Analisis Data Gravitasi Untuk Identifikasi Struktur Bawah Permukaan Daerah Potensi Panas Bumi Cipari

Ninik Agustin, Agung Wibawa


Geothermal prospect in Cipari has been shown by spring who has a temperature of about 50°C and is categorized as a low temperature. The presence of spring on Cipari earth's surface is an indication of geothermal structures' existence on the surface and a geothermal system below the surface. Geophysical methods can be used for subsurface structures identification, one of them is the density method with gravity data. This study has an objective to identify the subsurface structures in Cipari geothermal potential area using GGMPlus gravity data. Terrain and Bouguer corrections were used to obtain Complete Bouguer Anomaly (CBA). Separation of regional and residual anomalies using Butterwoth and Bandpass filters. The rock contact boundary was obtained by the FHD method and geological structures such as faults were obtained by the SVD method. FHD and SVD results were used as information for 2D forward modeling. The ABL map shows anomalous contrasts in areas that have rock contacts and geological faults. The high anomaly in the center of the study area indicates the Cipari anticline. Data processing and analysis concluded that the area around the Cipari hot spring has anticline, several rock contacts, and normal fault structures. The fault in the study area is part of the geothermal system which is confirmed by GGMPlus data. 


Bouguer Anomaly; Cipari; GGMPlus; Gravity Data

Full Text:



Azkia, H. A., & Daud, Y. (2021). Integrated geophysical and geological methods to identify structure existence as a permeable zone in a geothermal field. AIP Conference Proceedings, 2320(March), 1–7.

Daud, Y., Sulistyo, A., Fahmi, F., Nuqramadha, W. A., Fitrianita, F., Sesesega, R. S., Rosid, S., Pati, G. P., Maulana, M. R., Khoiroh, M., Rahman, K. R., & Subroto, W. (2019). First horizontal derivative and Euler Deconvolution in application for reconstructing structural signature over the Blawan-Ijen Geothermal area. IOP Conference Series: Earth and Environmental Science, 254(1), 1–8.

Direktorat Panas Bumi, D. J. E. (2017). Potensi Panas Bumi Indonesia (1st ed.). Direktorat Panas Bumi KESDM.

Fitriani, D. S., Putri, S. N. A., & Putrajy, I. F. (2020). Metode Gravitasi untuk Identifikasi Sesar Weluki Dengan Analisis First Horizontal Derivative Dan Second Vertical Derivative. Prosiding Seminar Nasional Fisika (E-Journal) SNF2020, IX, 53–60.

Geosoft Inc. (2015). MAGMAP Filtering How-To Guide. Www.Geosoft.Com.

Guglielmetti, L., & Moscariello, A. (2021). On the use of gravity data in delineating geologic features of interest for geothermal exploration in the Geneva Basin (Switzerland): prospects and limitations. Swiss Journal of Geosciences, 114(15), 1–20.

Hidayat, H., Subagio, S., & Praromadani, Z. S. (2020). Interpretasi Struktur Geologi Bawah Permukaan Berdasarkan Updating Data Gaya Berat Cekungan Banyumas, Jawa Tengah. Jurnal Geologi Dan Sumberdaya Mineral, 21(3), 111–118.

Hirt, C., Claessens, S., Fecher, T., Kuhn, M., Pail, R., & Rexer, M. (2013). New ultrahigh-resolution picture of Earth’s gravity field. Geophysical Research Letters, 40(16), 4279–4283.

Huwaina, M. A., Putranto, T. T., & Santi, N. (2018). Zonasi Potensi Airtanah Akuifer Bebas Di Cekungan Airtanah Majenang, Kabupaten Cilacap, Jawa Tengah. Promine, 5(1), 41–50.

Kastowo, & Sunarwa, N. (1996). Peta Geologi Lembar Majenang, Jawa.

Moeck, I. S. (2014). Catalog of geothermal play types based on geologic controls. Renewable and Sustainable Energy Reviews, 37, 867–882.

Oryzavica, V., Aulia, K. N., Hendrawan, R. N., & Chandra, A. (2016). What happen in Banyumas Basin? An overview of geological condition in Cipari Area. Geosea XIV and IAGI Annual Convention, 1–7.

Permana, L. A., & Mulyadi, E. (2014). Studi Geokimia Fluida Panas Bumi Daerah Jawa Tengah Bagian Selatan Provinsi Jawa Tengah. In Penelitian Panas Bumi, Badan Geologi, PSDG.

Raharjo, S. A., & Sehah. (2015). Interpretasi Lokasi Source Rock Rembesan Minyak di Desa Cipari , Kecamatan Cipari , Kabupaten Cilacap Berdasarkan Survei Magnetik. Indonesian Journal of Applied Physics, 5(2), 80–89.

Raharjo, W., Palupi, I. R., Nurdian, S. W., Giamboro, W. S., & Soesilo, J. (2016). Poisson’s ratio analysis (Vp/Vs) on volcanoes and geothermal potential areas in Central Java using tomography travel time method of grid search relocation hypocenter. Journal of Physics: Conference Series, 776(1), 1–7.

Rosid, M. S., & Siregar, H. (2017). Determining fault structure using first horizontal derivative (FHD) and horizontal vertical diagonal maxima (HVDM) method: A comparative study. AIP Conference Proceedings, 1862(030171), 1–8.

Soleha, K. P., Handyarso, A., Fitriani, D., & Supriyana, E. (2019). Modeling of subsurface based on gravity data with second vertical derivative (SVD) and euler deconvolution optimazitation. IOP Conference Series: Earth and Environmental Science, 311(012065), 1–5.

Sumintadireja, P., Dahrin, D., & Grandis, H. (2018). A note on the use of the second vertical derivative (SVD) of gravity data with reference to Indonesian cases. Journal of Engineering and Technological Sciences, 50(1), 127–139.

Suprianto, A., Supriyadi, Priyantari, N., & Cahyono, B. E. (2021). Correlation between GGMPlus, topex and BGI gravity data in volcanic areas of Java Island. Journal of Physics: Conference Series, 1825(012023), 1–6.

Wahyudi, E. J., Kynantoro, Y., & Alawiyah, S. (2017). Second Vertical Derivative Using 3-D Gravity Data for Fault Structure Interpretation. Journal of Physics: Conference Series, 877(1), 1–8.

Zain, M. A., Rozi, M. F., Septikasari, A. N., Nuruddianto, M., Supriyanto, & Zarkasyi, A. (2015). Studi Penerapan Metode Analisis Derivatif Pada Data Potensial Gravitasi. Prosiding Seminar Nasional Fisika 2015, IV, 65–70.


Copyright (c) 2022 Author

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.