Ekstraksi Perubahan Tutupan Vegetasi Di Kabupaten Gorontalo Menggunakan Google Earth Engine
Abstract
Monitoring changes in vegetation cover is important for the restoration of ecosystems in the Gorontalo Regency area. The utilization of remote sensing technology makes it possible to detect the dynamics of changes in vegetation cover spatially and temporally. The Terra MODIS satellite image collection in the study area is available in large numbers and sizes. Therefore, cloud computing-based spatial technology support is needed. Google Earth Engine (GEE) as a geospatial computing device is an alternative to cover this shortfall. The aim of this study is to explore the condition of vegetation cover spatially and temporally using the GEE platform. A total of 43 MODIS images in the study area, recording periods 2000 and 2020, were used to quickly and effectively generate vegetation cover maps. The process of downloading, processing, and analyzing data was automated through the GEE interface. The results of the mapping in 2000 and 2020 are shown by maps of vegetation cover in two classes, namely; vegetation and non-vegetation. The accuracy of the vegetation cover map shows good results, namely an overall accuracy of 0.81 for 2000 and 0.85 for 2020. The area of the non-vegetation class increased by 2815.29 ha, and the vegetation class decreased by 2767.31 ha. The map of spatial changes in vegetation cover in the study area is classified into three classes, namely revegetation, devegetation, and unchanged. Based on these results, the extraction of vegetation cover changes in the study area using the GEE platform can be carried out well.
Keywords
Full Text:
PDFReferences
Adiningsih, S. E. (2014). Tinjauan metode deteksi parameter kekeringan berbasis data penginderaan jauh. Prosiding Seminar Nasional Penginderaan Jauh 2014, 210–220.
Albarakat, R., & Lakshmi, V. (2019). Comparison of Normalized Difference Vegetation Index Derived from Landsat, MODIS, and AVHRR for the Mesopotamian Marshes Between 2002 and 2018. Remote Sensing, 11(10), 1245. https://doi.org/10.3390/rs11101245
Arifin, S., Carolita, I., & Kartika, T. (2019). Aplikasi model geobiofisik NDVI untuk identifikasi hutan pada data satelit Lapan-A3. Jurnal Penginderaan Jauh Dan Pengolahan Data Citra Digital, 16(2), 91–100. https://doi.org/http://dx.doi.org/10.30536/j.pjpdcd.2018.v0.a3109
Arifin, S., & Kartika, T. (2021). Monitoring Model Of Land Cover Change For The Indication Of Devegetation And Revegetation Using. International Journal of Remote Sensing and Earth Sciences (IJReSES), 17(2), 163. https://doi.org/10.30536/j.ijreses.2020.v17.a3385
Ayuba, S. R., Nursaputra, M., & Tisen, T. (2018). Klasifikasi Tingkat Kekeringan Pada Daerah Aliran Sungai (Das) Limboto (Classification Of Drought Level In Limboto Watershed). Jurnal Sains Informasi Geografi, 1(2), 12. https://doi.org/10.31314/jsig.v1i2.174
BIG. (2014). Peraturan Kepala Badan Informasi Geospasial Nomor 3 Tahun 2014 Tentang Pedoman Teknis Pengumpulan Dan Pengolahan Data Geospasial Mangrove. Badan Informasi Geospasial.
Buma, W., Lee, S.-I., & Seo, J. (2018). Recent Surface Water Extent of Lake Chad from Multispectral Sensors and GRACE. Sensors, 18(7), 2082. https://doi.org/10.3390/s18072082
Clinton, N. (2017). Otsu’s Method for Image Segmentation. Retrieved July 28, 2020, from https://medium.com/google-earth/otsus-method-for-image-segmentation-f5c48f405e
Didan, K. (2015). MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 [Data set]. https://doi.org/https://doi.org/10.5067/MODIS/MOD13Q1.006
Didan, K., Munoz, A. B., & Huete, A. (2015). MODIS Vegetation Index User ’ s Guide ( MOD13 Series ) (Vol. 2015).
Google Earth Engine. (2021). NDVI, Mapping a Function over a Collection, Quality Mosaicking. Retrieved November 11, 2021, from https://developers.google.com/earth-engine/tutorials/tutorial_api_06
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
Hayu, M. K., & Ridwana, R. (2019). Analisis Kerapatan Vegetasi untuk Area Pemukiman Dengan Memanfaatan Citra Satelit Landsat Di Kota Tasikmalaya. Jurnal Geografi, 8(2), 78. https://doi.org/10.24036/geografi/vol8-iss2/845
Hidayati, I. N., Suharyadi, R., & Danoedoro, P. (2018). Developing an Extraction Method of Urban Built-Up Area Based on Remote Sensing Imagery Transformation Index. Forum Geografi, 32(1), 96–108. https://doi.org/10.23917/forgeo.v32i1.5907
Jackson, R. B., Randerson, J. T., Canadell, J. G., Anderson, R. G., Avissar, R., Baldocchi, D. D., … Pataki, D. E. (2008). Protecting climate with forests. Environmental Research Letters, 3(4), 044006. https://doi.org/10.1088/1748-9326/3/4/044006
Ji, L., Zhang, L., & Wylie, B. (2009). Analysis of dynamic thresholds for the normalized difference water index. Photogrammetric Engineering and Remote Sensing, 75(11), 1307–1317. https://doi.org/10.14358/PERS.75.11.1307
Klisch, A., & Atzberger, C. (2016). Operational drought monitoring in Kenya using MODIS NDVI time series. Remote Sensing, 8(4). https://doi.org/10.3390/rs8040267
Koem, S., & Rusiyah. (2017). Monitoring of Drought Events in Gorontalo Regency. IOP Conference Series: Earth and Environmental Science, 98, 012053. https://doi.org/10.1088/1755-1315/98/1/012053
Koem, S., & Rusiyah, R. (2018). Spatiotemporal Characteristics of Meteorological Drought in Gorontalo Regency in 1981- 2016. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan (Journal of Natural Resources and Environmental Management), 8(3), 355–364. https://doi.org/10.29244/jpsl.8.3.355-364
Kucharik, C. J., Foley, J. A., Delire, C., Fisher, V. A., Coe, M. T., Lenters, J. D., … Gower, S. T. (2000). Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure. Global Biogeochemical Cycles, 14(3), 795–825. https://doi.org/10.1029/1999GB001138
Kumar, L., & Mutanga, O. (2018). Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sensing, 10(10), 1509. https://doi.org/10.3390/rs10101509
Lahay, R. J., & Koem, S. (2021). Google earth engine and landsat data for detecting inundation changes in Limboto lake. IOP Conference Series: Earth and Environmental Science, 739(1), 012087. https://doi.org/10.1088/1755-1315/739/1/012087
Llano, X. C. (2019). AcATaMa - QGIS plugin for Accuracy Assessment of Thematic Maps, version XX.XX. Retrieved from https://plugins.qgis.org/plugins/AcATaMa/
Luo, S., Song, C., Liu, K., Ke, L., & Ma, R. (2019). An Effective Low-Cost Remote Sensing Approach to Reconstruct the Long-Term and Dense Time Series of Area and Storage Variations for Large Lakes. Sensors, 19(19), 4247. https://doi.org/10.3390/s19194247
NASA. (2000). NDVI as an Indicator of Drought. Retrieved from https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_3.php
NASA. (2021). Moderate Resolution Imaging Spectroradiometer. Retrieved November 29, 2021, from https://modis.gsfc.nasa.gov/about/
Nguyen, U. N. T., Pham, L. T. H., & Dang, T. D. (2019). An automatic water detection approach using Landsat 8 OLI and Google Earth Engine cloud computing to map lakes and reservoirs in New Zealand. Environmental Monitoring and Assessment, 191(4), 235. https://doi.org/10.1007/s10661-019-7355-x
Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66. https://doi.org/10.1109/TSMC.1979.4310076
Rousta, I., Olafsson, H., Moniruzzaman, M., Zhang, H., Liou, Y.-A., Mushore, T. D., & Gupta, A. (2020). Impacts of Drought on Vegetation Assessed by Vegetation Indices and Meteorological Factors in Afghanistan. Remote Sensing, 12(15), 2433. https://doi.org/10.3390/rs12152433
Schimel, D., Melillo, J., Tian, H., McGuire, A. D., Kicklighter, D., Kittel, T., … Rizzo, B. (2000). Contribution of Increasing CO 2 and Climate to Carbon Storage by Ecosystems in the United States. Science, 287(5460), 2004–2006. https://doi.org/10.1126/science.287.5460.2004
Semerádová, D., Hlavinka, P., Trnka, M., Lukas, V., Bohovic, R., Tadesse, T., … Žalud, Z. (2013). Remotely sensed NDVI as an indicator of drought stress on the vegetation. Environmental Changes and Adaptation Strategies, (September).
Solihin, M. A., Putri, N., Setiawan, A., Siliwangi, D., & Arifin, M. (2020). Karakteristik indeks vegetasi pada berbagai penggunaan lahan di hulu sub DAS Cikapundung melalui interpretasi citra satelit Landsat 8. Kultivasi, 19(3), 1202–1209. https://doi.org/10.24198/kultivasi.v19i3.28625
Soulard, C. E., Walker, J. J., & Petrakis, R. E. (2020). Implementation of a Surface Water Extent Model in Cambodia using Cloud-Based Remote Sensing. Remote Sensing, 12(6), 984. https://doi.org/10.3390/rs12060984
Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., & Brisco, B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 164(May), 152–170. https://doi.org/10.1016/j.isprsjprs.2020.04.001
Townshend, J. (2016). Global Forest Cover Change (GFCC) Tree Cover Multi-Year Global 30 m V003. https://doi.org/10.5067/MEASURES/GFCC/GFCC30TC.003
Trisakti, B. (2009). Pembuatan Sebaran Spasial Ndvi Minimum Dan Maksimum Berbasis Data Landsat TM/ETM+ Periode 2000-2009.
Umar, H. R. (2012). Model Terpadu Pengelolaan Daerah Aliran Sungai (Das) Limboto Riset Pengembangan Model Melalui Pembayaran Jasa Lingkungan (Pjl) Di Kabupaten Gorontalo, 2009. Jurnal Green Growth Dan Manajemen Lingkungan, 1(1), 11–26. https://doi.org/10.21009/jgg.011.02
Umar, I., Marsoyo, A., & Setiawan, B. (2018). Analisis Perubahan Penggunaan Lahan Sekitar Danau Limboto Di Kabupaten Gorontalo. Tata Kota Dan Daerah, 10(2), 77–90. https://doi.org/10.21776/ub.takoda.2018.010.02.3
USGS. (2021). MOD13Q1 v006-MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid. Retrieved November 28, 2021, from https://lpdaac.usgs.gov/products/mod13q1v006/
Usman, M., Liedl, R., Shahid, M. A., & Abbas, A. (2015). Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data. Journal of Geographical Sciences, 25(12). https://doi.org/10.1007/s11442-015-1247-y
Wang, J., Ding, J., Li, G., Liang, J., Yu, D., Aishan, T., … Liu, J. (2019). Dynamic detection of water surface area of Ebinur Lake using multi-source satellite data (Landsat and Sentinel-1A) and its responses to changing environment. Catena, 177(March), 189–201. https://doi.org/10.1016/j.catena.2019.02.020
Wang, Y., Li, Z., Zeng, C., Xia, G., & Shen, H. (2020). An Urban Water Extraction Method Combining Deep Learning and Google Earth Engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 769–782. https://doi.org/10.1109/JSTARS.2020.2971783
Wu, Q., Lane, C. R., Li, X., Zhao, K., Zhou, Y., Clinton, N., … Lang, M. W. (2019). Mapping wetland hydrological dynamics using Google Earth Engine. https://doi.org/10.6084/m9.figshare.8864921.v1
Yuan, J., Xu, Y., Xiang, J., Wu, L., & Wang, D. (2019). Spatiotemporal variation of vegetation coverage and its associated influence factor analysis in the Yangtze River Delta, eastern China. Environmental Science and Pollution Research, 26(32), 32866–32879. https://doi.org/10.1007/s11356-019-06378-2
Zaitunah, A., & Sahara, F. (2021). Mapping and assessment of vegetation cover change and species variation in Medan , North Sumatra. Heliyon, 7(July), e07637. https://doi.org/10.1016/j.heliyon.2021.e07637
Zhang, F., Li, J., Shen, Q., Zhang, B., Ye, H., & Wang, S. (2016). Dynamic Threshold Selection for the Classification of Large Water Bodies within Landsat-8 OLI Water Index Images. Preprint 2016, (December), 1–18. https://doi.org/10.20944/preprints201612.0141.v1
Zhang, J., Ding, J., Wu, P., Tan, J., Huang, S., Teng, D., … Chen, W. (2020). Assessing arid Inland Lake Watershed Area and Vegetation Response to Multiple Temporal Scales of Drought Across the Ebinur Lake Watershed. In Scientific Reports (Vol. 10). https://doi.org/10.1038/s41598-020-57898-8
DOI: https://doi.org/10.34312/jgeosrev.v4i1.12086
Copyright (c) 2022 Author

This work is licensed under a Creative Commons Attribution 4.0 International License.