Review Analysis on Scalability of Carbon Removal Methods and Regulatory Framework for Carbon Management for Companies that sell materials to remove CO2

Tooba Nayab, Talal Ahmed, Devindi Wijekoon

Abstract


This article provides a comprehensive overview of various carbon capture and sequestration (CCS) technologies and approaches aimed at reducing atmospheric carbon dioxide (CO2) concentrations. It evaluates the effectiveness, costs, and potential scalability of different methods proposed by companies and research organizations worldwide, including innovative technologies such as CARBiNX by Clean O2, carbon capture by forests and trees, Direct Air Capture (DAC) systems developed by Heirloom Carbon Technologies, and geological storage solutions like Carbfix in Iceland. The article also examines the costs associated with these technologies and their capacity to remove significant amounts of CO2 from the atmosphere. Furthermore, it explores future pathways and frameworks for achieving gigaton-scale carbon dioxide removal, emphasizing the importance of interdisciplinary collaboration and technological innovation in addressing the urgent challenge of climate change. Through a comprehensive analysis of current research and industry practices, this review aims to provide insights into the scalability of carbon removal methods and the regulatory landscape governing carbon management, focusing on companies that sell materials to remove CO2. It discusses the challenges and opportunities associated with scaling up carbon removal technologies and explore regulatory frameworks shaping the deployment of these technologies, offering valuable insights into the future of carbon removal and regulatory compliance for companies in the carbon removal sector.

Keywords


Carbon Capture and Sequestration; Direct Air Capture; Carbon Management; World Resource Institute; Intergovernmental Panel on Climate Change.

Full Text:

PDF

References


Alcalde, J., Flude, S., Wilkinson, M., Johnson, G., Edlmann, K., Bond, C. E., . . . Haszeldine, R. S. (2018). Estimating geological CO2 storage security to deliver on climate mitigation. Nature communications, 9(1), 2201.

Andonova, L. B., Hale, T. N., & Roger, C. B. (2017). National policy and transnational governance of climate change: Substitutes or complements? International Studies Quarterly, 61(2), 253-268.

Beck, S., & Mahony, M. (2018). The IPCC and the new map of science and politics. Wiley Interdisciplinary Reviews: Climate Change, 9(6), e547.

Bocken, N. M., & Short, S. W. (2016). Towards a sufficiency-driven business model: Experiences and opportunities. Environmental innovation societal transitions, 18, 41-61.

Boyd, J., Joiner, E., Krupnick, A., & Toman, M. (2024). Policy Incentives to Scale Carbon Dioxide Removal: Analysis and Recommendations.

Bui, M., Adjiman, C. S., Bardow, A., Anthony, E. J., Boston, A., Brown, S., . . . Hackett, L. A. (2018). Carbon capture and storage (CCS): the way forward. Energy Environmental Science, 11(5), 1062-1176.

Bullock, L. A., James, R. H., Matter, J., Renforth, P., & Teagle, D. A. (2021). Global carbon dioxide removal potential of waste materials from metal and diamond mining. Frontiers in Climate, 3, 694175.

Butler, C. D. (2018). Climate change, health and existential risks to civilization: A comprehensive review (1989-2013). International journal of environmental research public health, 15(10), 2266.

Cho, R. (2018). Can Removing Carbon From the Atmosphere Save Us From Climate Catastrophe? State of the Planet.

Cullenward, D., & Victor, D. G. (2020). Making climate policy work: John Wiley & Sons.

Daly, H. E., Scott, K., Strachan, N., & Barrett, J. (2015). Indirect CO2 emission implications of energy system pathways: linking IO and TIMES models for the UK. Environmental Science Technology, 49(17), 10701-10709.

Fankhauser, S., Smith, S. M., Allen, M., Axelsson, K., Hale, T., Hepburn, C., . . . Mitchell-Larson, E. (2022). The meaning of net zero and how to get it right. Nature climate change, 12(1), 15-21.

Friedman, H., Huang, K., & Wu, K. (2022). ESG Attention in Capital Markets: Evidence from China's Carbon Neutrality Pledge Announcement.

Fuss, S., Lamb, W. F., Callaghan, M. W., Hilaire, J., Creutzig, F., Amann, T., . . . Khanna, T. (2018). Negative emissions"”Part 2: Costs, potentials and side effects. Environmental research letters, 13(6), 063002.

Gillenwater, M. (2012). What is wrong with "˜real'carbon offsets? Greenhouse Gas Measurement Management, 2(4), 167-170.

Goeppert, A., Czaun, M., Prakash, G. S., & Olah, G. A. (2012). Air as the renewable carbon source of the future: an overview of CO 2 capture from the atmosphere. Energy Environmental Science, 5(7), 7833-7853.

James, N., & Menzies, M. (2022). Global and regional changes in carbon dioxide emissions: 1970-2019. Physica A: Statistical Mechanics its Applications, 608, 128302.

Keith, D. W., Holmes, G., Angelo, D. S., & Heidel, K. (2018). A process for capturing CO2 from the atmosphere. Joule, 2(8), 1573-1594.

Keohane, N. O., Revesz, R. L., & Stavins, R. N. (2019). The choice of regulatory instruments in environmental policy. Environmental law, 491-545.

Kollmuss, A., Schneider, L., & Zhezherin, V. (2015). Has joint implementation reduced GHG emissions?: lessons learned for the design of carbon market mechanisms: JSTOR.

Lehmann, J. (2007). A handful of carbon. Nature, 447(7141), 143-144.

Leung, D. Y., Caramanna, G., & Maroto-Valer, M. M. (2014). An overview of current status of carbon dioxide capture and storage technologies. Renewable sustainable energy reviews, 39, 426-443.

Mac Dowell, N., Fennell, P. S., Shah, N., & Maitland, G. C. (2017). The role of CO2 capture and utilization in mitigating climate change. Nature climate change, 7(4), 243-249.

Majumdar, A., & Deutch, J. (2018). Research Opportunities for CO2 Utilization and Negative Emissions at the Gigatonne Scale. Joule, 2(5), 805-809. doi:https://doi.org/10.1016/j.joule.2018.04.018

Matter, J. M., Stute, M., Snæbjörnsdottir, S. Ó., Oelkers, E. H., Gislason, S. R., Aradottir, E. S., . . . Gunnlaugsson, E. (2016). Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science, 352(6291), 1312-1314.

McGrath, M. (2018). Climate change: Five cheap ways to remove CO2 from the atmosphere. BBC.

Michaelowa, A., Michaelowa, K., Shishlov, I., & Brescia, D. (2021). Catalysing private and public action for climate change mitigation: the World Bank's role in international carbon markets. Climate Policy, 21(1), 120-132.

Minx, J. C., Lamb, W. F., Callaghan, M. W., Fuss, S., Hilaire, J., Creutzig, F., . . . Hartmann, J. (2018). Negative emissions"”Part 1: Research landscape and synthesis. Environmental Research Letters, 13(6), 063001.

Morgan, J., & Waskow, D. (2014). A new look at climate equity in the UNFCCC. Climate Policy, 14(1), 17-22.

Mulligan, J., Ellison, G., Levin, K., Lebling, K., & Rudee, A. (2020). 6 Ways to Remove Carbon Pollution from the Sky. World Resources Institute.

Nocito, F., & Dibenedetto, A. (2020). Atmospheric CO2 mitigation technologies: carbon capture utilization and storage. Current Opinion in Green Sustainable Chemistry, 21, 34-43.

Palermo, V., & Hernandez, Y. (2020). Group discussions on how to implement a participatory process in climate adaptation planning: a case study in Malaysia. Ecological Economics, 177, 106791.

Pathak, M., Slade, R., Pichs-Madruga, R., Ãœrge-Vorsatz, D., Shukla, R., & Skea, J. (2022). Climate Change 2022 Mitigation of Climate Change: Technical Summary.

Pearse, R., & Böhm, S. (2014). Ten reasons why carbon markets will not bring about radical emissions reduction. Carbon Management, 5(4), 325-337.

Power, I. M., Harrison, A. L., & Dipple, G. M. (2016). Accelerating mineral carbonation using carbonic anhydrase. Environmental Science Technology, 50(5), 2610-2618.

Realmonte, G., Drouet, L., Gambhir, A., Glynn, J., Hawkes, A., Köberle, A. C., & Tavoni, M. (2019). An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nature communications, 10(1), 3277.

Roe, S., Streck, C., Obersteiner, M., Frank, S., Griscom, B., Drouet, L., . . . Hasegawa, T. (2019). Contribution of the land sector to a 1.5 C world. Nature climate change, 9(11), 817-828.

Street-Perrott, A., Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., & Joseph, S. (2011). Sustainable biochar to mitigate global climate change.

Taylor, L. L., Quirk, J., Thorley, R., Kharecha, P. A., Hansen, J., Ridgwell, A., . . . Beerling, D. J. (2016). Enhanced weathering strategies for stabilizing climate and averting ocean acidification. Nature Climate Change, 6(4), 402-406.

Warnecke, C., Schneider, L., Day, T., La Hoz Theuer, S., & Fearnehough, H. (2019). Robust eligibility criteria essential for new global scheme to offset aviation emissions. Nature climate change, 9(3), 218-221.

Zeman, F. S., & Keith, D. W. (2008). Carbon neutral hydrocarbons. Philosophical Transactions of the Royal Society A: Mathematical, Physical Engineering Sciences, 366(1882), 3901-3918.




DOI: https://doi.org/10.37905/jage.v3i1.25695

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Tooba Nayab, Talal Ahmed, Talal Ahmed, Devindi Wijekoon, Devindi Wijekoon

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.