Pemetaan Distribusi Mangrove Menggunakan Citra Sentinel-2A: Studi Kasus Kota Langsa

M Taufik Rahmadi, Eni Yuniastuti, Maulana Abdul Hakim, Ayu Suciani

Abstract


Mangroves are one of the most productive ecosystems for human life, marine ecosystems, and coastal areas. Mangrove distribution is a distribution based on specific geographical or administrative boundaries. Kota Langsa is one of the areas that has a good representation of the distribution of mangroves. Therefore, researchers studied the Kota Langsa area because Kota Langsa is one of the areas with the largest and most diverse mangrove ecosystem in Aceh Province. This study examines the mapping of mangrove distribution using Sentinel-2A multispectral imagery with composite images of Red, Green, and Blue. This research uses SNAP software. The research stages consist of radiometric correction, atmospheric correction, and multispectral image classification. The method used in image classification is the maximum likelihood algorithm. The use of the maximum likelihood algorithm is because the maximum likelihood algorithm gives the best results among other algorithms. The development of the research is the distribution of mangroves in Langsa City, covering an area of 4727.35 ha, which is divided into three sub-districts and eleven gampong (kelurahan). The sub-districts that have mangrove distribution are East Langsa District covering an area of 3240.25 Ha (68.55%), Langsa Barat District covering an area of 1486.47 Ha (31.45%), and Langsa Lama District covering an area of 0.63 Ha (0.013).


Keywords


Distribution; Langsa City; Mangrove; Mapping; Sentinel-2A

Full Text:

PDF

References


Akhrianti, I. (2019). Spatial Distribution of Mangrove in Kelapan Island, South Bangka Regency. 167(ICoMA 2018), 17–21. https://doi.org/10.2991/icoma-18.2019.5

Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, & Silliman BR. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs, 81(2)(2), 169–193.

Chen, B., Xiao, X., Li, X., Pan, L., Doughty, R., Ma, J., Dong, J., Qin, Y., Zhao, B., Wu, Z., Sun, R., Lan, G., Xie, G., Clinton, N., & Giri, C. (2017). A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 104–120. https://doi.org/10.1016/j.isprsjprs.2017.07.011

Chow, J. (2018). Mangrove management for climate change adaptation and sustainable development in coastal zones. Journal of Sustainable Forestry, 37(2), 139–156. https://doi.org/10.1080/10549811.2017.1339615

Danoedoro, P. (2012). Pengantar Penginderaan Jauh Digital. Penerbit Andi, Yogyakarta.

Dat Pham, T., Xia, J., Thang Ha, N., Tien Bui, D., Nhu Le, N., & Tekeuchi, W. (2019). A review of remote sensing approaches for monitoring blue carbon ecosystems: Mangroves, sea grasses and salt marshes during 2010–2018. Sensors (Switzerland), 19(8). https://doi.org/10.3390/s19081933

Gascon, F., Bouzinac, C., Thépaut, O., Jung, M., Francesconi, B., Louis, J., Lonjou, V., Lafrance, B., Massera, S., Gaudel-Vacaresse, A., Languille, F., Alhammoud, B., Viallefont, F., Pflug, B., Bieniarz, J., Clerc, S., Pessiot, L., Trémas, T., Cadau, E., … Fernandez, V. (2017). Copernicus Sentinel-2A calibration and products validation status. Remote Sensing, 9(6). https://doi.org/10.3390/rs9060584

Ghorbanian, A., Zaghian, S., Asiyabi, R. M., Amani, M., Mohammadzadeh, A., & Jamali, S. (2021). Mangrove ecosystem mapping using sentinel-1 and sentinel-2 satellite images and random forest algorithm in google earth engine. Remote Sensing, 13(13), 1–18. https://doi.org/10.3390/rs13132565

Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Masek, J., & Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20(1), 154–159. https://doi.org/10.1111/j.1466-8238.2010.00584.x

Heumann, B. W. (2011). An object-based classification of mangroves using a hybrid decision tree-support vector machine approach. Remote Sensing, 3(11), 2440–2460. https://doi.org/10.3390/rs3112440

Hirata, Y., Tabuchi, R., Patanaponpaiboon, P., Poungparn, S., Yoneda, R., & Fujioka, Y. (2014). Estimation of aboveground biomass in mangrove forests using high-resolution satellite data. Journal of Forest Research, 19(1), 34–41. https://doi.org/10.1007/s10310-013-0402-5

Iswahyudi, I., Kusmana, C., Hidayat, A., & Noorachmat, B. P. (2020). Lingkungan Biofisik Hutan Mangrove di Kota Langsa, Aceh. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan (Journal of Natural Resources and Environmental Management), 10(1), 98–110. https://doi.org/10.29244/jpsl.10.1.98-110

Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V., & Dech, S. (2011). Remote sensing of mangrove ecosystems: A review. In Remote Sensing (Vol. 3, Issue 5). https://doi.org/10.3390/rs3050878

M. Brander, L., J. Wagtendonk, A., S. Hussain, S., McVittie, A., Verburg, P. H., de Groot, R. S., & van der Ploeg, S. (2012). Ecosystem service values for mangroves in Southeast Asia: A meta-analysis and value transfer application. Ecosystem Services, 1(1), 62–69. https://doi.org/10.1016/j.ecoser.2012.06.003

Nabil Zurba, Hefni Effendi, dan Y. (2017). Pengelolaan Potensi Ekosistem Mangrove Di Kuala Langsa, Aceh. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 9(1), 281–300.

Onrizal. (2010). di Pantai Timur Sumatera Utara Periode 1977-2006. Jurnal Biologi Indonesia, 6(2), 163–172.

Pham, T. D., Xia, J., Baier, G., Le, N. N., & Yokoya, N. (2019). Mangrove Species Mapping Using Sentinel-1 and Sentinel-2 Data in North Vietnam. International Geoscience and Remote Sensing Symposium (IGARSS), 6102–6105. https://doi.org/10.1109/IGARSS.2019.8898987

Peraturan Kepala Badan Informasi Spasial Nomor 3 Tahun 2014 tentang Pedoman Teknik Pengumpulan dan Pengolahan Data Geospasial Mangrove.

Rafsenja, U., Muh, L., Jaya, G., & Rahim, S. (2020). Analisis Perbandingan Citra Landsat 8 dan Citra Sentinel 2-A untuk Mengidentifikasi Sebaran Mangrove. JAGAT (Jurnal Geografi Aplikasi Dan Teknologi), 4(1), 63–70.

Rahmadi, M. T., Suciani, A., & Auliani, N. (2020). Analisis Perubahan Luasan Hutan Mangrove Menggunakan Citra Landsat 8 OLI di Desa Lubuk Kertang Langkat. Media Komunikasi Geografi, 21(2), 110–119. https://ejournal.undiksha.ac.id/index.php/MKG/article/view/24197

Rosyidy, M. K., Ashilah, Q. P., & Ash, P. (2019). Pemanfaatan Citra Sentinel-2 Untuk Monitoring Sebaran dan Luasan Eceng Gondok Secara Spasio-Temporal Sebagai Upaya Menjaga Kondisi Air dan Sanitasi di Inlet Waduk Saguling , Jawa Barat Application of Sentinel-2 Imagery for Monitoring Area and Distribution. Seminar Nasional Penginderaan Jauh Ke-6, February, 31–40.

Suciani, A., Rahmadi, M. T., & Islami, Z. R. (2020). Analyzing mangrove forest area changes in coastal zone of Langsa City using landsat imagery. IOP Conference Series: Earth and Environmental Science, 500(1). https://doi.org/10.1088/1755-1315/500/1/012084

Wang, D., Wan, B., Qiu, P., Su, Y., Guo, Q., Wang, R., Sun, F., & Wu, X. (2018). Evaluating the performance of Sentinel-2, Landsat 8 and Pléiades-1 in mapping mangrove extent and species. Remote Sensing, 10(9). https://doi.org/10.3390/rs10091468

Wicaksono, P. (2017). Mangrove above-ground carbon stock mapping of multi-resolution passive remote-sensing systems. International Journal of Remote Sensing, 38(6), 1551–1578. https://doi.org/10.1080/01431161.2017.1283072

Wicaksono, P., Danoedoro, P., Hartono, & Nehren, U. (2016). Mangrove biomass carbon stock mapping of the Karimunjawa Islands using multispectral remote sensing. International Journal of Remote Sensing, 37(1), 26–52. https://doi.org/10.1080/01431161.2015.1117679




DOI: https://doi.org/10.34312/jgeosrev.v4i1.11380



Copyright (c) 2022 Author

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor