{bmatrix} j_{11} & j_{12} & j_{13} \\ j_{21} & j_{22} & j_{23} \\ j_{31} & j_{32} & j_{33} \end{bmatrix}.
\]

where

\[
\begin{align*}
j_{11} &= \frac{r_x}{x} - \frac{r_x}{k}, \\
j_{12} &= \frac{r_x}{k} - c x, \\
j_{13} &= -a_1 x, \\
j_{21} &= c x, \\
j_{22} &= c x - a_2 y - \delta, \\
j_{23} &= -a_2 x, \\
j_{31} &= d_1 y, \\
j_{32} &= d_2 y, \\
j_{33} &= -\beta q \gamma - \gamma + \gamma = 0,
\end{align*}
\]

So that the eigenvalues are \(\lambda_1 = c x - a_2 \bar{y} - \delta, \) and \(\lambda_2, \lambda_3 \) is the eigen values of

\[
J_1(E_3) = \begin{bmatrix} j_{11} & j_{12} & j_{13} \\ j_{21} & j_{22} & j_{23} \\ j_{31} & j_{32} & j_{33} \end{bmatrix}.
\]

\(E_3 \) is locally asymptotically stable if det \(J_1(E_3) = j_{11}j_{33} - j_{13}j_{31} > 0 \) and trace \(J_1(E_3) = j_{11} + j_{33} < 0 \). The determinant and the trace of the matrix \(J_1(E_3) \) are respectively, given by

\[
\begin{align*}
\text{det } J_1(E_3) &= j_{11}j_{33} - j_{13}j_{31} = \frac{\beta q r x y}{k(q + y)^2} + (d_1 \tilde{y} a_1 \bar{x}) > 0, \\
\text{trace } J_1(E_3) &= j_{11} + j_{33} = \frac{-r_x}{k} - \frac{\beta q \gamma}{(q + \gamma)^2} < 0.
\end{align*}
\]

Then \(E_3 \) is locally asymptotically stable if \(c \bar{x} < a_2 \bar{y} + \delta \).

5. Based on eq. (3), \(E_4 \) complete the equation

\[
r - \frac{r_x}{x} - \frac{r_x}{k} - a_1 y - cx = 0,
\]

then by substituting \(E_4 = \left(\frac{r}{c}, \frac{r}{c}, \bar{y} \right) \) to the Jacobian matrix, obtained

\[
J(E_4) = \begin{bmatrix} j_{11} & j_{12} & j_{13} \\ j_{21} & j_{22} & j_{23} \\ j_{31} & j_{32} & j_{33} \end{bmatrix}.
\]
where

\[\tilde{j}_{11} = \frac{r \delta}{ck^2}, \quad \tilde{j}_{22} = 0, \]
\[\tilde{j}_{12} = \frac{\delta(r - ck)}{ck}, \quad \tilde{j}_{23} = -a_2 \left(\frac{r(ck - \delta)}{(ck + \gamma)} \right), \]
\[\tilde{j}_{13} = -a_1 \delta, \quad \tilde{j}_{31} = 0, \]
\[\tilde{j}_{21} = -\frac{c}{(ck - \delta)(ck + \gamma)}, \quad \tilde{j}_{32} = 0, \]
\[\tilde{j}_{33} = -\mu + d_1 x_s + d_2 x_i + \gamma. \]

So that the eigen values \(\lambda_1 = \gamma - \mu + d_1 \left(\frac{\delta}{c} \right) + d_2 \left(\frac{ckr - \delta}{c(ck + \gamma)} \right), \)
and \(\lambda_{2,3} \) fulfill

\[J(E_4) = \left[\begin{array}{ccc} \tilde{j}_{11} & \tilde{j}_{12} & \tilde{j}_{13} \\ \tilde{j}_{21} & \tilde{j}_{22} & \tilde{j}_{23} \\ \tilde{j}_{31} & \tilde{j}_{32} & \tilde{j}_{33} \end{array} \right], \]

\(E_4 \) asymptotically local stable if \(\det J(E_4) = \tilde{j}_{11} \tilde{j}_{22} - \tilde{j}_{12} \tilde{j}_{21} > 0 \) and trace \(J(E_4) = \tilde{j}_{11} + \tilde{j}_{22} < 0 \). Respectively \(\det J(E_4) = -\frac{\delta(r - ck)}{ck} \left(\frac{r(ck - \delta)}{(ck + \gamma)} \right) > 0 \) and trace

\[J(E_4) = -\frac{r \delta}{ck} < 0, \]
then \(E_4 \) is locally asymptotically stable if

\[\gamma = d_1 \left(\frac{\delta}{c} \right) + d_2 \left(\frac{ckr - \delta}{c(ck + \gamma)} \right) < \mu. \]

6. From eq. (3), \(E_5 \) complete the equation \(r - \frac{cx^{\ast}y^{\ast}}{k} - \frac{ra_1 y - cx_i}{k} = 0, \) and \(-\mu + d_1 x_s + d_2 x_i - \frac{\beta x^{\ast} y^{\ast}}{q} + \gamma = 0, \)
then by substituting \(E_5 = (x^{\ast}, x^{\ast}, y^{\ast}) \) to the Jacobian matrix, we get

\[J(E_5) = \left[\begin{array}{ccc} j_{11} & j_{12} & j_{13} \\ j_{21} & j_{22} & j_{23} \\ j_{31} & j_{32} & j_{33} \end{array} \right], \]
\[|J(E_5) - \lambda I| = \left| \begin{array}{ccc} j_{11} - \lambda & j_{12} & j_{13} \\ j_{21} & j_{22} - \lambda & j_{23} \\ j_{31} & j_{32} & j_{33} - \lambda \end{array} \right| = 0, \]
\[\det |J(E_5) - \lambda I| = (j_{11} - \lambda)(j_{22} - \lambda)(j_{33} - \lambda) + \lambda A_4 + A_0 - (j_{11} - \lambda)A_4 - (j_{22} - \lambda)A_1 - (j_{33} - \lambda)A_2, \]

\(\lambda = \lambda^3 + (j_{11} + j_{22} + j_{33}) \lambda^2 + (A_1 + A_2 + A_3 - A_4 - A_5 - A_6) \lambda \]
\(+ A_0 + A_4 - A_1 - A_2 - A_3 - A_4 = 0, \)
\(\lambda^3 + (\mu_1 + \mu_2 + \mu_3) \lambda^2 + (\mu_1 + \mu_2 + \mu_3) \lambda = 0. \)

The characteristic equation from \(J(E_5) \) is \(\lambda^3 + \rho_1 \lambda^2 + \rho_2 \lambda + \rho_3 = 0, \) with \(\rho_1 = -\rho_1, \rho_2 = -\rho_2, \) and \(\rho_3 = \rho_3. \)

To find the local stability of eq. (2) we use Routh Hurwitz criterion. \(E_5 \) is locally asymptotically stable if:

\(\bullet \) \(\rho_1 > 0, \)
\(\bullet \rho_2 = \rho_3 > 0, \) and
\(\bullet \rho_3 > 0. \)

Because \(\rho_1 \rho_2 - \rho_3 \) is too complex and difficult, so the stability of \(E_5 \) is evaluated numerically.

4. Numerical Simulation

In this section, we give some flow of solutions to demonstrate the stability around the equilibrium points that are associated with the previous theoretical result. We use Runge-Kutta 4th order as the numerical methods, the numerical simulations of the model (2) are illustrated with a various condition based on [15–19] as given in Table 2 as follows.

For parameter value in Table 2 for simulation 1, \(E_1 \) exists i.e. \([0, 0, 0.5, 0.5] \) and it is asymptotically local stable. Since it is satisfying stability condition in Theorem 3 that \(r < \rho_1 \gamma. \) The density of susceptible and infected prey goes to extinction, and the density of predator population exists. Its condition was shown in Figure 1a. \(E_1 \) shows that there are no shrimps, but crabs are exist. By using the parameter value in Table 2 for simulation 2, \(E_2 \) exists i.e. \([0.5, 0.5, 0.5, 0.5] \) and it is asymptotically local stable, Since Theorem 3 is fulfilled \(k < \min \{\frac{\delta}{c}, \frac{\beta}{q} \}. \) This is consistent with the analytical result since the Jacobian matrix eigenvalues are negative numbers. The density of susceptible prey population
Figure 1. The figure depicts the solution of the model (1) for equilibrium point:
is existed, but the density of infected prey and predator tends to extinction. Figure 1b depicts its current condition. E_2 demonstrates that shrimp are present but crabs are not. Numerical simulation around the equilibrium point E_2 using a parameter value in Table 2 simulation 3, E_2 is exists i.e., $[0.06, 0, 0.9]$ and it is asymptotically local stable, the stability conditions is fulfilled according to Theorem 3 with the stability condition $\alpha_2y + \delta = 5.5421$. The density of susceptible prey and predator population exists, but the density of infected prey is heading to extinction. This condition was shown in Figure 1c. E_3 shows that there isn’t a healthy shrimp, but both sick shrimps and crabs exist. Figure 1d use the parameter value in Table 2 simulation 4, E_4 exists i.e., $[0.2, 0.1, 0]$ and it is asymptotically local stable, this is consistent with the analytical result in Theorem 3 and satisfy the condition $\gamma + d_1 \left(\frac{\delta}{\rho_2} \right) + d_2 \left(\frac{\delta c - \delta}{\rho_2 c \delta + \rho_2} \right) = 0.7378 < \mu = 1$. The density of predators is heading to extinction, but the density of susceptible prey and infected prey exists. E_4 illustrates that there are both healthy and sick shrimp, but no crabs. Figure 1e use the selected parameter value in Table 2 simulation 5, E_5 exists, i.e., $[0.7, 0.2, 0.5]$ and it is asymptotically local stable, and satisfy stability condition using Routh Hurwit criterion, $\rho_1 = 1.485 > 0$, $\rho_3 = 0.2048 > 0$, and $\rho_1 - \rho_2 - \rho_3 = 0.3391 > 0$. This is consistent with the analytical result in Theorem 3, so the density of all species shrimps and crabs exists.

5. Conclusion

We have formulated a model to describe an interaction of prey species and predator cannibalism. We show the dynamics of the system, especially the behaviour of solutions around the equilibrium point. There are six equilibria in this model, namely the trivial equilibrium point, the prey extinction point, the disease free and predator extinction equilibrium point, the disease-free equilibrium point, the predator extinction equilibrium point, and the coexistence equilibrium point. The first equilibrium is unstable, and the other equilibria is asymptotically stable with conditionally stable. All the result are based on numerical simulations by Runge Kutta method.

Author Contributions. Ah, N.I.: Conceptualization, methodology, software, formal analysis, investigation, resources, data curation, writing—original draft preparation. Kusumawinahyu, W.M.: Conceptualization, methodology, validation, writing—review and editing, visualization, supervision. Suryanto, A.: Conceptualization, methodology, validation, writing—review and editing, visualization, supervision. Trisilowati: Conceptualization, methodology, validation, writing—review and editing, visualization, supervision.

Acknowledgement. The authors are thankful the editors and reviewers who have supported us in improving this manuscript.

Funding. This research received no external funding.

Conflict of interest. The authors declare no conflict of interest.

Data availability. Not applicable.

References