An assessment of the scientific value of Krakatoa, Indonesia from a geoheritage perspective

Danni Gathot Harbowo

Abstract


Krakatoa is the most active volcanic complex located in Lampung Province, Indonesia. Throughout human history, several devastating Krakatoa eruptions have shocked the world and turned it into a global attraction. Recognizing its scientific value, Krakatoa has been designated as a geoheritage site. This study refers to the Standard Scientific Value Assessment published by Center for Geological survey of Indonesia, which applies seven main parameters, including well-published scientific reviews, to assess the feasibility of geoheritage sites. In conclusion, the Krakatoa volcanic complex is a highly regarded geoheritage site, scoring 92.5/100. Its significance extends globally, offering insights into the evolution of volcanic islands and their unique geological features. Additionally, the historical records of global catastrophes and the potential for future eruptions warrant further investigation. As a geoheritage site, Krakatoa serves as a reminder of the possibility of subsequent devastating eruptions and its natural history, making it crucial for sustainably maintaining, preserving, and managing its potential for educational, conservation, and scientific purposes. Considering the natural history, the study recommend further consideration of several sustain steps, particularly for sites around the Krakatoa area. Regular and systematic scientific observations and records of natural conditions are significant for maintaining and enhancing Krakatoa as geoheritage.

Keywords


Krakatoa, Lampung, Geoheritage, Scientific value, Natural History, Geopark

Full Text:

PDF

References


Abdurrachman, M., Widiyantoro, S., Priadi, B. & Ismail, T., (2018). Geochemistry and structure of krakatoa volcano in the Sunda Strait, Indonesia. Geosciences, 8(4), 111. doi: 10.3390/geosciences8040111.

Bealby, J.T., (1883). The Java Eruption and Earthquake Waves. Nature, 29(732), 30-33. doi: 10.1038/029030c0

Bishop, S.E., (1884). The remarkable sunsets. Nature, 29(754), 549-550. doi: 10.1038/029222a0

Boutelle, C.O., (1884). Water-waves from Krakatoa. Science, (73), 777-777. doi: 10.1126/science.ns-3.73.777

Bradley, R.S., (1988). The explosive volcanic eruption signal in Northern Hemisphere continental temperature records. Climatic Change, 12(3), 221-243. doi: 10.1007/bf00139431

Brilha, J., (2018). Geoheritage and geoparks. In Geoheritage (323-335). Elsevier. doi: 10.1016/b978-0-12-809531-7.00018-6

Brocx, M. & Semeniuk, V., (2007). Geoheritage and geoconservation-history, definition, scope and scale. Journal of the Royal Society of Western Australia, 90(2), 53-87.

Campbell, L., (1883). The Remarkable Sunsets. Nature, 29(739), 196-196. doi: 10.1038/029196a0

Camus, G., Gourgaud, A. & Vincent, M., (1987). Petrologic evolution of Krakatau (Indonesia): implications for a future activity. Journal of Volcanology and Geothermal Research, 33(4), 299-316. doi: 10.1016/0377-0273(87)90020-5

Carey, S., Morelli, D., Sigurdsson, H. & Bronto, S., (2001). Tsunami deposits from major explosive eruptions: an example from the 1883 eruption of Krakatau. Geology, 29(4), 347-350. doi: 10.1130/0091-7613(2001)029<0347:tdfmee>2.0.co;2.

Carey, S., Sigurdsson, H., Mandeville, C. & Bronto, S., (1996). Pyroclastic flows and surges over water: an example from the 1883 Krakatau eruption. Bulletin of Volcanology, 57(7), 493-511. doi: 10.1007/bf00304435

Choi, B.H., Pelinovsky, E., Kim, K.O. & Lee, J.S., (2003). Simulation of the trans-oceanic tsunami propagation due to the 1883 Krakatau volcanic eruption. Natural Hazards and Earth System Sciences, 3(5), 321-332. doi: 10.5194/nhess-3-321-2003

Dahren, B., Troll, V.R., Andersson, U.B., Chadwick, J., Gardner, M.F., Jaxybulatov, K. & Koulakov, I., (2012). Magma plumbing beneath Anak Krakatau volcano, Indonesia: evidence for multiple magma storage regions. Contributions to Mineralogy and Petrology, 163(4), 631-651. doi: 10.1007/s00410-011-0690-8

Dammerman, K.W., (1922). The fauna of Krakatau, Verlaten island and Sebesi. Archipel (ti). doi:

Deplus, C., Bonvalot, S., Dahrin, D., Diament, M., Harjono, H. & Dubois, J., (1995). Inner structure of the Krakatau volcanic complex (Indonesia) from gravity and bathymetry data. Journal of Volcanology and Geothermal Research, 64(1-2), 23-52. doi: 10.1016/0377-0273(94)00038-i

Fauzi, N.S.M. & Misni, A., (2016). Geoheritage Conservation: Indicators affecting the condition and sustainability of Geopark-a conceptual review. Procedia-Social and Behavioral Sciences, 222, 676-684. doi: 10.1016/j.sbspro.2016.05.224.

Flammarion, C., (1884). Le Cataclysme de Java, l'Eruption de Krakatoa et les Illuminations Crepusculaires. L'Astronomie, 3, 58-68.

Forbes, H.O., (1883). Floating Pumice. Nature, 28(727), 539-539. doi: 10.1038/028539d0

Gleckler, J., AchutaRao, K., Gregory, J.M., Santer, B.D., Taylor, K.E. & Wigley, T.M.L., (2006). Krakatoa lives: The effect of volcanic eruptions on ocean heat content and thermal expansion. Geophysical Research Letters, 33(17). doi: 10.1029/2006gl026771

Gordon, J.E., (2018). Geoheritage, geotourism and the cultural landscape: Enhancing the visitor experience and promoting geoconservation. Geosciences, 8(4), 136. doi: 10.3390/geosciences8040136.

Harbowo, D.G., Priadi, B., Julian, T., Amelia, R.N., Sihombing, D.J. & Kencana, F.S., (2021), November. A preliminary study on the element abundance in the Hulusimpang Formation, Way Kalianda, Pesawaran, Lampung, Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 882, No. 1, 012078. IOP Publishing. doi: 10.1088/1755-1315/882/1/012078

Harjono, H., Diament, M., Dubois, J. & Larue, M., (1991). Seismicity of the Sunda strait: evidence for crustal extension and volcanological implications. Tectonics, 10, 17-30. doi: 10.1029/90tc00285.

Harkrider, D. & Press, F., (1967). The Krakatoa Air"”Sea Waves: An Example of Pulse Propagation in Coupled Systems. Geophysical Journal International, 13(1-3), 149-159. doi: 10.1111/j.1365-246x.1967.tb02150.x.

Heidarzadeh, M., Ishibe, T., Sandanbata, O., Muhari, A. & Wijanarto, A.B., (2020). Numerical modeling of the subaerial landslide source of the 22 December 2018 Anak Krakatoa volcanic tsunami, Indonesia. Ocean Engineering, 195, 106733. doi: doi.org/10.1016/j.oceaneng.2019.106733.

Hunt, J.E., Tappin, D.R., Watt, S.F.L., Susilohadi, S., Novellino, A., Ebmeier, S.K., Cassidy, M., Engwell, S.L., Grilli, S.T., Hanif, M. & Priyanto, W.S., (2021). Submarine landslide megablocks show half of Anak Krakatau island failed on December 22nd, 2018. Nature communications, 12(1), 1-15. doi: 10.1038/s41467-021-22610-5.

Ismail, T., Abdurrachman, M., Rizal, Y. & Hardjawidjaksana, K., (2020). Volcanostratigraphy of Krakatoa Islands, South Lampung District, Lampung Province. In IOP Conference Series: Earth and Environmental Science 589(1), 012010. IOP Publishing. doi: 10.1088/1755-1315/589/1/012010.

Jaxybulatov, K., Koulakov, I., Ibs-von Seht, M., Klinge, K., Reichert, C., Dahren, B. & Troll, V.R., (2011). Evidence for high fluid/melt content beneath Krakatau volcano (Indonesia) from local earthquake tomography. Journal of Volcanology and Geothermal Research, 206(3-4), 96-105. doi: 10.1016/j.jvolgeores.2011.06.009.

Johan, Y., (2016). Analisis kesesuaian dan daya dukung ekowisata bahari Pulau Sebesi, Provinsi Lampung. DEPIK Jurnal Ilmu-Ilmu Perairan, Pesisir dan Perikanan, 5(2). doi: doi.org/10.13170/depik.5.2.4165.

Judd, J.W., Strachey, R., Wharton, W.J.L., Evans, F.J., Russell, F.A.R., Archibald, D. & Whipple, G.M., (1888). The Eruption of Krakatoa: And Subsequent Phenomena. Trübner & Company. doi: 10.1002/qj.4970146809.

Kurniasih, S. & Tejapermana, , (2018). Studi Etnografi Perilaku Sosial Anak di Pulau Sebesi Lampung. Jurnal Caksana: Pendidikan Anak Usia Dini, 1(02). doi: 10.31326/jcpaud.v1i02.181.

Kurniawan, A., (2014). Volcanological Comparison of Toba Caldera, Krakatoa Caldera, Batur Caldera, Tambora Caldera, and Rinjani Caldera. Masyarakat Ilmu Bumi Indonesia, 1(E-1).

Latter, J.H., (1981). Tsunamis of volcanic origin: summary of causes, with particular reference to Krakatoa, 1883. Bulletin volcanologique, 44(3), 467-490. doi: 10.1007/bf02600578.

Madden-Nadeau, A.L., Cassidy, M., Pyle, D.M., Mather, T.A., Watt, S.F.L., Engwell, S.L., Abdurrachman, M., Nurshal, M.E.M., Tappin, D.R. & Ismail, T., (2021). The magmatic and eruptive evolution of the 1883 caldera-forming eruption of Krakatau: Integrating field-to crystal-scale observations. Journal of Volcanology and Geothermal Research, 411, 107176. doi: 10.1016/j.jvolgeores.2021.107176.

Mandeville, C.W., Carey, S. & Sigurdsson, H., (1996). Sedimentology of the Krakatau 1883 submarine pyroclastic deposits. Bull. Volcanol., 96, 512-529. doi: 10.1007/bf00304436.

Mandeville, C.W., Carey, S. & Sigurdsson, H., (1996). Magma mixing, fractional crystallization and volatile degassing during the 1883 eruption of Krakatau volcano, Indonesia. Journal of Volcanology and Geothermal Research, 74(3-4), 243-274. doi: 10.1016/s0377-0273(96)00060-1.

Mangga, S.A., Amirudin, T., Suwarti, S. & Gafoer, S., (1993). Geological Map of Tanjungkarang Quadrangle Sumatera. Geological Research and Development Center, Indonesia.

Metzger, E., (1884). Gleanings from the reports concerning the eruption of Krakatoa. Nature, 29(741), 240-244. doi: 10.1038/029240a0.

Nakamura, S., (1984). A numerical tracking of the 1883 Krakatoa tsunami. Science of Tsunami Hazards, 2(1), 41-54.

New, T.R., (2015). Colonization, succession and conservation: the invertebrates of Anak Krakatau, Indonesia, and contrast with Surtsey. Surtsey Research, 13, 31-39. doi: 10.33112/surtsey.13.3

Ninkovich, D., (1976). Late Cenozoic clockwise rotation of Sumatra. EPSL, 29, 269-275. doi: 10.1016/0012-821x(76)90130-8.

Nishimura, S., Harjono, H. & Suparka, S., (1992). The Krakatau Islands: the geotectonic setting. GeoJournal, 28(2), 87-98. doi: 10.1007/bf00177221.

Nishimura, S., Nishida, J., Yokoyama, T. & Hehuwat, F., (1986). Neo-tectonics of the Straits of Sunda, Indonesia. Journal of Southeast Asian Earth Sciences, 1, 81-91. doi: 10.1016/0743-9547(86)90023-1.

Nomanbhoy, N. & Satake, K., (1995). Generation mechanism of tsunamis from the 1883 Krakatau eruption. Geophysical Research Letters, 22(4), 509-512. doi: 10.1029/94gl03219.

Novellino, A., Engwell, S.L., Grebby, S., Day, S., Cassidy, M., Madden-Nadeau, A., Watt, S., Pyle, D., Abdurrachman, M., Edo Marshal Nurshal, M. and Tappin, D.R., (2020). Mapping recent shoreline changes spanning the lateral collapse of Anak Krakatau Volcano, Indonesia. Applied Sciences, 10(2), 536. doi: 10.3390/app10020536.

Paris, R., Wassmer, , Lavigne, F., Belousov, A., Belousova, M., Iskandarsyah, Y., Benbakkar, M., Ontowirjo, B. & Mazzoni, N., (2014). Coupling eruption and tsunami records: the Krakatau 1883 case study, Indonesia. Bulletin of Volcanology, 76(4), 1-23. Dampak letusan Krakatau. doi: 10.1007/s00445-014-0814-x.

Partomihardjo, T., (2003). Colonisation of orchids on the Krakatau Islands. Telopea, 10(1), 299-310. doi: 10.7751/telopea20035620.

Putra, S. & Yulianto, E., (2016). Stratigrafi Endapan Tsunami Krakatau 1883 di Daerah Limus, Pantai Barat Teluk Semangko, Lampung. Jurnal Lingkungan dan Bencana Geologi, 7(1), 45-55. doi: 10.24164/prosiding.v4i1.10.

Putra, S. & Yulianto, E., (2017). Karakteristik Endapan Tsunami Krakatau 1883 di Daerah Tarahan, Lampung. RISET Geologi dan Pertambangan, 27(1), 83-95. doi: 10.14203/risetgeotam2017.v27.301.

Rampino, M.R. & Self, S., (1982). Historic eruptions of Tambora (1815), Krakatau (1883), and Agung (1963), their stratospheric aerosols, and climatic impact. Quaternary Research, 18(2), 127-143. doi: 10.1016/0033-5894(82)90065-5.

Schaller, N., Griesser, T., Fischer, A., Stickler, A. & Onnimann, S., (2009). Climate effects of the 1883 Krakatoa eruption: Historical and present perspectives. Vjschr. Natf. Ges. Zürich, 154, 31-40.

Schröder, W. & Wiederkehr, K.H., (2000). Johann Kiessling, the Krakatoa event and the development of atmosheric optics after 1883. Notes and Records of the Royal Society of London, 54(2), 249-258. doi: 10.1098/rsnr.2000.0110.

Self, S. & Rampino, M.R., (1981). The 1883 eruption of Krakatau. Nature, 294(5843), 699-704.

Sihombing, D.J., Harbowo, D.G., Priadi, B. and Ardhianto, L., (2021). Chemostratigraphy of Paleozoic Carbonate in Natar, South Lampung, Indonesia. LIPI Preprint Publication. https://rinarxiv.lipi.go.id/lipi/preprint/view/282.

Simkin, T. & Fiske, R.S. Krakatau, (1883), the Volcanic Eruption and Its Effects. Smithsonian Institution Scholarly Press, Washington, D.C. doi: 10.1017/s0165115300007634.

Simkin, T. & Fiske, R.S., (1983). Krakatau 1883. Earthquake Information Bulletin (USGS), 15(4), 128-133.

Simkin, T. & Fiske, R.S., (1983). Krakatau 1883: A Centennial Retrospective on the Eruption and its Atmospheric Effects. Weatherwise, 36(5), 244-254. doi: 10.1080/00431672.1983.9930158.

Soloviev, S. L. dan Go, Ch. N., (1974). A Catalogue of Tsunamis on the Western Shore of the Pacific Ocean. Moscow, "Nauka" Publishing House, 308h.

Å piÄák, A., Kozák, J., VanÄ›k, J. & HanuÅ¡, V., (2008). The Krakatau volcano 125 years after the catastrophic eruption (August 27, 1883). Studia Geophysica et Geodaetica, 52(3), 449-454. doi: 10.1007/s11200-008-0031-1.

Susilohadi, S., Gaedicke, C. & Djajadihardja, Y., (2009). Structures and sedimentary deposition in the Sunda Strait, Indonesia. Tectonophysics, 467(1-4), 55-71. doi: 10.1016/j.tecto.2008.12.015.

Sutawidjaja, I.S., (2006). Pertumbuhan Gunung Api Anak Krakatau setelah letusan katastrofi 1883. Indonesian Journal on Geoscience, 1(3), 143-153. doi: 10.17014/ijog.vol1no3.20063.

Symons, G.J. ed., (1888). The Eruption of Krakatoa, and Subsequent Phenomena: Report of the Krakatoa Committee of the Royal Society. London: Trübner. doi: 10.1002/qj.4970146809.

Thornton, I.W., (1997). Krakatau: the destruction and reassembly of an island ecosystem. Harvard University Press. doi: 10.1016/s0898-1221(96)90233-3.

Vereker, F.C., (1883). Extracts from a Report on the Volcanic Eruption in Sunda Strait by Commander the Honourable FCP Vereker, HMS'Magpie,'Dated Singapore, October 22, 1883. Proceedings of the Royal Society of London, 36, 198-199. doi: 10.1098/rspl.1883.0098.

Wexler, H., (1951). Spread of the Krakatoa volcanic dust cloud as related to the high-level circulation. Bulletin of the American Meteorological Society, 32(2), 48-51. doi: 10.1175/1520-0477-32.2.48.

Whittaker, R.J., Bush, M.B. & Richards, K.J.E.M., (1989). Plant recolonization and vegetation succession on the Krakatau Islands, Indonesia. Ecological Monographs, 59(2), 59-123. doi: 10.2307/2937282.

Winchester, S. (2004). Krakatoa: The Day the World Exploded. Penguin, London, United Kingdom. doi: 10.2113/gscanmin.41.5.1294

Ye, L., Kanamori, H., Rivera, L., Lay, T., Zhou, Y., Sianipar, D. & Satake, K., (2020). The 22 December 2018 tsunami from flank collapse of Anak Krakatau volcano during eruption. Science advances, 6(3), 1377. doi: 10.1126/sciadv.aaz1377.

Yudhicara, Y. & Budiono, K., (2008). Tsunamigenik di Selat Sunda: Kajian terhadap katalog Tsunami Soloviev. Indonesian Journal on Geoscience, 3(4), 241-251. doi: 10.17014/ijog.vol3no4.20086.

Yukawa, J., Partomihardjo, T., Yata, O. & Hirowatari, T., (2000). An assessment of the role of Sebesi Island as a stepping-stone for the colonisation of the Krakatau Islands by butterflies. Esakia, 40, 1-10. doi: 10.5109/2638.




DOI: https://doi.org/10.34312/jage.v2i1.19360

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Danni Gathot Harbowo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.