Simulation Of The Volcanic Ash Dispersion During The June 2019 Sinabung Eruption

Rista Hernandi Virgianto, Alia Rahmi Nasution

Abstract


The eruption of Sinabung on June 9, 2019, was categorized as a red code in the warning report for flights. Volcanic ash from volcanic eruptions is a serious threat in the world of aviation with the most dangerous ash particles are 6-10 μm and 37 μm in diameter. To enrich our understanding and modeling performances of the volcanic ash dispersion for the Sinabung eruption case, it is necessary to simulate the dispersion of volcanic ash in those particular sizes to see its distribution which can impact flight routes. The method used was the analysis of the direction and dispersion of the particular volcanic ash using Weather Research Forecast-Chemistry (WRF-Chem) and compared it with the volcanic ash warning information on flight routes issued by Volcanic Ash Advisory Centers (VAAC)-Darwin. In general, WRF-Chem can simulate the distribution of volcanic ash from the eruption of Sinabung at the two-particle sizes at different heights, and found the difference in the distribution direction of the two groups of the particle sizes. Comparison results with warning information from VAAC-Darwin and previous study, WRF-Chem simulation shows a good concordance in the dispersion direction.


Keywords


Dispersion; Sinabung Eruption; Volcanic Ash; WRF-Chem

Full Text:

PDF

References


Alexander, D. (2013). Volcanic ash in the atmosphere and risks for civil aviation: A study in European crisis management. International Journal of Disaster Risk Science, 4(1), 9-19. doi:10.1007/s13753-013-0003-0

Bursik, M. (2001). Effect of wind on the rise height of volcanic plumes. Geophysical Research Letters, 28(18), 3621-3624. doi:10.1029/2001GL013393

Casadevall, T. J. (1994). The 1989–1990 eruption of Redoubt Volcano, Alaska: impacts on aircraft operations. Journal of Volcanology and Geothermal Research, 62(1-4), 301-316. doi:10.1016/0377-0273(94)90038-8

Crawford, A. M., Stunder, B. J., Ngan, F., & Pavolonis, M. J. (2016). Initializing HYSPLIT with satellite observations of volcanic ash: A case study of the 2008 Kasatochi eruption. Journal of Geophysical Research: Atmospheres, 121(18), 10,786-710,803. doi:10.1002/2016JD024779

Devenish, B., Francis, P., Johnson, B., Sparks, R., & Thomson, D. (2012). Sensitivity analysis of dispersion modeling of volcanic ash from Eyjafjallajökull in May 2010. Journal of Geophysical Research: Atmospheres, 117(D20). doi:10.1029/2011JD016782

Dunn, M. G. (2012). Operation of gas turbine engines in an environment contaminated with volcanic ash. Journal of Turbomachinery, 134(5). doi:10.1115/1.4006236

Egan, S. D., Stuefer, M., Webley, P. W., Lopez, T., Cahill, C. F., & Hirtl, M. (2020). Modeling volcanic ash aggregation processes and related impacts on the April–May 2010 eruptions of Eyjafjallajökull volcano with WRF-Chem. Natural Hazards and Earth System Sciences, 20(10), 2721-2737. doi:10.5194/nhess-20-2721-2020, 2020.

Fatkhuroyan, F., & Wati, T. (2017). Pemantauan Sebaran Abu Vulkanik Menggunakan Penginderaan Jauh Satelit Himawari-8 dan AURA/OMI (Ozone Mapping Instrument). Majalah Ilmiah Globe 19(1), 33-44. doi:10.24895/MIG.2017.19-1.539

Folch, A., Costa, A., & Basart, S. (2012). Validation of the FALL3D ash dispersion model using observations of the 2010 Eyjafjallajökull volcanic ash clouds. Atmospheric Environment, 48, 165-183. doi:10.1016/j.atmosenv.2011.06.072

Gordeev, E., & Girina, O. (2014). Volcanoes and their hazard to aviation. Herald of the Russian Academy of Sciences, 84(1), 1-8. doi:10.1134/S1019331614010079

Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., & Eder, B. (2005). Fully coupled “online” chemistry within the WRF model. Atmospheric Environment, 39(37), 6957-6975. doi:10.1016/j.atmosenv.2005.04.027

Guffanti, M., & Tupper, A. (2015). Volcanic ash hazards and aviation risk. In Volcanic hazards, risks and disasters (pp. 87-108): Elsevier.

International Civil Aviation Organization. (2007). Manual on volcanic ash, radioactive material, and toxic chemical clouds (Second ed.): International Civil Aviation Organization (ICAO).

Lee, S.-K., Ryu, G.-H., Hwang, E.-H., Choi, J.-K., & Lee, C.-W. (2014). Predicting the extent of the volcanic ash dispersion using GOCI image and HYSPLIT model-A case study of the 17 Sep, 2013 eruption in SAKURAJIMA volcano. Korean Journal of Remote Sensing, 30(2), 303-314. doi:10.7780/kjrs.2014.30.2.12

Mastin, L. G., Guffanti, M., Servranckx, R., Webley, P., Barsotti, S., Dean, K., . . . Rose, W. I. (2009). A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. Journal of Volcanology and Geothermal Research, 186(1-2), 10-21. doi:10.1016/j.jvolgeores.2009.01.008

Miller, T. P. (1999). Ash Hazards to Aviation. Encyclopedia of volcanoes, 915.

Pandjaitan, B. S., Susilowati, A., & Pandjaitan, A. (2016). Pemanfaatan data multi kanal satelit cuaca himawari 8 dengan menggunakan beberapa teknik RGB untuk mendeteksi debu vulkanik (Studi kasus: Letusan Gunung Bromo pada bulan Januari 2016). Paper presented at the Seminar Nasional Penginderaan Jauh.

Prata, F., & Rose, B. (2015). Volcanic ash hazards to aviation. In The Encyclopedia of Volcanoes (pp. 911-934): Elsevier.

Pratama, D. A., Saputro, M. B., Masruri, M. F. I., Siwi, N. D. P., Fajarianti, R., & Margiono, R. (2019). Deteksi Sebaran Debu Vulkanik Menggunakan Citra Satelit Himawari-8 (Studi Kasus Gunung Sinabung 9 Juni 2019). Bulletin of Scientific Contribution: GEOLOGY, 17(3), 187-192.

Ryan, M., & Pratama, K. R. (2019). Identifikasi trajektori debu vulkanik letusan Gunung Gamalama dengan Hysplit dan metode RGB pada citra satelit Himawari 8. Jurnal Meteorologi Klimatologi dan Geofisika, 4(2), 29-34. doi:10.36754/jmkg.v4i2.44

Sari, F. P. (2015). Identifikasi dan monitoring sebaran abu vulkanik Gunung Raung (analisis kejadian 4 – 14 Juli 2015). Prosiding Workshop Operasional Satelit Cuaca 2015, 237-246.

Saxby, J., Beckett, F., Cashman, K., Rust, A., & Tennant, E. (2018). The impact of particle shape on fall velocity: Implications for volcanic ash dispersion modelling. Journal of Volcanology and Geothermal Research, 362, 32-48. doi:10.1016/j.jvolgeores.2018.08.006

Self, S., & Walker, G. P. (1994). Ash clouds: characteristics of eruption columns. US Geological Survey Bulletin, 2047, 65-74.

Sinuhaji, P., Sembiring, T., Maghfirah, A., Piliang, A. F., & Nababan, S. M. (2018). Analysis of Composition; Topography of Volcanic Materials Erupted from Mount Sinabung, Karo Regency, Indonesia. Journal of Physics : Conference Series, 1116(3). doi:10.1088/1742-6596/1116/3/032035

Song, W., Hess, K. U., Damby, D. E., Wadsworth, F. B., Lavallée, Y., Cimarelli, C., & Dingwell, D. B. (2014). Fusion characteristics of volcanic ash relevant to aviation hazards. Geophysical Research Letters, 41(7), 2326-2333. doi:10.1002/2013GL059182

Steensen, T., Stuefer, M., Webley, P., Grell, G., & Freitas, S. (2013). Qualitative comparison of Mount Redoubt 2009 volcanic clouds using the PUFF and WRF-Chem dispersion models and satellite remote sensing data. Journal of Volcanology and Geothermal Research, 259, 235-247. doi:10.1016/j.jvolgeores.2012.02.018

Stenchikov, G., Ukhov, A., & Ahmadov, R. (2017). Simulation of the initial stage of the Mt. Pinatubo eruption using the coupled meteorology-chemistry WRF-Chem model. Paper presented at the EGU General Assembly Conference Abstracts.

Stohl, A., Prata, A., Eckhardt, S., Clarisse, L., Durant, A., Henne, S., . . . Seibert, P. (2011). Determination of time-and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajökull eruption. Atmospheric Chemistry and Physics, 11(9), 4333-4351. doi:10.5194/acp-11-4333-2011

Stuefer, M., Freitas, S., Grell, G., Webley, P., Peckham, S., & McKeen, S. (2012). Inclusion of ash and SO2 emissions from volcanic eruptions in WRF-Chem: development and some applications. Geoscientific Model Development Discussions, 5(3), 2571-2597. doi:10.5194/gmdd-5-2571-2012

Tadini, A., Roche, O., Samaniego, P., Guillin, A., Azzaoui, N., Gouhier, M., . . . Bernard, B. (2020). Quantifying the uncertainty of a coupled plume and tephra dispersal model: PLUME‐MOM/HYSPLIT simulations applied to Andean volcanoes. Journal of Geophysical Research: Solid Earth, 125(2), e2019JB018390. doi:10.1029/2019JB018390

Vogel, A., Diplas, S., Durant, A. J., Azar, A. S., Sunding, M. F., Rose, W. I., . . . Stohl, A. (2017). Reference data set of volcanic ash physicochemical and optical properties. Journal of Geophysical Research: Atmospheres, 122(17), 9485-9514. doi:10.1002/2016JD026328

Wati, K. S., Astiduari, I. P. P., & Wiguna, P. P. H. (2017). Pemanfaatan Citra Satelit Himawari-8 dan Model WRF-CHEM untuk Memantau Sebaran Debu Vulkanis (Studi Kasus: Erupsi Gunung Barujari, 4 November 2015) Utilization of Himawari-8 Satellite and WRF-CHEM Model for Monitoring Volcanic Ash Dispersion (Case Study: Mt. Barujari Eruption. Prosiding Seminar Nasional Penginderaan Jauh 2017.

Webley, P. W., Steensen, T., Stuefer, M., Grell, G., Freitas, S., & Pavolonis, M. (2012). Analyzing the Eyjafjallajökull 2010 eruption using satellite remote sensing, lidar and WRF-Chem dispersion and tracking model. Journal of Geophysical Research: Atmospheres, 117(D20). doi:10.1029/2011JD016817

Woods, A. W. (1988). The fluid dynamics and thermodynamics of eruption columns. Bulletin of volcanology, 50(3), 169-193. doi:10.1007/BF01079681

Woods, A. W., Holasek, R. E., & Self, S. (1995). Wind-driven dispersal of volcanic ash plumes and its control on the thermal structure of the plume-top. Bulletin of volcanology, 57(5), 283-292. doi:10.1007/BF00301288

Yudistira, R., Indah, S., & Agung Hari, S. (2020). Pemanfaatan model WRF-Chem dalam analisis sebaran abu vulkanik Gunung Merapi (Erupsi tanggal 23 Maret 2020). Jurnal Meteorologi Klimatologi dan Geofisika, 6(3), 15-22. doi:10.36754/jmkg.v6i3.137




DOI: https://doi.org/10.34312/jgeosrev.v3i2.10388



Copyright (c) 2021 Author

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.