Heterogeneous Correlation Map Between Estimated ENSO And IOD From ERA5 And Hotspot In Indonesia

Sri Nurdiati, Fahren Bukhari, Muhammad Tito Julianto, Mohamad Khoirun Najib, Nuzhatun Nazria


El Nino-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) can reduce the amount of rainfall in Indonesia. The previous study found that ENSO and IOD derived from the OISST dataset have an association with hotspots in Indonesia, especially in southern Sumatra dan Kalimantan. But the correlation results are still too small, and the correlation strength between regions has not been analyzed. Therefore, this study quantifies the association of the estimated ENSO and IOD derived from the ERA5 dataset on hotspots in Indonesia based on a Heterogeneous Correlation Map (HCM) and analyzes the correlation strength between regions in Indonesia. We use a singular value decomposition method to quantify this HCM. Besides OISST, ERA5 is an estimation data often used for weather forecast analysis. Therefore, this study quantifies the association of the estimated ENSO and IOD derived from the ERA5 dataset on hotspots in Indonesia based on a Heterogeneous Correlation Map (HCM) and analyzes the correlation strength between regions in Indonesia. Based on variance explained and correlation strength, the hotspot in Indonesia is more sensitive to ENSO and IOD derived from ERA5 than OISST. Consequently, the ERA5 data more useful to statistical analysis that requiring a substantial correlation.


El Nino-Southern Oscillation; Heterogeneous Correlation Map; Hotspot; Indian Ocean Dipole; Singular Value Decomposition

Full Text:



Aldrian, E., 2008. Meteorologi Laut Indonesia. Jakarta: Badan Meteorologi dan Geofisika.

Ashok, K., Guan, Z. and Yamagata, T., 2003. A look at the relationship between the ENSO and the Indian Ocean Dipole. Journal of the Meteorological Society of Japan, 81(1), pp.41–56.

Benesty, J., Chen, J., Huang, Y. and Cohen, I., 2009. Pearson correlation coefficient. In: Noise reduction in speech processing. Berlin, Heidelberg: Springer.pp.1–4.

Björnsson, H. and Venegas, S.A., 1997. A Manual for EOF and SVD Analysis of Climatic Data. CCGCR Report, 97, p.52.

Dafri, M., Nurdiati, S. and Sopaheluwakan, A., 2021. Quantifying ENSO and IOD impact to hotspot in Indonesia based on Heterogeneous Correlation Map (HCM). Journal of Physics: Conference Series, 1896, p.012150.

Fanin, T. and Van Der Werf, G.R., 2017. Precipitation-fire linkages in Indonesia (1997-2015). Biogeosciences, 14(18), pp.3995–4008.

Harris, N.L., Goldman, E., Gabris, C., Nordling, J., Minnemeyer, S., Ansari, S., Lippmann, M., Bennett, L., Raad, M., Hansen, M. and Potapov, P., 2017. Using spatial statistics to identify emerging hot spots of forest loss. Environmental Research Letters, 12(2).

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D. and Thépaut, J.-N., 2019a. ERA5 monthly averaged data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).

Hersbach, H., Bell, B., Berrisford, P., Horányi, A., Sabater, J.M., Nicolas, J., Radu, R., Schepers, D., Simmons, A., Soci, C. and Dee, D., 2019b. Global reanalysis: goodbye ERA-Interim, hello ERA5. ECMWF Newsletter, (159), pp.17–24.

Ikhwan, M., 2016. Pemetaan Daerah Rawan Kebakaran Hutan Dan Lahan Di Kabupaten Rokan Hilir. Wahana Forestra: Jurnal Kehutanan, 11(1), pp.57–66.

Kirana, A.P., Sitanggang, I.S. and Syaufina, L., 2016. Hotspot Pattern Distribution in Peat Land Area in Sumatera Based on Spatio Temporal Clustering. Procedia Environmental Sciences, 33, pp.635–645.

Kurniadi, A., Weller, E., Min, S.K. and Seong, M.G., 2021. Independent ENSO and IOD impacts on rainfall extremes over Indonesia. International Journal of Climatology.

Leach, S., 1995. Singular value decomposition-a primer. Providence, RI, USA.

Miettinen, J., Shi, C. and Liew, S.C., 2017. Fire Distribution in Peninsular Malaysia, Sumatra and Borneo in 2015 with Special Emphasis on Peatland Fires. Environmental Management, 60(4), pp.747–757.

Najib, M.K. and Nurdiati, S., 2021. Koreksi Bias Statistik Pada Data Prediksi Suhu Permukaan Air Laut Di Wilayah Indian Ocean Dipole Barat Dan Timur. Jambura Geoscience Review, 3(1), pp.9–17.

Navarra, A. and Simoncini, V., 2010. A guide to empirical orthogonal functions for climate data analysis. Springer Science & Business Media.

Nur’utami, M.N. and Hidayat, R., 2016. Influences of IOD and ENSO to Indonesian Rainfall Variability: Role of Atmosphere-ocean Interaction in the Indo-pacific Sector. In: Procedia Environmental Sciences. pp.196–203.

Nurdiati, S., Sopaheluwakan, A., Agustina, A. and Septiawan, P., 2019. Multivariate analysis on Indonesian forest fire using combined empirical orthogonal function and covariance matrices. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing.p.012048.

Nurdiati, S., Sopaheluwakan, A. and Najib, M.K., 2019. Statistical Bias Correction for Predictions of Indian Ocean Dipole Index With Quantile Mapping Approach. In: International MIPAnet Conference on Science and Mathematics (IMC-SciMath), Medan.

Nurdiati, S., Sopaheluwakan, A. and Septiawan, P., 2021a. Multivariate Regression Hotspot Model Using Local And Global Climate Indicators In South Sumatra. In: 2nd International Conference on Tropical Meteorology and Atmospheric Sciences.

Nurdiati, S., Sopaheluwakan, A. and Septiawan, P., 2021b. Spatial and Temporal Analysis of El Niño Impact on Land and Forest Fire in Kalimantan and Sumatra. Agromet, 35(1), pp.1–10.

Pan, X., Chin, M., Ichoku, C.M. and Field, R.D., 2018. Connecting Indonesian Fires and Drought With the Type of El Niño and Phase of the Indian Ocean Dipole During 1979–2016. Journal of Geophysical Research: Atmospheres, 123(15), pp.7974–7988.

Perwitasari, D. and Sukana, B., 2012. Gambaran Kebakaran Hutan Dengan Kejadian Penyakit Ispa Dan Pneumonia Di Kabupaten Batang Hari, Provinsi Jambi Tahun 2008. Indonesian Journal of Health Ecology, 11(2), pp.147–157.

Saharjo, B.H. and Ramadhania, D., 2019. Hubungan antara Hotspot Dan Kebakaran Terhadap Timbulnya Penyakit Infeksi Saluran Pernapasan Akut (ISPA) di Kabupaten Kubu Raya, Kalimantan Barat. Jurnal Silvikultur Tropika, 10(3), pp.133–139.

Saji, N.H., Goswami, B.N., Vinayachandran, P.N. and Yamagata, T., 1999. A dipole mode in the tropical Indian ocean. Nature, 401(6751), pp.360–363.

Septiawan, P., Nurdiati, S. and Sopaheluwakan, A., 2019. Numerical Analysis using Empirical Orthogonal Function Based on Multivariate Singular Value Decomposition on Indonesian Forest Fire Signal. IOP Conference Series: Earth and Environmental Science, 303(1).

Stibig, H.J., Achard, F., Carboni, S., Raši, R. and Miettinen, J., 2014. Change in tropical forest cover of Southeast Asia from 1990 to 2010. Biogeosciences, 11(2), pp.247–258.

DOI: https://doi.org/10.34312/jgeosrev.v3i2.10443

Copyright (c) 2021 Author

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.